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ABSTRACT  Variational calculations are presented for highly excited vibrational bound states of
N,0 using a newly constructed ab initio multireference configuration interaction potential energy surface.
The calculations are performed using a Jacobi coordinate system. The vibrational energies are compared
with experimental data and the sources of the discrepancy between them are discussed.

ABSTRAK Pengiraan variasi dipersembahkan untuk keadaan-keadaan getaran teruja tinggi bagi
N;O menggunakan satu permukaan ab initio tenaga keupayaan interaksi konfigurasi multirujukan yang
baru dibina. Pengiraan dibuat menggunakan satu sistem koordinat Facobi, Tenaga-tenaga getaran
dibandingkan dengan data eksperimen dan sumber-sumber perbezaan antara mereka dibincangkan..

{(Variational, multireference configuration interaction, potential energy surface, Jacobi coordinate,
rovibrational energy)

>

INTRODUCTION performing extensive variational calculations of
highly excited state up to 15 000 cm™. A great

The ground electronic state, X'.A’, of the N,O variety of curvilinear vibrational coordinates
molecule has been extensively studied have been used to calculate vibrational energies
thronghout the years, both theoretically and of N;O such as Radau and hyperspherical
experimentally. The experimental study of the coordinates. With a systematic way of adjusting
IR of N,O molecule has been intensified in the fitted potential energy functions together with
last 20 years. Amiot and Guelachvili [1, 2] have the most sophisticated wvariational methods
recorded infrared spectrum of this molecule employed to calculate vibrational energies, all
which cover the spectral region up to 8200 cm™ the reported results give excellent agreement
using Fourier  Transform  spectroscopy. when compared to observed values.
Campargue et al. [3] have completed the
analysis of the FT spectrum of N;O in the near This paper presents the two dimensional
infrared and visible region and have extended it variational calculations of highly excited
up to 11 000 cm™', This group has also reported vibrational states of N;O molecule using the
the spectrum for a number of bands of N;O recently derived ab initio potential energy
using intracavity laser spectroscopy between 11 surface. The surface is interpolated using the
700 and 15 000 cm™. Various potential energy spline method and the quality of the interpolated
surfaces have been determined for this state, potential energy surface is checked by
including empirical fits as those performed by comparing the calculated vibrational energies
Lacy et al. [4], Kobayashi et al. [5] and Teffo et with the experimental frequencies.’
al. [6], and also the ab initio calculation carried
out by Martin et al. [7] and Csaszar et al. [§]. THEORY
Some of these surfaces have been used to
investigate the vibrational spectrum of N,O. The quantum mechanical characterisation of a
Zuniga et al. [9] have considered these issues by molecular system can be formulated either time-
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independently or time-dependently. The time-
independent approach is based on the time-
independent Schrédinger equation:
HY = BV

where in the current case, H is the rovibrational
Hamiltonian of the system. The eigenvalues
and eigenfunctions of A can be obtained using
the Rayleigh variational principle which leads to
the direct diagonalisation of the Hamiltonian
matrix.  The resultant eigenvalues provide
information on the rovibrational spectrum of the
system.

The relevant coordinates employed for the
body-fixed (rotating) frame are the Jacobi
coordinates (7, r, §) as depicted in Figure 1.
The three Euler angles (w = a, 3, v) define the
orientation of the body-fixed axes (z, y, z) with
respect to the space-fixed (non-rotating) axes
(X, Y, Z). The nuclear Hamiltonian operator
for a tristomic molecule in the Jacobi
coordinates system is expressed as [10,11]
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where
Clx =7 (7 +1) - K (K + 1)]'/?,

V' is the electronic potential energy, J is the
total angular momentum quantum number, and
K is the quantum number for the projections of
J and of j onto the body-fixed z axis. K is the
so-called the helicity angular momentum
quantum number,

The nuclear wavefunction corresponding to a
particular JJ and M can be expressed in the
form of 10, 12, 13]

J
UMP (R 7, 0,w) = > &P (R, 1, 0)
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where A is the quantum number for the
projection of J onto the space-fixed 7 axis and
A is defined as

1— (=1 J4p
A= —~(—2)—- (3)
The parity adapted body-fixed angular

momentum basis functions in eq. (2) is defined
as

|7, K, M, p) = 2J+1 1

372 ./ (1 + 50,1()
% [Dior (@) + (=1 DI ()]

where D;’{’ a indicates the rotation matrix of

)

Wigner D-functions,

A= Kpig in eq. (3) takes on the vatue of 0 or 1,
depending on the value of (—1)”/1? where p = 1
and p = 2 correspond to the states of odd parity
and even parity, respectively. For K # 0, p
takes on the value of 1 or 2. For K = 0, p takes
on only the value of 2 because if J = 0, the only
possible value of A is 0. For a given J, there
exist 2J + 1 wavefunctions which correspond to
different X', The K and — K terms have been
grouped together in one parity-adapted
wavefinction (see eq. (4)). Therefore, the 2J +
1 fold degenerate of K states can now be
divided into a set of J + 1 fold degenerate with
K =0,1,2,3, ..., J for even parity states (p =
2) and a set of J fold degenerate states with X
=1,2,3, ..., J for odd parity states (p = 1) .

Notations of vy, vs and vs are used to denote
vibrational quanta for the N,-O stretching, N,-O
bending and N-NO stretching, respectively.
The notation of (v, Ulg'”, vz} is used for the
degenerate states of (vq, ve, v3), distinguished
by a vibrational angular momentum ! that the
allowed values of ! are connected with the
bending quantum numbers, vz, by | = -vg, vy +
2, ..., tug. The allowed values of the total
angular momentum quantum number J are
connected with 1 by J = ||, ] + 1, ...
Accordingly, to compute the rotational-
vibrational energy and wavefunction for a state
with an odd bending quantum number, we
considered J = 1 with parity state either odd or
even. For an odd parity state, the allowed K
values are 0 and 1, while for an even parity state
the allowed K value is 0. For a stale with an
even bending quantum number, we considered
J = 0 with even parity state where J = 0 with
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odd parity state is symmetry forbidden. Since
the total angular momentum, .J, and parity are
good quantum numbers, the bound state
computations were performed separately for
different values of J and parity. On the other
hand, the helicity quantum number K is not
conserved and different values of K were
coupled.

A uniform grid was used for the coordinate K
and the action of the associated kinetic energy
operator on the bound state wavefunction is
evaluated using fast Fourier transforms [14, 15].
The radial kinetic energy operator is diagonal in
momentum  space. For this reason, the
wavefunction is transformed to its momentum
representation via the fast Fourier transform
technique

1 [»u]
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momentum grid point
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representation
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A grid or discrete variable representation (DVR)
approach [16] was used to evaluate the action of
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Figure 1. Jacobi coordinates used in the
potential energy and dynamics calculations: r
denotes the bond distance of the N, diatomic; R
denotes the bond distance between the centre of
mass of N; diatomic and O atom; # denotes the
N»-O Jacobi angle.

The angular part of the kinetic energy operator
on the bound state wavefunction, and
consequently the angular grid points correspond
to Gauss-Legendre quadrature points. In order
to perform this operation, we expand the
waveflnction in terms of normalised associated
Legendre polynomials
GHEP (Ra Ty 9) = Z (I);'r'K (R: T) 9jK (6)

J
and use the fact that the associated Legendre
polynomials are eigenfunctions of the operator
for the first angular term
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Corey and Lemoine [17] have discussed how a
single set of angular grid points are used in
conjunction with the associated Legendre
polynomials, corresponding to different X
values, The grid representation for the
wavefunction is therefore

SR 15,00) = Vwa D (Ri s, 8,)
where w, = sinf, are the (Gauss-Legendre
weights and 6, are the grid points, The
normalised associated Legendre functions
constitute our fixed basis representation (FBR).
The transformation matrix from the DVR to the
FBR representation is given by

Tt = e (85)

Using these equations, we can write one term in
the expansion of the wavefunction in terms of
the associated Legendre polynomials as

3t
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@ (Riyry) ©40 (9) = DTS
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Since the potential energy is diagonal in
coordinate space, its action on the wavefunction
involves just the muitiplication of the values of
potential with those of wavefunction at the same
spatial grid points.

RESULTS AND DISCUSSIONS
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Figure 2. Contour plot of the ground
electronic state, X* A/('T1), of N;O at a fixed
ground state equilibriom geometry, ry_no =
2.13199 Bohr. The energies are plotted in eV
relative to the minimum of the ground electronic
state. The contours spacing are 0.15 eV.

Ab initio calculations of the singlet potential
energy surface of the ground electronic state
were performed with the MOLPRO package
[18] on the Bristol Beowulf cluster systems
consisting of two 2.8 GHz Xeon CPUs with 2.0
GB RAM. The final results presented here are
produced using the internally contracted multi-
reference configuration interaction (MRCI)
method including the Davidson correction with
an AVQZ basis set [19]. The bulk of the
calculations are done using C; symmetry. The
MRCI calculations were preceded by complete
active space self consistent field (CASSCEF)
calculations using an active space that included
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nine orbitals arising from the 2p atomic orbitals
of oxygen and nitrogen, respectively. Figure 2
displays a cut through of the potential energy
surface of N,O molecule by fixing one of its
internal coordinates at ground state equilibrium
geometry.
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Figure 3. Convergence of the (0, 2°, 0), (3,

6°, 0) and (6, 0°, 0) rotational-vibrational
eigenvalues (energies) with the number of the
basis functions. Ny, Ny, Na, Ny, N5, N, and
Ny correspond to the basis functions of ng =
Bandng=4, ng =12 and ng = 6, ng = 16 and
ng =28, ng=20and ng =10, ng =22 and ng =
12, ng =24 and ng =14, and np = 26 and ng =
16, respectively.
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Figure 4. Contour plots of the pure bending

vibrational wavefunction for the (0, 12°, 0) with
J =0 (even parity) and for the (0, 9, 0) with J
=1 (odd or even parity)

The dynamics calculations were performed on
the personal computer consisting of 2.4 GHz
Intel Pentium Core 2 Duo CPU with 2.0 GB
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Figure S..  Contour plot of the pure stretching

vibrational wavefunction for the (6, 0°, 0) with
J =0 (even parity)

RAM. There were 64 angular grid points and
384 radial grid points used in the current work.
The radial (ng) and angular (n,) basis functions
used consisted of 26 number of terms in
Legendre polynomials and 16 number of terms
in momentum representation, respectively.
With the size of basis functions and grid points,
the computed two-dimensional vibrational
energies were tested for convergence which has
been found to converge up to third decimal
places. Figure 3(a) shows that by fixing the grid
point at 64 and 384, the (0, 2°, 0) vibrational
energy converges from 1160.231281 cm’' to
1160230832 cm as the basis functions
increases from np =24 and ng = 14 (Ng) to ng
= 26 and ng = 16 (Nv). Figure 3(b) show that
the (3, 2°, 0) vibrational energy level converges
from 5051.447847 em’ (Ng) to 5051.447676
cm™ (N7) and (6, 0°, 0) vibrational energy level
converges from 7611300399 cm™ (Ng) to
7611299804 cm' (V7). Also observable in
Figure 3, the lower vibrational energy of (0, 2°,
0) state converges much faster than the higher
vibrational state, By using a small basis set size
of ng = 8 and ng = 4, the (0, 2°, 0) vibrational
energy shows a sufficiently converged value.
The assignments of the states were made by
visual  inspection of the  vibrational
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Figure 6. Contour plots of the coupled

bending-stretching vibrational wavefunction for
the (3, 6°, 0) with .J = 0 (even parity) and for the
(2, 5', 0) with J = 1(odd or even parity)

wavefunctions. As examples we show in
Figures 4, 5 and 6, the wavefunction contour
plots corresponding to the pure bending
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vibrational mode, pure stretching vibrational
mode and coupled  bending-stretching
vibrational mode, with one of the internal
coordinates kept fixed at its equilibrium value.

Tablel. Comparison between calculated and
experimental vibrational energies (cm™) for the
X'A' ground state of N,O with total angular
momentum, J = 0 (even parity)

vy, vl wy  AE(Theory)” AE(Experimental)’

0,0%0 0.00 0.00
0,2% 0 1160.23 1168.13
1,0° 0 1269.77 1284.90
0,4° 0 231535 2322.57
1,2° 0 2471.86 2462.00
2,0°% 0 2567.08 2563.34
0,6%0 3450.87 3466.60
1,4%0 3638.51 3620.94
2,2° 0 3775.57 3748.25
3,0%0 1857.27 3836.37
0,8%0 4589.72

1,6%0 4782.02 4767.14
2,4° 0 4950.45 4910.99
3,2°% 0 505145 5026.30
4,0°% 0 5130.24 5105.68
0,10%0 5725.79

1,8%0 5936.26

2,60 6089.22

3,4° 0 6213.76 6192.27
4,2° 0 6291.10 6295.45
5,0%0 6377.79 6373.31
0,12°0 6855.44

1,10%0 7068.38

2,8° 0 7221.43

3,6% 0 7335.22

4,4° 0 7433.93 7463.96
5,2°0 7504.32 7556.11
6,0%0 7611.30 7640.45

r

“AE(Theory) = E(vy,vq,v3) — E(0,0%0)
"The experimental values were taken from
references |1, 2, 3, 20, 21]

In Table 1 and 2 we compare the calculated
values for vibrational energies with those
observed experimentally. The tables show the
energies corresponding to the states with J =0
and J = 1, respectively. The first observation is
that the agreement between the two sets of
results is quite good for some modes while less
satisfactory for others, with the maximum
discrepancy occurring for the states (5, 2°0),
with 39.46 cm”', and the minimum discrepancy
occurring for the states (2, 0°, 0), with 3.74 cm’
!, For those theoretical values that can be
compared with the experimental results, the
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root-mean-square deviations is 21.98 cm’! for
the 28 vibrational energy levels arising from
N,0 molecules with J =0 and J = 1.

Table2.  Comparison between calculated and
experimental vibrational energies (em™) for the
X' A" ground state of N,O with total angular
momentum, J =1 (even or odd parity).

I vy AE(Theory)" AE(Experimental)’

U, U
0,150 583.67 588.77
0,30 1728.10 1749.07
1,1, 0 189498 1880.27
0,540 2885.45 2897.81
1,30 3053.09 3046.21
2,10 3191.50 3165.86
0,70 4022.55
1,540 4207.96 4197.96
2,350 4368.04 4335.80
3,100 4474 85 444638
0,90 5051.44
1,70 5164.61
2,580 5360.15

‘AE(Theory) = E(vq,vz,vs) — E(0,0°,0)

"The experimental values were taken from
references [1, 2, 3, 20, 21].

The first and secohd vibrational excited states in
the current two-dimensional case can be
assigned to excitation of the pure bending
motion, (0, 1', 0) and (0, 2°, 0). The differences
of these transition energies with the
experimental values are 5.1 em™ and 7.9 cm’,
respectively, showing that for these motions the
coupling between ¢ and r is of little important.
This is supported by the fact that the seventh
excitation belongs to the stretching normal
mode of the (1, 0°% 0) state, as previously
reported by several workers in the experimental
measurements and in the three-dimensional
calculations. Therefore, we can expect that the
coupling between ¢ and r is negligibly small at
least for the two lowest pure bending vibrations
of the ground electronic state of N,O. For
higher pure bending vibrations, they show
significant discrepancies with the experimental
values, for instance, the maximum discrepancy

comes from the state (0, 3°, 0) which differs by

20.97 cm’, This is a significant difference,
resulting from the coupling of » and @ in the
kinetic energy operator and the coupling need to
be considered in the calculation.

The third excitation belongs to the motion along
R (AE =1269.77 em’") which is the stretching
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normal mode of (1, 0° 0} state. There is a
significant difference with the experimental
normal mode frequency, with the calculated
value underestimated by 15.13 cm'. As
observed, the greatest difference comes from the
state (4, 0°, 0), with 21.49 cmr'. The first
coupled stretching and bending excitation
corresponds to the (1, 1', 0) state and its
vibrational energy differs by 14.71 cm’ from
that of the observed value. The maximum
discrepancy comes from the states (5, 2°, 0}
which is also the source of the greatest error in
the theoretical calculations.

CONCLUSION

In general, the agreement between the computed
and the experimental values is good for low
vibrational energies. Nevertheless, at any rate it
becomes apparent from these results that a
three-dimencional treatment of the vibrational
energy level calculations for N,O is needed for
higher vibrational excitations in which
anharmonicity and the coupling between the
different motions cannot be neglected. Such a
computation would require an order of
magnitude more computational facilities than
were used here. This aspect will be considered
in our future work. Due to the fact that the
vibration of the N-NO bond is expected to play
only a minor role in the photolysis process, it is
enough to consider only two-dimensional
treatment in the calculations. This assumption
is supported from previous experimental finding
that at room temperature, the first ultraviolet
absorption band arises from excitations starting
from the three lowest vibrational energy levels
of ground electronic state and the population of
these levels accounts for more than 99% of the
N;O ground state vibrational population.
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