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Abstract: With the global demand for food production escalating, concerns about the long-term sustainability and environmental impact 
of traditional farming practices, particularly the application of chemical fertilizers, have gained prominence. Recognizing the importance 
of addressing these issues, this review explores the evolving dynamic between fertilizers and microbial communities, emphasizing the 
need for a more profound understanding of these interactions. The transformative impact of next-generation sequencing (NGS) 
technologies in unraveling microbial intricacies within agricultural ecosystems is highlighted as a crucial tool for advancing this 
understanding. Investigation extends to discerning the nuanced effects of both chemical and non-chemical fertilizers on soil microbiomes, 
considering variations in soil type and crop specificity. Linking these findings to the Sustainable Development Goals (SDGs), the review 
highlights the critical connection between fertilizer use, microbial diversity, and the achievement of sustainability objectives. Despite the 
potential of NGS, the review acknowledges current limitations, sparking discussions on potential technological advancements and 
methodological improvements. Emphasizing the necessity for interdisciplinary collaboration, it advocates for comprehensive insights that 
bridge gaps between microbiology, agriculture, and sustainability. In conclusion, the article synthesizes historical perspectives, cutting-
edge technologies, and sustainable development objectives to provide a holistic understanding of the intricate interplay between 
fertilizers, microbial diversity, and the imperative path toward a more sustainable agricultural future. 
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1. Introduction 

Background 
Agriculture is the backbone of human civilization, providing 

sustenance, economic stability, and a foundation for societal 
development. Its global significance is indisputable, as it not only 
supports the basic human need for food but also fuels economies 
(Shen et al., 2023), shapes landscapes (Martello et al., 2023), and 
influences cultural identities (Zheng et al., 2023). The 
unprecedented growth of the world's population and the 
escalating demand for food resources have intensified the 
pressure on agricultural systems, necessitating innovative 
approaches to ensure sustainable food production.  

At the core of modern agricultural practices lies the pivotal role 
of fertilizers. Fertilizers have become vital tools for farmers 
seeking to enhance crop yields and meet the escalating demands 
of a growing population (Mustafa et al., 2023). These chemical 
and non-chemical formulations offer valuable nutrients to plants, 
augmenting soil fertility and addressing nutrient deficiencies. 

While fertilizers have played a critical role in boosting agricultural 
productivity, their widespread use has raised concerns about 
environmental impact, including soil acidification, greenhouse gas 
emissions, depletion of the ozone layer, and loss of biodiversity 
(Bai et al., 2020; Mustafa et al., 2023). As we delve into the 
intricate relationship among fertilizers and microbial 
communities, it becomes apparent that a nuanced understanding 
of these dynamics is essential for sustainably shaping the future 
of agriculture. This review investigates the transformative 
potential of Next Generation Sequencing (NGS) in unraveling the 
complex interplay between fertilizers and microorganisms, 
offering insights that can pave the way for achieving Sustainable 
Development Goals (SDGs) in agriculture. 

 
Rationale for the Review 
The escalating global demand for food production drives the 

imperative to reassess and optimize agricultural practices. With 
the world's population steadily climbing, the need for increased 
food yields places unprecedented pressure on the agricultural 
sector. This heightened demand necessitates a critical evaluation 
of existing farming methods to ensure both quantity and the 
quality and sustainability of our food supply. Simultaneously, the 
reliance on conventional fertilizers has sparked environmental 
and sustainability challenges that cannot be ignored. Runoff from 
these chemical inputs contributes to water pollution, adversely 
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impacting aquatic ecosystems, while the accumulation of excess 
nutrients in the soil can lead to degradation and long-term loss of 
fertility (AbdelRahman et al., 2022; Li et al., 2022a). Addressing 
these challenges requires a major shift towards more 
environmentally conscious and sustainable agricultural practices. 

Amidst these challenges, the introduction of NGS emerges as a 
transformative tool to deepen our understanding of microbial 
dynamics in agriculture. NGS technologies, including both 
shotgun and amplicon sequencing, enable researchers to 
investigate the genetic landscapes of microbial communities, 
offering unparalleled insights into their composition, diversity, 
and functional potential (Liu et al., 2021a; de Vries et al., 2023; 
Maretto et al., 2023; Tang et al., 2023). It holds the promise of 
unraveling the complex relationships between fertilizers and 
microorganisms and guiding the development of sustainable 
agricultural practices for the future (Chouhan et al., 2023). This 
review aims to investigate the synergy between fertilizer use, 
microbial dynamics, and NGS technologies, highlighting on the 
path toward achieving Sustainable Development Goals in 
agriculture. 
 
2. Fertilizers and Microbial Diversity: a 

Historical Perspective  
Historically, the relationship between fertilizers and 

microorganisms has been focused primarily on nutrient provision 
to plants. Traditional agricultural practices often treated soil as a 
mere substrate for plant growth (Thompson, 1992; Lafaille, 2017), 
with little consideration for the intricate web of microbial life 
beneath the surface. While effective in boosting crop yields, this 
limited perspective failed to account for the broader ecological 
consequences of altering microbial ecosystems. It aimed to 
replenish essential nutrients without heavily understanding the 
dynamic interplay between these chemical inputs and the diverse 
microbial communities inhabiting the soil and plant root systems 
(Russel & Williams, 1977; Inubushi & Acquaye, 2004). However, 
the traditional mindset that viewed soil merely as a medium for 
plant growth is gradually transforming into a holistic approach 
that considers the soil as a living ecosystem (Ponge, 2015).  

As agriculture evolved and intensified, the limitations of these 
traditional views became increasingly apparent that the 
indiscriminate use of chemical fertilizers led to soil degradation, 
negative impacts on microbial biodiversity, and environmental 
pollution (Feng et al., 2022; Mukhles et al., 2022; Wang et al., 
2022; Nguyen et al., 2023). The emergence of these challenges 
underscored the need for a deeper understanding of the intricate 
relationships between fertilizers and microorganisms. The 
dynamic nature of microbial communities, their symbiotic 
relationships with plants, and their roles in nutrient cycling and 
soil health became focal points for researchers seeking 
sustainable agricultural solutions (Abid et al., 2021; Iqbal et al., 
2023; Wei et al., 2023a; Zhang et al., 2023a). Acknowledging the 
complexity of these interactions is vital for mitigating the 
unintended consequences of fertilization and steering agricultural 
practices toward greater ecological resilience. 

The historical shift towards environmentally-friendly 
agricultural practices, as highlighted in the Sustainable 
Development Goals (SDGs) and underscored by scholars like 
Dubey et al. (2021) and Shahmohamadloo et al. (2021), reflects a 
growing awareness of the complex interplay between human 
activities and the environment. This departure from historical 
practices, often focused solely on maximizing yields with little 
regard for long-term ecological consequences, is now 
characterized by a commitment to biodiversity conservation, 
climate resilience, and reducing ecological footprint. Aligning 
agricultural strategies with sustainable development objectives 
underscores a historical trajectory towards a more responsible 
and conscientious approach, recognizing the importance of 
integrating sustainable practices to ensure the long-term well-
being of ecosystems and harmony between food production and 
ecological health preservation. 

 
3. Next Generation Sequencing: Revolutionizing 

Agricultural Microbiology 
The aim of sustainable agriculture relies on microbial diversity. 

These microscopic organisms, including bacteria, fungi, and 
archaea, contribute to soil fertility, nutrient cycling, and plant 
health (May et al., 2023; Xiang et al., 2023). A rich and diverse 
microbial community can enhance plant tolerance to soil salinity 
(Feng et al., 2023; Wang et al., 2023), suppress pathogenic 
organisms (Ehau-Taumaunu & Hockett, 2023; Yang et al., 2023a), 
and improve nutrient availability for plants (Arunrat et al., 2023; 
Li et al., 2023a). As the agricultural community recognizes the 
multifaceted benefits of microbial diversity, there is a growing 
shift towards holistic and regenerative practices that aim to 
maximize crop yields and foster long-term soil health. 

NGS technologies have emerged as powerful tools, propelling 
agricultural microbiology into a new era of precision and depth. 
Two primary methodologies, shotgun and amplicon sequencing, 
form the cornerstone of NGS applications in studying microbial 
communities. Shotgun Sequencing involves the random 
sequencing of DNA fragments, providing a comprehensive 
snapshot of the entire genetic content present in a sample (Doni 
et al., 2023). Amplicon sequencing, on the other hand, targets 
specific gene regions such as 16S ribosomal RNA (16S) and 
Internal Transcribed Spacer (ITS), allowing for a more focused 
analysis of microbial diversity (Liu et al., 2021a). These 
approaches help researchers to investigate the genetic 
complexities of microbial communities with unprecedented 
resolution, shedding light on the composition, functional 
potential, and dynamics of these microscopic ecosystems (Liu et 
al., 2021a; de Vries et al., 2023; Maretto et al., 2023; Tang et al., 
2023). 

By unlocking the genetic codes of diverse microorganisms 
through NGS technologies, researchers can elucidate their roles 
in nutrient cycling, plant-microbe interactions, and overall soil 
health (Windisch et al., 2021; Kim et al., 2022; Xiang et al., 2023). 
NGS aids in the identification and quantification of microbial 
species, offering insights into their functional capabilities and 
interactions. By exploring the microbial ecosystems, NGS enables 
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the comprehensive analysis of microbial diversity at a scale and 
precision unattainable by traditional methods such as PCR-
Denaturing Gradient Gel Electrophoresis (PCR-DGGE), Terminal 
Restriction Fragment Length Polymorphism (T-RFLP), and 
Fluorescent in Situ Hybridization (FISH) (Wolsing & Priemé, 2004; 
Caracciolo et al., 2005; Wenhui et al., 2007; Bokulich & Mills, 
2012). This transformative capability extends beyond taxonomy, 
allowing a deeper understanding of the functional attributes 
governing microbial contributions to agricultural ecosystems.  

The application of NGS in agricultural microbiology goes beyond 
mere taxonomic identification and explores the functional 
dynamics of microbial communities. Metagenomics, a primary 
application of NGS, enables the direct study of genomic material 
extracted from environmental samples, providing valuable 
insights into the functional potential of microbial communities 
(Tas et al., 2021). Metatranscriptomics further extends this 
capability by analyzing the actively expressed genes, allowing 
researchers to analyze real-time functional activities within 
microbial ecosystems (Mukherjee & Reddy, 2020). This 
understanding of genetic composition and functional activities 
empowers scientists to identify microbial contributions to 
nutrient cycling, disease suppression, and plant resilience 
(Chuckran et al., 2021; Mendes et al., 2023; Pande et al., 2023). 
The integration of metagenomic and metatranscriptomic data 
opens avenues for targeted interventions, allowing for the 
development of precision agricultural practices that leverage the 
specific functions of microbial communities to improve crop 
health and yield.  

The shift from traditional to NGS-based approaches represents 
a paradigmatic leap in our capacity to assess microbial diversity. 
NGS offers several advantages over outdated conventional 
methods, including higher throughput, reduced cost per base 
pair, and the ability to detect rare and novel microbial taxa (Zhao 
et al., 2020; Adhikari et al., 2021; Greay et al., 2021). The 
technology's capacity to provide quantitative data on microbial 
abundances, community structures, and functional potentials in a 
single experiment is unparalleled (Hiiesalu et al., 2012; Azarbad et 
al., 2022). NGS minimizes biases inherent in cultivation-
dependent methods, allowing for the identification of previously 
unculturable microorganisms (Chaudhary et al., 2019; Qaisrani et 
al., 2019; Sessou et al., 2023; Deinert et al., 2023). It is a 
transformative tool that broadens our understanding of microbial 
ecosystems and guides the development of targeted strategies 
for enhancing agricultural productivity and resilience toward 
sustainable practices. 

 
4. Fertilizer Impact on Microbial Communities: 

Insights from NGS Studies 
Chemical Fertilizers and Their Effects on Microbiomes 
The widespread application of chemical fertilizers in modern 

agriculture has significantly changed the dynamics of soil 
microbial communities, prompting a closer examination of their 
impacts through the NGS. Chemical fertilizers, rich in nitrogen (N), 
phosphorus (P), and potassium (K), are known to influence soil 
pH, nutrient availability, and overall soil structure (Li et al., 2020a; 

Liu et al., 2020). However, the consequences of these alterations 
on microbial diversity and function have become increasingly 
apparent with the application of NGS technologies. 

Apart from demonstrating an increase in the abundance of the 
denitrification-related gene nirK (Carrascosa et al., 2023), 
chemical fertilization exhibited an increased abundance of genes 
associated with methane oxidation, soil nitrogen degradation, 
nitrification, and anammox, emphasizing a distinct influence on 
nutrient cycling as shown by the 16S amplicon studies (Hu et al., 
2022a). The NPK fertilization also positively influenced acidophilic 
groups, such as nitrifiers and denitrifiers, based on 16S and ITS 
amplicon sequencing, and concurrently increased the alpha 
diversity of arbuscular mycorrhizal (AM) fungi in the root 
endosphere (Semenov et al., 2020; Ma et al., 2021). According to 
Hu et al. (2022b), nitrogen (N) fertilization induced the saprotroph 
fungal functional group, which may suggest its potential role in 
decomposing and absorbing organic matter from dead or 
decaying organisms using the ITS sequencing approach. 

Recent studies using shotgun metagenomic sequencing are 
further discussed and have revealed novel insights into how the 
taxonomic makeup of soil microorganisms changes when exposed 
to chemical fertilizers. High inorganic nitrogen fertilizer led to 
higher relative abundance in Bacillaceae and Carnobacteriaceae 
families, while certain bacterial families like Pseudonocardiaceae, 
Clostridiaceae, Cytophagaceae, Micromonosporaceae, and 
others were relatively less abundant (Enebe & Babalola, 2021). 
Apart from increasing soil nutrient availability, excessive K2SO4 
application in tobacco-planting soil increased copiotrophic groups 
such as Burkholderiaceae and Rhodospirillaceae families, as well 
as Ellin6067 genus, while negatively impacting oligotrophic taxa 
(Lu et al., 2022). Li et al. (2020b) found that applying NPK fertilizer 
reduced Proteobacteria and Bradyrhizobium at the genus level 
and increased Acidobacteria at the phylum level. In a separate 
study, Li et al. (2022b) reported that NPK fertilizer resulted in 
decreased Proteobacteria abundance, increased Actinobacteria 
abundance, the lowest Acidobacteria abundance, and the highest 
Chloroflexi abundance. Fadiji et al. (2020) found that using 
inorganic fertilizer (NK) led to the dominance of Dothideomycetes 
at the class level and endophytic Leptosphaeria at the genus level. 
Leptosphaeria sp. has been reported to promote plant growth by 
increasing root volume and plant tolerance to salinity and drought 
(Poveda, 2022; Zhao et al., 2024). These findings highlight the 
impact of nutrient changes on microorganisms, influencing 
specific groups that, in turn, can promote plant growth, 
emphasizing the potential for targeted approaches to enhance 
overall plant health and productivity. 

These studies uncover previously overlooked microorganisms, 
revealing details of nutrient cycling, organic matter 
decomposition, and plant-microbe interactions. By integrating 
data from diverse ecosystems and crops, these investigations 
offer a complete understanding of the intricate connections 
between chemical fertilizers and microbial communities. This 
awareness aids in refining fertilizer applications, lessening 
environmental impact, and fostering robust and productive 
farming practices. The research also takes economic factors into 
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account, directing efforts toward cost-effective and sustainable 
approaches. Moreover, it addresses social considerations by 
advocating for microbiome-conscious agriculture, contributing to 
a more promising future.  

 
Non-Chemical Fertilizers and Their Influence on Microbial 
Diversity 
In contrast to chemical fertilizers, non-chemical alternatives, 

such as organic or bio-based fertilizers, have gained prominence 
in agricultural systems aiming for sustainability and reduced 
environmental impact. The impact of these non-chemical 
fertilizers on microbial diversity has become a focal point of the 
investigation, leveraging the capabilities of NGS to delve into the 
subtleties of microbial responses. 

NGS studies have facilitated a signified comparative analysis of 
the impacts of non-chemical and chemical fertilizers on microbial 
diversity. By adopting a comparative approach, researchers have 
unraveled the intricate interactions between diverse fertilizer 
types and the soil microbiome, with multiple studies highlighting 
the beneficial effects of both organic matter and fertilizers on 
agriculture. Zhu et al. (2023a) found that composting enhances 
microbial diversity, promoting the activity of beneficial genera like 
Corynebacterium and Lactobacillus, while influencing nutrient 
cycling and emissions. Composting also showcases 
Marinimicrobium and Thermobifida's crucial roles in ammonia 
assimilation, highlighting the diverse microbial contributions (Zhu 
et al., 2023b). Moreover, bark compost boosts beneficial fungi, 
including Penicillium and Inocybe, with potential benefits for 
nutrient uptake and plant health (Malewski et al., 2023) whereas 
the combination of compost and citrus rootstocks significantly 
influences rhizobiome bacterial abundance and diversity, 
correlating with essential nutrient concentrations for plant health 
and productivity (Castellano-Hinojosa et al., 2023). Sophora 
alopecuroides L., or Kudouzi in China, traditionally used for 
medicinal purposes, is also employed as an organic fertilizer, 
enhancing sugar content and promoting beneficial 
microorganisms, as indicated by Hua et al. (2023).  

Manure serves as an alternative to compost for organic 
fertilizer. Khatri et al. (2023) claim that green manure applications 
lead to higher microbial abundance, reduced disease 
development, and increased abundance of beneficial phyla, 
thereby contributing to sustainable agriculture. Erythrobacter sp. 
YH-07-inoculated organic manure enhances microbial diversity, 
suppresses Fusarium wilt, and alters community composition. 
This demonstrates its potential for disease control, as Tang et al. 
(2023) highlighted. Another finding reveals that Hanwoo manure 
positively impacts soil organic matter, crude ash, and phosphorus, 
providing a valuable alternative to chemical fertilizers (Lee et al., 
2023). Lastly, implementing reduced tillage with green manure 
for a decade enhances soil organic carbon and total nitrogen, 
maintaining almond yields and promoting sustainability, albeit 
with changes in the bacterial community structure (Özbolat et al., 
2023). These findings showcase their significant potential in 
fostering sustainable agriculture, enhancing soil health, and 

mitigating disease risks, emphasizing a promising shift towards 
eco-friendly farming practices. 

One notable trend from the comparative studies is the potential 
for non-chemical fertilizers to foster greater microbial diversity 
than their chemical counterparts. Organic amendments, for 
instance, introduce a spectrum of organic matter that serves as a 
substrate for a diverse array of microorganisms (Saunders et al., 
2012; Verma et al., 2020). This diversity, in turn, contributes to 
enhanced nutrient cycling, disease suppression, and overall soil 
health as discussed previously. The comparative insights gained 
from NGS studies not only inform on the immediate impacts of 
fertilizer choices but also provide a foundation for developing 
strategies that optimize microbial diversity in ways that align with 
sustainable development goals in agriculture (Meuniern & Bayır, 
2021; Ashraf et al., 2022).  

 
The Role of Soil Type and Crop Specificity in Shaping Microbial 
Communities 
The relationships between fertilizers and microbial communities 

are not only influenced by the type of fertilizer. However, they are 
equally shaped by the unique characteristics of soil types and the 
specific crops being cultivated. NGS studies have been 
instrumental in elucidating the complex interplay between soil 
types, crop specificity, and the dynamic microbial ecosystems 
they harbor. 

Understanding the impact of soil type on microbial communities 
is crucial, as various soils possess distinct physical and chemical 
properties that influence microbial life. NGS technologies have 
unveiled how microbial compositions respond differently to 
fertilizers in clayey, loamy, and sandy soils. High clay content in 
the soil offered enhanced physicochemical protection for 
microbial biomass pools and mitigated water stress, impacting 
the efficacy of N fertilization on soil microbial communities 
(Kallenbach & Grandy, 2011; Fierer et al., 2012; Yu et al., 2019). 
The 16S rRNA sequencing results indicated shifts in bacterial 
composition post-fertilization, which led to a decrease in the 
relative abundance of Chloroflexi, Acidobacteria, and Nitrospirae 
at the phylum level while increasing Proteobacteria and 
Actinobacteria (Liu et al., 2021b). The relative abundance of 
Gemmatimonadota and Firmicutes significantly increased with 
NPK treatments, accompanied by a decrease in Bacteroidetes 
(Chen et al., 2023). 

On the contrary, sandy loam soils demonstrate a well-rounded 
capacity for water retention, stable structure formation, 
adequate aeration, and maintenance of a moderate soil 
temperature (Lakesh et al., 2022). Fertilizer applications resulted 
in a major shift in microbial composition, with a lower relative 
abundance of Bacteroidetes and elevated levels of Proteobacteria 
and Verrucomicrobia compared to the control (Zhang et al., 
2022a). Meanwhile, fertilized sandy loam soils exhibit significant 
increases in Ambispora, Funneliformis, and Glomus, accompanied 
by a marked decline in Paraglomus at the genus level of the 
arbuscular mycorrhizal fungal community (Liu et al., 2022). These 
findings collectively highlight the multifaceted impact of 
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fertilization on microbial attributes, influencing bacterial and 
fungal communities in different soil types. 

In addition, the crop specificity of microbial communities adds 
another layer of complexity to the fertilization equation in the 
NGS studies. A study by Zhang et al. (2023b) reveals that rotating 
rice and oilseed rape crops significantly enhances soil microbes, 
particularly those associated with nitrogen, phosphorus, and 
overall soil quality. A similar study on crop rotation of peppers and 
eggplants created helpful microbes that protected bananas from 
diseases, aiding in sustainable banana farming (Hong et al., 2023). 
Compared to annually rotated crops, corn and soybean crops 
influenced bacterial communities differently, with grass cover 
crops having minimal impact, emphasizing the greater role of soil 
pH and organic matter for bacteria (Chamberlain et al., 2020).  

Biochar had different effects on wheat and mash bean soils, 
increasing specific genes in both, with wheat showing an 
additional gene increase; the crop type played a major role in how 
biochar and fertilizer influenced microbes in mash bean soils 
(Azeem et al., 2020). A study by Woo et al. (2022) found that pea 
farming clearly reduced microbe diversity compared to wheat, 
pea-wheat rotations, and fallow fields, impacting diverse fungi, 
and influencing nitrogen, water, as well as both beneficial and 
harmful fungi in the Canadian prairies. Consequently, the choice 
of fertilizer can exert variable effects on microbial communities 
based on the specific crop it is intended for (Dincă et al., 2022; 
Gupta et al., 2022; Williams et al., 2023). Integrating crop-specific 
insights from NGS studies into fertilizer management can enhance 
nutrient uptake, disease resistance, and overall crop 
performance. These studies offer a roadmap for customizing 
agricultural practices based on the intricate relationships among 
fertilizers, soil types, and crop specificity. This holistic approach 
acknowledges unique microbial dynamics in diverse 
agroecosystems, which are crucial for creating sustainable and 
resilient agricultural systems in the face of global challenges. 

 

5. Sustainable Development Goals (SDGS) and 
Agricultural Microbial Diversity 

Linking Fertilizer Use, Microbial Diversity, and SDGs 
The intersection of fertilizer use, microbial diversity, and the 

ambitious targets set by the SDGs forms a critical nexus in 
pursuing a more sustainable and equitable global agriculture 
(Figure 1). Fertilizers, both chemical and non-chemical, play a 
pivotal role in meeting the SDG mandate to eradicate hunger 
(SDG 2) by bolstering crop yields (Heidkamp et al., 2021; Saqib et 

al., 2020; Ishfaq et al., 2023). However, the implications of 
fertilizer use extend beyond mere productivity, resonating with 
several other SDGs that collectively underscore the need for 
holistic and environmentally responsible agricultural practices 
(United Nations, 2023). 

Microbial diversity emerges as a linchpin in achieving these 
broader sustainability goals. NGS studies have illuminated the 
intricate relationships between fertilizers and microbial 
communities, revealing their profound impact on soil health, 
nutrient cycling, and ecosystem resilience (Ma et al., 2023; May 
et al., 2023; Xiang et al., 2023). Recognizing the symbiotic 
alliances between plants and microorganisms facilitated by 
appropriate fertilization (Li et al., 2023b) aligns with SDG 15 (Life 
on Land), promoting the conservation, restoration, and 
sustainable use of terrestrial ecosystems (Kumawat et al., 2023). 
Moreover, fostering microbial diversity through judicious 
fertilizer management contributes to SDG 13 (Climate Action) by 
enhancing soil carbon sequestration and mitigating greenhouse 
gas emissions (Jiang et al., 2021; Zhou et al., 2022). The potential 
to reduce agriculture's environmental footprint while 
simultaneously increasing its productivity positions microbial-
conscious fertilization as a key player in the global effort to 
combat climate change. 

Furthermore, the relationship between fertilizer use, microbial 
diversity, and the SDGs extends into water resource 
management, aligning with SDG 6 (Clean Water and Sanitation). 
Proper fertilization practices that promote microbial diversity 
contribute to enhanced water retention in soils (Wang et al., 
2021; Xu et al., 2023a), reducing the risk of nutrient runoff and 
contamination of water bodies (Menzies Pluer et al., 2020). By 
mitigating water pollution and ensuring sustainable water use in 
agriculture, this integrated approach addresses a critical aspect of 
the SDGs related to clean and accessible water. Implementing 
microbial-conscious fertilization supports agricultural 
productivity and safeguards vital water resources, marking a 
significant stride towards achieving the broader agenda of 
sustainable development. 

Linking fertilizer application, microbial diversity, and SDGs 
demonstrates the need for an integrative approach to agricultural 
practices. Harnessing the insights gleaned from NGS studies, this 
linkage provides a pathway for sustainable intensification, 
ensuring that the gains in crop production are harmonized with 
environmental conservation, social equity, and the overarching 
objectives of the Sustainable Development Agenda. 
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Figure 1. An illustration showing how fertilizer applications and multi-omics studies contribute to the achievement of Sustainable 

Development Goals 
 
NGS as a Tool for Aligning Agricultural Practices with 
Sustainability Goals 
NGS is a transformative tool that dissects the complex 

relationships between fertilizers, microbial diversity, and 
agricultural ecosystems and aligns agricultural practices with the 
broader canvas of sustainability goals. In the context of the SDGs, 
NGS acts as a linchpin by providing a comprehensive 
understanding of microbial communities' responses to different 
fertilizers and their implications for sustainable agriculture. 

NGS offers a holistic view of the soil microbiome, enabling 
researchers and practitioners to identify microbial signatures 
associated with sustainable practices. By delineating the impacts 
of various fertilizers on microbial diversity, NGS facilitates the 
development of precision fertilization strategies that optimize 
crop yields efficiently while minimizing environmental harm 
(Kurzemann et al., 2020; Iqbal et al., 2022; Wyszkowska et al., 
2022). This aligns with SDG 12 (Responsible Consumption and 
Production) by reducing the need for excessive resource 
consumption, minimizing environmental degradation, and 
supporting the goal of ensuring sustainable consumption and 
production patterns for a healthier planet. 

Furthermore, NGS-driven insights contribute to achieving SDG 2 
(Zero Hunger) by fostering resilient agricultural systems. Better 
understanding the microbial dynamics in response to fertilizers 
enables the design of strategies that enhance nutrient availability, 
improve soil health, and, consequently, increase food security 
(Kurzemann et al., 2020; Nwachukwu & Babalola, 2022; Arunrat 
et al., 2023). NGS's capacity to uncover microbial contributions to 
carbon sequestration (Zhou et al., 2022) aligns with SDG 13 
(Climate Action), offering methods to reduce climate change 
through sustainable agriculture. 

Moreover, NGS contributes significantly to the pursuit of SDG 15 
(Life on Land) by shedding light on the impact of fertilizers on 
microbial diversity and its cascading effects on terrestrial 
ecosystems. The ability of NGS to uncover the intricate 
relationships between microbial communities and the 

surrounding environment enables a nuanced understanding of 
the role of these microorganisms in promoting biodiversity and 
ecosystem resilience (Wang & Xiong, 2022; Meng et al., 2023; Xu 
et al., 2023b). This aligns with the broader objective of conserving 
land ecosystems, restoration, and sustainable use (Küfeoğlu, 
2022). Through soil analysis, NGS helps farmers boost agricultural 
productivity and support ecosystem health. Integrating NGS data 
into land management strategies preserves biodiversity, prevents 
soil degradation, and promotes species coexistence. NGS is a 
powerful tool aligning agriculture with sustainability goals by 
understanding fertilizer-microbe interactions, enabling precision 
agriculture for enhanced productivity, environmental protection, 
and fulfillment of SDGs. 

 
Addressing Global Challenges Through a Microbial Perspective 
Embracing a microbial perspective in agriculture is pivotal for 

addressing the multifaceted global challenges outlined in the 
SDGs. Using NGS to explore soil microorganisms presents an 
unprecedented opportunity to address global challenges by 
gaining insights into their effects on soil health and ecosystem 
resilience. Agriculture gains a tool for fostering sustainable 
practices that simultaneously enhance productivity and mitigate 
environmental impact from the lens of microbial diversity. The 
microbial perspective contributes directly to SDG 15 (Life on Land) 
by emphasizing terrestrial ecosystems' conservation and 
sustainable use (Kumawat et al., 2023; Li et al., 2023b). Besides 
that, climate change-induced abiotic stresses exacerbate 
agricultural challenges, particularly when compounded by 
chemical fertilizer application, which degrades soil health 
(Wijitkosum, 2018; Azahari & Sukarman, 2023). Nonetheless, 
leveraging beneficial microorganisms presents a sustainable 
solution, aligning with SDG 15 by fostering soil resilience and 
enhancing plant stress tolerance, thus promoting sustainable 
agricultural practices in the face of climate change. 
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Understanding and optimizing microbial communities through 
precision fertilization strategies aligns with SDG 12 (Responsible 
Consumption and Production), optimizing the application of 
fertilizers to enhance plant growth while minimizing 
environmental impact. Precision fertilization leverages microbial 
processes, such as nitrogen fixation, to make nutrients available 
to plants, thereby reducing the reliance on synthetic fertilizers 
(Shi et al., 2021; Lin et al., 2021). This aligns with responsible 
consumption and production, lowering the environmental 
footprint of chemical input production and use. 

Moreover, a microbial perspective offers innovative solutions to 
combat climate change (SDG 13). Microorganisms contribute to 
combating climate change by enhancing soil fertility and structure 
through the breakdown of organic matter and storing carbon in 
the soil as a natural sink (Kozjek et al., 2023). Additionally, certain 
microbes, such as methanotrophic bacteria, play a crucial role in 
converting methane, a potent greenhouse gas, into less harmful 
byproducts, aiding in the reduction of overall greenhouse gas 
emissions (He et al., 2023). The understanding and harnessing 
microbial processes offer innovative solutions for managing 
greenhouse gas dynamics, contributing to global efforts to 
mitigate climate change (Hussain et al., 2022). Harnessing NGS 
technologies to decipher the microbial contributions to climate 
mitigation provides a pathway for agriculture to address global 
climate challenges proactively. By acknowledging the central role 
of microorganisms in the intricate balance of agroecosystems, the 
global community can forge a path toward achieving the broader 
aspirations of the Sustainable Development Agenda. 

 

6. Challenges and Future Directions 
Current Limitations in NGS-Based Studies 
While NGS has revolutionized our understanding of microbial 

dynamics in response to fertilizers, several challenges persist in 
NGS-based studies. One notable limitation is the sheer volume 
and complexity of generated data (Larson et al., 2023). The 
extensive datasets produced by NGS technologies present 
storage, processing, and analysis challenges, demanding 
sophisticated computational infrastructure and expertise (Larson 
et al., 2023). This computational bottleneck poses challenges for 
researchers, particularly those with limited access to high-
performance computing resources.  

Additionally, the inherent biases and errors introduced during 
the sequencing process can impact the accuracy and reliability of 
results. Amplification biases, sequencing errors, and variations in 
bioinformatics pipelines may contribute to artifacts in the data, 
necessitating stringent quality control measures (Beckers et al., 
2017; Notario et al., 2023). Addressing these technical challenges 
is vital to ensure the fidelity of NGS-generated information and to 
foster confidence in the conclusions drawn from such studies. The 
interpretability of NGS data remains a challenge. As our 
knowledge of microbial functions and interactions expands, so 
does the complexity of interpreting the functional implications of 
microbial diversity changes revealed by NGS (Toole et al., 2021). 
Integrating multi-omics data and advancing bioinformatics tools 
are essential for unraveling the functional significance of 

microbial shifts, thereby bridging the gap between taxonomic 
identification and ecological understanding. 

In addition to technical challenges, issues related to 
standardization and comparability across studies pose hurdles in 
NGS-based agricultural microbiome research. The lack of 
standardized protocols for sample collection, DNA extraction, and 
data analysis can lead to variations in results, reducing the 
comparability of findings across other related studies (Serrano-
Silva & Calderon-Ezquerro, 2018; Malczynski et al., 2021). 
Establishing a set of best practices and guidelines for NGS-based 
studies in agricultural microbiome research would enhance the 
consistency and reliability of results (Forry et al., 2023; Hiergeist 
et al., 2023). Collaborative efforts within the scientific community 
to develop and adopt standardized methodologies will build a 
more robust foundation for interpreting and synthesizing insights 
from diverse studies (Biswas et al., 2023). By addressing technical 
and standardization challenges, NGS can more effectively 
contribute to advancing our understanding of microbial responses 
to fertilizers and supporting the development of sustainable 
agricultural practices. 

As NGS continues to be at the forefront of agricultural 
microbiome research, addressing these limitations will be pivotal 
for maximizing the technology's potential and ensuring that 
insights gained contribute meaningfully to developing sustainable 
agricultural practices. The ongoing refinement of methodologies, 
improvement in computational tools, and collaborative efforts 
across scientific disciplines will shape the future directions of 
NGS-based studies in unraveling the intricate relationships 
between fertilizers and microbial communities. 

 
Potential Technological Advancements and Methodological 
Improvements 
The future of NGS studies in agricultural microbiome research 

holds promise with anticipated technological advancements and 
methodological innovations. One area ripe for improvement is 
the enhancement of sequencing technologies themselves. 
Ongoing efforts to increase read lengths, reduce error rates, and 
elevate sequencing throughput will alleviate existing challenges in 
data generation (Callahan et al., 2021; Zhou et al., 2021), making 
NGS studies more accessible and cost-effective for a broader 
range of research endeavors. Long-read sequencing platforms like 
Oxford Nanopore and PacBio offer longer read lengths than 
traditional short-read platforms (Cook et al., 2024). Error 
correction tools such as Nanocorr and Canu help improve the 
accuracy of long-read data (Hu et al., 2020; Marić et al., 2024). For 
hybrid assembly pipelines, tools such as Unicycler and St. 
Petersburg Genome Assembler (SPAdes) combine long-read and 
short-read data for more accurate assemblies (Latorre-Pérez et 
al., 2020; Xu et al., 2022). 

Moreover, the integration of multi-omics approaches is poised 
to refine our understanding of microbial responses to fertilizers. 
Coupling metagenomics with meta-transcriptomics, meta-
proteomics, and metabolomics can provide a comprehensive 
view of microbial functions, shedding light on the dynamic 
interplay between microbial communities and their environment 
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(Yamazaki et al., 2021; Qiu et al., 2023; Yang et al., 2023b). 
Moreover, integrating metagenomic and metatranscriptomic 
analyses using NGS has allowed researchers to move beyond 
taxonomic identification and understand the functional 
consequences of chemical fertilizer applications at the molecular 
level. Metagenomic studies reveal the complete genetic makeup 
of microbial communities, exposing the genes and pathways 
involved in important ecological processes. In contrast, 
metatranscriptomics captures actively expressed genes, offering 
insights into the functional dynamics of microbial communities 
(Qian et al., 2020). These advanced analyses have revealed shifts 
in gene expression associated with nutrient uptake, stress 
response, and the synthesis of secondary metabolites (Chevrette 
et al., 2022; Law et al., 2022; Tartaglia et al., 2023). Identifying 
specific functional genes involved in these processes enhances 
our ability to predict and manage the ecological outcomes of 
chemical fertilizer use.  

The integration between metagenomics and metabolomics also 
provides a comprehensive understanding of microbial 
functionality by revealing both the taxonomic composition of 
microbial communities and insights into the actual biochemical 
processes and metabolites. Zhao et al. (2023) demonstrates that 
long-term fertilization enhances soil quality by promoting the 
growth of beneficial bacteria and fungi and releasing essential 
compounds to support plant growth and maintain overall 
productivity. Additionally, Tian et al. (2023) found that mulching 
reduces NO3−-N content and influences specific genes (nxrA and 
nasA), accelerating microbial metabolism and stimulating the 
production of various metabolites linked to key biological 
processes. The P-fertilizer application resulted in a decrease in the 
diversity of bacterial and fungal genes in the soil. The fertilizer also 
affected the soil metabolite spectrum, notably influencing seven 
primary metabolic pathways related to amino acids, plant 
hormones, and secondary metabolites (Cheng et al., 2022). 
Integrating metagenomic and metabolomic approaches is crucial 
for developing sustainable fertilization strategies that optimize 
nutrient use, minimize environmental impact, and foster a 
resilient soil microbiome, translating microbial diversity data into 
actionable insights for sustainable agriculture. 

Advancements in bioinformatics tools will play a pivotal role in 
overcoming current data analysis and interpretation limitations. 
Machine learning algorithms, for instance, have the potential to 
discern complex patterns within large and intricate datasets, 
facilitating more accurate taxonomic assignments and functional 
predictions (Lee et al., 2022; Zhang et al., 2022b; Cheng et al., 
2023). Additionally, user-friendly pipelines that streamline data 
processing and enhance accessibility will democratize the use of 
NGS technologies, enabling researchers with diverse backgrounds 
to leverage these powerful tools. 

As technology continues to evolve, the integration of advanced 
studies, like NGS commonly used in medicine, along with other 
emerging technologies such as high-resolution imaging and 
remote sensing (Wang et al., 2020; Zhang et al., 2020; Wei et al., 
2023b), holds promise for gaining a more holistic understanding 
of agroecosystems. These multidisciplinary approaches will 

enable researchers to explore microbial dynamics at various 
scales, from the microscopic to the field-level, fostering a more 
nuanced comprehension of the intricate relationships between 
fertilizers, microbial communities, and sustainable agricultural 
practices. 

 
The Importance of Interdisciplinary Collaboration for 
Comprehensive Insights 
Addressing the complex challenges and unlocking the full 

potential of NGS in agricultural microbiome research requires a 
concerted effort in interdisciplinary collaboration (Chiusano, 
2015). Integrating expertise from diverse fields such as 
microbiology, agronomy, bioinformatics, and data science is 
imperative for advancing our understanding of the relationships 
between fertilizers and microbial communities. 

Microbial responses to fertilizers unfold within the broader 
context of agroecosystems, encompassing soil health, plant-
microbe interactions, and environmental sustainability. An 
interdisciplinary approach ensures that researchers can navigate 
this complexity, drawing on various disciplines' insights to 
interpret NGS-generated data comprehensively. Microbiologists 
contribute their knowledge of microbial ecology, agronomists 
provide insights into crop-specific needs, and bioinformaticians 
bring essential tools for processing and analyzing large-scale 
genomic datasets. 

Furthermore, collaboration between academia, industry, and 
policy-making entities is essential to bridge the gap between 
research findings and real-world applications (John et al., 2023). 
Industry professionals can offer practical insights into the 
scalability and feasibility of implementing NGS-informed 
strategies in diverse agricultural settings. Policymakers play a 
crucial role in translating research into actionable guidelines that 
promote sustainable and microbiome-conscious agricultural 
practices on a broader scale. 

The challenges NGS studies face in agricultural microbiome 
research are multifaceted, and their resolution demands a 
collective effort. By fostering a culture of interdisciplinary 
collaboration, researchers can harness the strengths of different 
fields, enriching the depth and applicability of insights gained 
from NGS technologies. As we look to the future, synergy 
between diverse disciplines will be pivotal for overcoming 
challenges and realizing the full potential of NGS in shaping the 
sustainable future of agriculture. 

 

4. Conclusion 
In the journey through the nexus of fertilizers, microbial 

communities, and sustainable agriculture, this review has 
unveiled findings elucidated by NGS. NGS studies have provided 
unprecedented insights into the dynamic relationships between 
chemical and non-chemical fertilizers, soil types, crop specificity, 
and microbial diversity. Through comprehensive analyses, 
researchers have deciphered fertilizer applications' taxonomic 
and functional implications, offering a deeper understanding of 
agroecosystem dynamics. These insights underscore the pivotal 
role of microbial diversity in shaping resilient and sustainable 
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agricultural systems. 
The potential impact of NGS on reshaping agricultural practices 

cannot be overstated. The depth and precision of information 
provided by NGS technologies empower farmers, researchers, 
and policymakers to make informed decisions that balance 
productivity with environmental and social considerations. NGS 
lays the foundation for a paradigm shift in agriculture from 
precision fertilization strategies tailored to specific soil types and 
crops to the development of microbiome-conscious agricultural 
policies. The technology's capacity to uncover microbial 
functions, predict ecosystem responses, and guide sustainable 
practices positions NGS as a transformative force with far-
reaching implications for the future of global agriculture. 

As we stand at the cusp of agricultural innovation, a resounding 
call to action echoes from the insights gained through NGS 
studies. It is incumbent upon the global community, including 
farmers, researchers, policymakers, and industry stakeholders, to 
embrace sustainable and microbiome-conscious agricultural 
practices. Leveraging the knowledge derived from NGS, we can 
design and implement strategies that enhance crop yields and 
prioritize soil health, biodiversity conservation, and climate 
resilience. This call to action implores us to bridge the gap 
between scientific knowledge and practical application, fostering 
a holistic approach that aligns with the principles of the SDGs. 
Through collaborative efforts, informed decision-making, and a 
commitment to stewardship of our agroecosystems, we could 
shape a productive but also sustainable, resilient, and harmonious 
agricultural future with the microbial world beneath our feet. 
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