Effect of Cu and Si Wafer Substrates in Increasing Raman Signal Of Surface-Enhanced Raman Scattering-Based Au Nanoparticles

Main Article Content

Affi Hidayah
https://orcid.org/0000-0001-9209-5892
Djoko Triyono
https://orcid.org/0000-0001-8328-7331
Yuliati Herbani
Rosari Saleh

Abstract

Surface-enhanced Raman spectroscopy (SERS) has attracted considerable research interest over the last four decades because of its rapid vibrational spectroscopic detection, high sensitivity, and nondestructive technique for enhancing the generally weak signal from Raman scattering. Here, SERS substrates were fabricated by drop-casting Au nanoparticles (NPs) onto two substrates (Cu and Si wafers). The AuNPs (diameter = 7.3 nm) were synthesized from an Au metal ion solution with a concentration of 4.22 × 10−4 M via photochemical reduction using a femtosecond laser. The SERS substrates were tested for their ability to enhance the Raman signal of paraquat pesticides at 10 ppm. Six vibration peaks of the paraquat pesticides at 671, 838, 1187, 1294, 1530, and 1643 cm−1 were successfully detected and enhanced. The results showed that the SERS substrate on the Si wafer increased the Raman signal more than the Cu wafer.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hidayah, A., Triyono, D., Herbani, Y. ., & Saleh, R. (2025). Effect of Cu and Si Wafer Substrates in Increasing Raman Signal Of Surface-Enhanced Raman Scattering-Based Au Nanoparticles . Malaysian Journal of Science, 44(2), 78–85. https://doi.org/10.22452/mjs.vol44no2.8
Section
Original Articles
Author Biographies

Affi Hidayah, Malaysian Research Center for Photonics, National Research and Innovation Agency, Kawasan PUSPIPTEK Building 442, Tangerang Selatan 15314, INDONESIA.

Research Center for Photonics

Djoko Triyono, School Department of Physics, Universitas Indonesia, Kampus UI Depok, INDONESIA.

Department of Physics

Yuliati Herbani, Malaysian Research Center for Photonics, National Research and Innovation Agency, Kawasan PUSPIPTEK Building 442, Tangerang Selatan 15314, INDONESIA.

Research Center for Photonics

Rosari Saleh, School Department of Physics, Universitas Indonesia, Kampus UI Depok, INDONESIA.

Department of Physics

References

Anema J R., Li J F., Yang Z L., Ren B. and Tian Z. Q. (2011). Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering, Annual Review of Analytical Chemistry 4:129-150.

Chen Y T., Pan L., Horneber A., Berg M., Miao P., Xu P., Adam P M., Meixner A J., and Zhang D. (2019). Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film, Nanophotonics 8(9), 1533-1546.

Craig A P., Franca A S., and Irudayaraj J. (2013). Surface-Enhanced Raman Spectroscopy Applied to Food Safety, Annu. Rev. Food Sci. Technol. 4:369–80.

Ferdous Z. and Nemmar A. (2020). Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure, Int. J. Mol. Sci. 21(7):2375.

Gushiken N K., Paganoto G T., Temperini M L A., Teixera F S. and Salvadori M C. (2020). Substrate for Surface-Enhanced Raman Spectroscopy Formed by Gold Nanoparticles Buried in Poly (methyl methacrylate), ACS Omega 5(18):10366-10373.

Hidayah, A.N., Herbani, Y., Steven, E., Subhan, A., Triyono, D., Isnaeni, Suliyanti, M. M., and Shiddiq, M. (2022). Tuning the electrical properties of colloidal nanoalloys by varying their composition, Colloids and Surfaces A: Physicochemical and Engineering Aspects 641:128496.

Hidayah, A N., Triyono, D., Herbani, Y., and Saleh, R. (2022). Liquid Surface-Enhanced Raman Spectroscopy (SERS) Sensor-Based Au-Ag Colloidal Nanoparticles for Easy and Rapid Detection of Deltemthrin Pesticide in Brewed Tea, Crystals 12:24.

Huan Q., Liu Y., Chang S., Chen H., and Chen J. (2016). Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications, Sensors 21(16):5262.

Ilyas H., Zeeshan T., Sattar N. A., Ramay S. M., Mahmood A., Abbas H. G., Saleem M. (2021). First principle and experimental investigations of monodispersed Au plasmonic nanoparticles on TiO2, Chemical Physics Letters 783:139080

Israelsen N D., Hanson C. and Vargis E. (2015). Nanoparticles Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction, The Scientific World Journal 2015: 124582.

Kahraman M., Mullen E R., Korkmaz A. and Wachsmann-Hogiu S. (2017). Fundamentals and Applications of SERS-based bioanalytical sensing, Nanophotonics 6(5)

Khalil I., Chou C M., Tsai K L., Hsu S., Yehye W A., and Hsiao V K S. (2019). Gold Nanofilm-Coated Porous Silicon as Surface-Enhanced Raman Scattering Substrate, Appl. Sci. 9: 4806.

Kneipp J., Kneipp H., Wittig B., and Kneipp K. (2010). Novel optical nanosensors for probing and imaging live cells, Nanomedicine 6(2):214–226.

Le Ru E. and Etchegoin P. (2009). Principles of Surface Enhanced Raman Spectroscopy. Pp. 134-135, UK, Oxford: Elsivier.

Lia M., Cushinga S K., and Wua N. (2015). Plasmon-enhanced optical sensors: a review, Analyst 140 (2):386–406.

Meader V K., John M G., Rodrigues C J., Tibbetts K M. (2017). Roles of Free Electrons and H2O2 in the Optical Breakdown-Induced Photochemical Reduction of Aqueous [AuCl4], J. Phys. Chem. A 121:6742–6754.

Minho K., Jung-Hoon L., Jwa-Min N. (2019). Plasmonic Photothermal Nanoparticles for Biomedical Applications, Adv. Sci. 6:1900471.

Pérez-Jiménez A I., Lyu D., Lu Z., Liu G., and Ren B. (2020). Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments, Chem. Sci. 11:4563-4577.

Pilot R., Signorini R., Durante C., Orian L. (2019). Manjari Bhamidipati and Laura Fabris, A Review on Surface-Enhanced Raman Scattering, Biosensors 9:57.

Pissuwan D., Camilla G., Mongkolsuk S., Cortie M. B. (2019). Single and multiple detections of foodborne pathogens by gold nanoparticle assays, WIREs Nanomed. Nanobiotechnol. 12:1584.

Roguska A., Kudelski A., Pisarek M., Opara M., and Janik-Czachor M. (2011). Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate, Appl. Surf. Sci. 257(19):8182–8189.

Unser S., Bruzas I., He J. and Sagle L. (2015). Localized Surface Plasmon Resonance Biosensing: Current Chalengges and Aprroaches, Sensors 15(7):15684-15716.

Wang K., Sun D W., Pu H. and Wei Q. (2019). Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications, Talanta 195:506-515.

Xu N., Jin S., and Li W. (2021). Metal nanoparticles-based nanoplatforms for colorimetric sensing: A review, Reviews in Analytical Chemistry 40: 1–11.

Yonzon C R., Haynes C L., Zhang X., Walsh J T., Van Duyne R P. (2004). A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference, Anal. Chem. 76(1):78-85.

Zhang D., Pu H., Huang L., and Sun D. (2021). Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications, Trends in Food Science & Technology 109:690-701.

Zhao Y., Gan S., Zhang G., Dai X. (2019). High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator, Results in Physics 14:102477.