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ABSTRACT 

A one-to-many inventory routing problem (IRP) network comprising of a warehouse and geographically dis-
persed customers is studied in this paper. A fleet of a homogeneous vehicle located at the warehouse transports 
multi products from the warehouse to meet customer’s demand on time in a finite planning horizon. We allow the 
customers to be visited more than once in a given period (split delivery) and the demand for each product is 
deterministic and time varying. Backordering is not allowed. The problem is formulated as a mixed integer pro-
gramming problem and is solved using CPLEX 12.4 to get the lower and upper bound (the best integer solution) 
for each problem considered. We propose a modified ant colony optimization (ACO) which takes into account 
not only the distance but also the inventory that is vital in the IRP. We also carried the sensitivity analysis on 
important parameters that influence decision policy in ACO in order to choose the appropriate parameter set-
tings. The computational results show that ACO performs better on large instances compared to the upper 
bound and performs equally well for small and medium instances. The modified ACO requires relatively short 
computational time. 
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1.0 INTRODUCTION 
 
Supply chain management is the control of supply chain to manage the flow of commodity both within and 
among the companies. Inventory routing problem (IRP) is a challenging NP hard problem in supply chain man-
agement which combines the vehicle routing problem where the route to visit the customers is decided and in-
ventory management which concerns on the amount to be delivered to the customers. The main objective of IRP 
is to minimize both the total transportation and inventory cost over the planning horizon. 
 
Generally, IRP can be divided by different criteria such as the type of demand, single or multi period, planning 
horizon, and inventory policy (order-up-to level or maximum level). From the aspect of demand, IRP can be 
divided into deterministic IRP (DIRP) (see Coelho and Laporte [1], Moin et al [2], Mjirda et al [3], Yu et al [4]), 
where the demand of customers is known in advance and stochastic IRP (SIRP), in which the demand is un-
known and based on some probability functions (see example Adelman[5], Kleywegt et al. [6], Kleywegt et al. 
[7] and Yu et al. [8]). 
 
Coelho and Laporte [1] recently proposed a branch-and-cut algorithm to solve the multi-product multi-vehicle 
IRP with deterministic demand and stock out cost is not allowed. In their paper, Coelho and Laporte [1] imple-
mented a solution improvement algorithm after branch-and-cut identifies a new best solution. The purpose of 
solution improvement algorithm is to approximate the cost of a new solution resulting from the vertex removal 
and reinsertions. In this paper, the authors also considered additional two features: the driver partial consistency 
and the visiting space consistency. The results show that the visiting space helps in reducing the search space 
while providing a meaningful solution. This is the first paper that solves the problem with heterogeneous vehi-
cles. 
 
The planning horizon of the problem also can be categorized into finite or infinite horizon. We can observe that 
most of the earlier works concentrate on an infinite planning horizon (see for example Aghezzaf et al. [9], Anily 
and Bramel [10] and Campbell and Savelsbergh [11]).  
 
IRP with finite planning horizon can be categorized as a single or multi-period scenario. Federgruen and Zipkin 
[12] were among the first to study the IRP with finite planning horizon. The problem was treated as a single day 
problem with a limited amount of inventory and the customers’ demands are assumed to be a random variable. 
The problem decomposes into a nonlinear inventory allocation problem that determines the inventory and short-
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age costs and a Travelling Salesman Problem (TSP) for each vehicle considered, which produces the transporta-
tion costs. Chien et al. [13] amongst the first to simulate a multiple period planning models based on a single 
period approach. This is achieved by passing some information from one period to the next through an inter-
period inventory flow. Since then, many researchers have focused their modeling on a finite planning horizon. 
 
Dror and Trudeau [14] first introduced the split delivery VRP (SDVRP) by relaxing a constraint of the VRP that 
every customer is served by only one vehicle. The authors showed that the relaxation increased the flexibility of 
distribution and could lead to important savings, both in the total distance traveled and in the number of vehicles 
used. The SDVRP remains NP hard despite this relaxation (Dror and Trudeau [15]). Several authors (see for 
example Moin et al. [2], Mjirda et al. [3] and Yu et al. [4]) have extended the concept of split delivery in the 
multi-period IRP. 
 
Moin et al. [2] had proposed an efficient hybrid genetic algorithm to solve the IRP in a many-to-one network 
that comprises of a depot, an assembly plant, and retailers where the products are collected from the retailers to 
fulfill the demand at the assembly plant. It is assumed that each supplier supplies different products and in mul-
ti-period scenario. Split pickups are allowed in this study. The proposed hybrid genetic algorithm is based on the 
allocation-first-route-second strategy and takes both the inventory and the transportation costs (fixed and varia-
ble) into consideration. The computational experiments have been performed on the data sets to show the effec-
tiveness of the proposed approach. Small, medium, and large size problems are added to the existing data sets 
taken from Lee et al [16]. With the increase of problem size, GA based algorithms performed relatively much 
better compared to the best integer solutions from CPLEX.  
 
Mjirda et al. [3] improved the results obtained by Moin et al [2] using a two-phase Variable Neighborhood 
Search (VNS).The first phase developed the initial solution without considering the inventory and in the second 
phase, the initial solution is improved using Variable Neighborhood Descent (VND) or a VNS algorithm. Linear 
Programming (LP), and a heuristic method are developed for inventory management to determine the quantity 
of product to collect at each period during the planning horizon. The priority of rules on suppliers and vehicles 
are applied for this purpose. Both algorithms are implemented using the proposed seven neighborhood structures 
based on three elementary moves: Drop, add and change. The computational results show that the proposed 
method gives better results than the existing methods from the literature for both solution quality and the run-
ning time. 
 
Yu et al. [4] developed an approximate approach that incorporates Lagrangian relaxation to solve a large scale 
IRP that delivers a single product with split delivery and vehicle fleet size constraint. This approach can quickly 
and near-optimally solve the problem. In the approach, the relaxed problem of the model is decomposed into 
inventory problem and a vehicle routing problem that are solved by a linear programming algorithm and a min-
imum cost flow algorithm respectively, and the dual problem is solved by using the surrogate subgradient meth-
od. The solution of the model obtained by the Lagrangian relaxation method is used to construct a near-optimal 
solution of the IRP by solving a series of assignment problems. Numerical experiments show that the proposed 
hybrid approach can find a high quality near-optimal solution for the IRP with up to 200 customers and 10 peri-
ods in a reasonable computation time. 
 
Metaheuristic algorithms such as genetic algorithm (Sin et al [17]), scatter search (Huacuja et al. [18]) and vari-
able neighborhood search (Rasheed et al [19]] have been applied to different type of combinatorial problems 
and one of the well-known metaheuristics, which is the Ant Colony Optimization (ACO). Recently several re-
searchers have applied ACO algorithm metaheuristic in several variants of IRP. Huang and Lin [20] is the first 
paper that proposed a modification ACO for solving the multi-item inventory routing problems. The demand is 
assumed stochastic the algorithm chooses a delivery policy that minimizes the total costs. The algorithm was 
developed for the replenishment of the vending machine and this modified ACO algorithm that incorporates the 
stockout cost in the calculation of the pheromone values which is not included in the conventional ACO. The 
nodes with high stockout costs are given higher priority even though the total transportation costs are higher 
than other nodes. The test instances were constructed using the Solomon’s [21]56 benchmark problems created 
for vehicle routing problem with time windows. The results show that the modified ACO algorithm achieves 
highly significant improvements when compared with the conventional ACO.  
 
Calvete et al. [22] are the first who studied a bilevel model in the context of hierarchical production-distribution 
(PD) planning, which is a variant of IRP. In this problem, a distribution company, which is the leader of the 
hierarchical process, controls the allocation of retailers to each depot and the routes which serve them. The 
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manufacturing company, which is the follower of the hierarchical process will decide which manufacturing 
plants will produce the orders received by the depot. In this study, ACO algorithm is developed to solve a multi-
depot vehicle routing problem (MDVRP) by determining which depot is to serve which retailer and to build 
routes which establish the order in which retailer are served. The computational experiment is carried out to 
analyze the performance of the algorithm. Since the bilevel model is proposed for the first time, there is no data 
for comparison purposes. The computational time is reasonable, taking into account the problem sizes.  
 
In the most recent work, Tatsis et al [23] developed a mixed integer mathematical model where a fleet of capaci-
tated homogeneous vehicle is used to deliver distinct products from multi suppliers to a retailer to meet the de-
mand in each period over the planning horizon. However, backlogging is allowed in this study. The ant based 
optimization algorithm is applied to solve the corresponding vehicle routing problem. The objective of this 
study is to find the best compromise between the transportation, inventory and backlogging cost. Preliminary 
results show that the solution gaps between the algorithm and CPLEX solutions are kept reasonably low values 
and offered prospective for further improvement. 
 
Wong and Moin [24] have extended formulation proposed by Yu et al. [4] to incorporate multi products. The 
authors considered a network consisting of a warehouse that supplies multi-products to geographically dispersed 
customers, and the products are transported by a fleet of homogeneous vehicles. The customer’s demand must 
be met on time and split delivery is allowed. Ant colony optimization (ACO), which was inspired by the food-
foraging behavior of ant was initially proposed by Dorigo and co-workers (Dorigo [25], Dorigo and Blum [26], 
and Dorigo and Caro [27]) is modified by the authors to solve their proposed model. They have modified the 
algorithm by incorporating the inventory component to the global updating scheme that not only calculates the 
pheromone along the trail but identifies a set of feasible neighbors making use of the attractions on the nodes 
which differs from the classical ACO. The computational results show that ACO performs better on large in-
stances when compared to the upper bounds, which are obtained by solving mixed integer programming formu-
lation using CPLEX version 12.4. In addition, the proposed algorithm performs equally well for small and me-
dium instances. This paper extends the work of Wong and Moin [24]. 
 
This paper is organized as follows. Section 2 discusses problem formulation including the assumptions that are 
made in this model. The solution procedure that is based on ACO is described in detail in Section 3 and it is 
followed by the computational results and discussion presented in Section 4. Finally, the conclusion is drawn in 
Section 5.  
 

2.0 MODEL FORMULATION 
 
We consider a one-to-many network where a fleet of homogeneous vehicle transports multi-products from a 
warehouse or depot to a set of geographically dispersed customers in a finite planning horizon. The following 
assumptions are made in this model.  

 The fleet of homogenous vehicles with limited capacity is available at the warehouse. The number of 
vehicles is assumed to be unlimited. 

 Customers can be served by more than one vehicle (split delivery is allowed). 
 Each customer requests a distinct product and the demand for the product is known in advance but may 

vary between different periods.  
 The holding cost per unit item per unit time is incurred at the customer sites but not incurred at the 

warehouse. The holding cost does not vary throughout the planning horizon.  
 The demand must be met on time and backordering or backlogging is not allowed. 

 
The problem is modeled as mixed integer programming and the following notation is used in the model: 
 
 
Indices 
𝜏 =  {1, 2, … , 𝑇}  period index 
𝑊 =  {0}  warehouse/depot 
𝑆 =  {1, 2, … , 𝑁} a set of customers where customer i demands product i only 
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Parameters 
C  vehicles capacity (assume to be equal for all the vehicles). 
F  fixed vehicle cost per trip (assumed to be the same for all periods) 
V  travel cost per unit distance 
M  size of the vehicle fleet and it is assumed to be ∞ (unlimited) 
𝑐௜௝   travel distance between customer i and j where 𝑐௜௝ = 𝑐௝௜ and the triangle  
  inequality, 𝑐௜௞ + 𝑐௞௝ ≥ 𝑐௜௝  holds for any i, j, and k with 𝑖 ≠ 𝑗, 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 
ℎ௜   inventory carrying cost at the customer for product i per unit product per unit  
 time 
𝑑௜௧ demand of customer i in period t 
 
 
Variables 
𝑎௜௧  delivery quantity to customer i in period t 
𝐼௜௧  inventory level of product i at the customer i at the end of period t 
𝑞௜௝௧  quantity transported through the directed arc(𝑖, 𝑗) in period t 
𝑥௜௝௧  number of times that the directed arc(𝑖, 𝑗) is visited by vehicles in period t 
 
The model for our inventory routing problem is given as below:  

 (1)

 
 
 
subject to 
 
𝐼௜௧ = 𝐼௜,௧ିଵ + 𝑎௜௧ − 𝑑௜௧ , ∀𝑖 ∈ 𝑆, ∀𝑡 ∈ 𝜏 (2)

, ∀𝑖 ∈ 𝑆, ∀𝑡 ∈ 𝜏 (3) 

, ∀𝑡 ∈ 𝜏 (4) 

, ∀𝑗 ∈ 𝑊, ∀𝑡 ∈ 𝜏 (5) 

𝐼௜௧ ≥ 0, ∀𝑖 ∈ 𝑆, ∀𝑡 ∈ 𝜏 (6) 
𝑎௜௧ ≥ 0, ∀𝑖 ∈ 𝑆, ∀𝑡 ∈ 𝜏 (7)
  
𝑞௜௝௧ ≥ 0, ∀𝑖 ∈ 𝑆 ∪ 𝑊, ∀𝑗 ∈ 𝑆, 𝑗 ≠ 𝑖, ∀𝑡 ∈ 𝜏 (8)
  
𝑞௜௝௧ ≤ 𝐶𝑥௜௝௧ , ∀𝑖 ∈ 𝑆 ∪ 𝑊, ∀𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗, ∀𝑡 ∈ 𝜏 (9)

, ,  (10) 

, and integer, ,  (11) 

 
The objective function (1) includes the inventory costs (I), the transportation costs (II) and vehicle fixed cost 
(III). (2), is the inventory balance equation for each product at the warehouse while (3) is the product flow con-
servation equations, to ensure that the flow balance at each customer and eliminating all sub-tours. (4) assures 
the collection of accumulative delivery quantity at the warehouse (split delivery). (5) ensures that the number of 
vehicles leaving the warehouse is equal to the number of vehicles returning to warehouse. (6) assures that the 
demand at the warehouse is completely fulfilled without backorder. Meanwhile, (9) guarantees that the vehicle 
capacity is respected and gives the logical relationship between 𝑞௜௝௧  and 𝑥௜௝௧  which allows for split delivery. 
This formulation is used to determine the lower and upper bounds for each data set using CPLEX 12.4.  
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3.0 MODIFIED ACO 
 
Ant Colony Optimization (ACO) is inspired by the nature behavior of ants finding the shortest path between 
their colony and food source. The information collected by ants during the searching process is stored in phero-
mone trails. Hence, when an ant has built a solution, the ant deposits a certain amount of pheromone proportion-
ally (the information about the goodness of the solution) on the pheromone trails of the connection it used. The 
pheromone information directs search by other ants while exploring the graph. The higher density of phero-
mones on an arc attract more ants to the arc. Therefore, an appropriate formulation associated with the model for 
updating pheromones trail is very crucial. This is due to the reason that the greater amounts of pheromone it 
deposits on the arcs, the shorter is the path (the minimum cost).  
 

The procedure for ACO can be divided into three main steps: the route construction, a local pheromone-update 
rule, and a global pheromone-update rule. These steps are described in detail in the following subsections and 
Fig. 1 outlines the algorithm. 
 
3.1  Initial Solution 
 
We construct the initial solution by having all the demand met in every period. Any vehicle routing algorithms 
can be used to construct the route. In this study, we adopt a simple Nearest Neighbor algorithm (NN) and the 
algorithm is modified to allow for split delivery. The vehicle starts at the depot and repeatedly visits the nearest 
customer (in terms of distance) until the capacity of the vehicle is fully occupied. Then, a new vehicle is initiat-
ed and the process continues until all customers have been assigned or visited. The total distance obtained by 
NN is embedded to initialize the 𝜏଴, the initial pheromone in the local pheromone updating (discussed in Sec-
tion 3.3). A simple NN is adopted since the initial solution is used to approximate𝜏଴and any other methods such 
as savings and sweep algorithms may be adopted as well. 
 
3.2  Route Construction for ACO 
 
The route construction begins by setting the value of all the parameters 𝛼, 𝛽,  𝜏଴ , 𝑞଴ and 𝜌 .  
𝛼, 𝛽 are two parameters that control the influence of the pheromone value allocated on the arc (i, j) and the de-
sirability of arc (i, j) respectively whilst 𝑞଴ is a predefined real number where 0 ≤ 𝑞଴ ≤ 1 and 𝜌 is the rate of 
pheromone evaporations. Note the value of 𝜏଴, the initial value of pheromones for each arc is obtained from the 
total distance of the initial solution. Starting from the depot (warehouse), each ant utilizes equation (12) to select 
the next customer to be visited. Ants tend to be attracted to the arc that consists of higher density of pheromones. 
From equation (12), if 𝑞 is less than the predefined parameter 𝑞଴, then the next arc chosen is the arc with the 
highest attraction. Otherwise, the next arc is chosen using the biased Roulette Method with the state transition 
probability 𝑝௜௝ given by equation (14). 
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Fig. 1 Algorithm of the developed method 
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where      ijijijAtt 
 (13) 
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(14) 

𝜏௜௝ is the amount of pheromone deposited on arc (i,j) and 𝜂௜௝ is inversely proportional to the length of arc (i, j), 
𝑐௜௝ . Ω୧ a set of unvisited customers for ant 𝑖. 
 
 
3.3 The Local Pheromone-Updating Rule 
 
 
Local updating is used to reduce the amount of pheromone on all the visited arcs to simulate the natural evapo-
ration of pheromone and it is intended to avoid a very strong arc being chosen by all the ants. After a predefined 
number of ants, m had completed their solutions, the best among the built solutions is chosen and the pheromone 
on each arc is updated using equation (15). 
 

𝜏௜௝ = (1 − 𝜌)𝜏௜௝ + 𝜌𝜏0 (15) 
where 𝜌 represents the rate of pheromone evaporation. 
 
 
3.4 The Global Pheromone-Updating Rule 
 
 
After a predefined number of iterations, the ACO updates the pheromone allocation on the arcs of the current 
optimum route𝛾௚௟ . The global pheromone-updating rule resets the ant colony’s situation to a better starting point 
and encourages the use of shorter routes. Moreover, it increases the probability that future routes use the arcs 
contained in the best solutions. In the classical ACO, only the transportation cost is taken into account in the 
global updating. Since the IRP tries to find a balanced between the transportation and inventory cost, it is natural 
to incorporate the inventory cost in the formulation. The global update rule is enhanced as follows: 
𝜏௜௝ = (1 − 𝜌)𝜏௜௝ +

ఘ

௃
ം೒೗

(𝑖, 𝑗) ∈ 𝛾௚௟  (16) 

where 𝐽ఊ೒೗ is the weight of the best solution found where it incorporates the inventory element as well as the 

variable transportation costs. 𝐽ఊ೒೗is given by 

𝐽ఊ೒೗ = 

 

(17) 
 
where the first component defines the total inventory costs whilst the second component gives the total transpor-
tation cost. 
 
 
3.5 Route Improvement Strategies 
 
 
The routes can be further improved by adding route improvement strategies in the route construction procedure. 
In this study, there are three local searches: swap, 2 - opt* and 2 - opt are applied to improve the solution built 
by ACO. 
 
 
3.5.1  Swap for Split Customer 
 
 
The first local search is the swap algorithm focusing on the split customer and is illustrated in Fig. 2(a) and 2(b). 
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The swap comprises of a transfer to the selected vehicle or a swap between different vehicles. Starting from the 
last vehicle, the split customer is identified and we try to merge to the current selected vehicle if the respective 
vehicle capacity is not violated. If this fails, then the swap with the other customers either in the preceding or the 
current vehicle that resulted in the least transportation cost is carried out. If none of the swap provides an im-
provement in the objective value, then the current solution route remains unchanged. The process continues until 
all vehicles in every period have been examined. The aim of this method is to eliminate the split customers 
(merge as many as possible) if the merger results in an improved in the objective value.  
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.5.2  2 - opt* 
 
We applied 2 − 𝑜𝑝𝑡∗ [28] heuristic as inter-route optimization procedure. The purpose of this strategy is to test 
on all possible pairwise exchange between vehicles to see if an overall improvement in the objective function 
can be attained. The heuristic calculates the distances for all pairwise permutations and compared those distance 
with the current solution. If any of these solutions is found to improve the objective function, then it replaces the 
current solution. 
 
 
3.5.3  2 –opt 
 

2 − 𝑜𝑝𝑡 [29] heuristic which is an intra-route optimization procedure is implemented. The implementation is 
slightly different from 2 - opt*, 2 − 𝑜𝑝𝑡 test on all possible pairwise exchange within a vehicle instead of be-
tween vehicles to see if an overall improvement in the objective function can be obtained. The current solution 
is replaced if the improved solution is better. 

  

Fig. 2(a): Swap procedure if the split customer can be merged directly to the selected vehicle 
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Fig. 2(b): Swap procedure if the split customer cannot be merged directly to the selected vehicle 
 

Note: 
 Forward swap possibility: try to merge the identified split customer to the current vehicle and swap / split the 

other customer to the preceding vehicle. 

 Backward swap possibility: try to merge the identified split customer to the preceding vehicle and swap / 
split the other customer to the current vehicle. 
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3 

Route 
cost is 
110 

Note: Distance savings on vehicle 1 is -10 if 
merge customer 6 to vehicle 1 and split customer 
4 to vehicle 2 

Note: Distance savings on vehicle 1 is 45 if merge 
customer 6 to vehicle 1 and split customer 1 to vehicle 
2 

Backward Swap possibility 

Selection II 

Selection III 

12 

1 4 0 0 6 

10 25 15 
Route 
cost is 
150 

Delivery 
quantity 

Vehicle 
1 

2 4 0 0 

15 27 
Delivery 
quantity 

Vehicle 
2 

5 3 0 0 

13 

Route 
cost is 
80 

Delivery 
quantity 

Vehicle 
3 

12 

4 0 0 6 

25 25 
Route 
cost is 
120 

Delivery 
quantity 

Vehicle 
1 

2 1 0 0 

15 27 

Route 
cost is 
85 

Delivery 
quantity 

Vehicle 
2 

5 3 0 0 

13 
Route 
cost is 
80 

Delivery 
quantity 

Vehicle 
3 

 

Note: Distance Savings on vehicle 2 is 25 after 
merging the split customer 3 to vehicle 3 

Vehicle 2 

Route 
cost is 
150 

Route 
cost is 
100 

Route 
cost is 
80 

12 

1 4 0 0 6 

25 10 15 
Delivery 
quantity 

Vehicle 1 

2 6 0 0 

15 27 
Delivery 
quantity 

5 3 0 0 

13 
Delivery 
quantity 

Vehicle 3 
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3.6  Updating the Inventory Level 
 
The inventory updating mechanism is applied after a certain predefined number of iterations has been complet-
ed. Fig.3 illustrates the process of the inventory updating. First, we randomly select the period to be moved. The 
number of customers to be moved is limited by some predefined maximum number of moves allowed, 
N_moveTime. The available customers on a selected period p are those with positive delivery quantities (

) and the inventory has not been updated yet (has not received from the period ). This extra con-

straint is to ensure that the inventory cost is not excessive. Additional criterion imposed is that the inventory of 
the preceding the period ( ) has not been updated in the present iteration. The customers who will be select-

ed to update the inventory are those with the least inventory cost. We note that when updating the inventory, 
there is no restriction imposed, except for the vehicle capacity constraint and may result in an increased in the 
number of vehicles. 
 
The following definitions are introduced for the procedure of updating inventory level: 

N_moveData maximum number of moves to be allowed for each data 
N_moveTime maximum number of move to be allowed per time 
temp_move the current number of moves 
sum_move the current accumulative moves that have been done 
cur_move Number of moves generated by random number which not more than N_moveTimeper 

time. 
 

Step 1: Check the availability customer on all period. If none of the periods consist of the available customer, 
go to Step 9. Otherwise, go to Step 2. 

Step 2: Randomly select the period, p, with the condition where there is at least one available customer. Go to 
Step 3. 

Step 3: Randomly select the number of moves (cannot exceed N_moveTime), cur_move: 
 If (cur_move+ sum_move) <= N_moveData 
  real_move = cur_move 
 else 
  real_move = N_moveData – sum_move 
 Set temp_move = 0. 
 Go to Step 4. 
Step 4: Select an available customer from period p, who will give the least inventory cost. 
 Move all the quantity delivery on period p to period p-1.  

temp_move++. 
Go to Step 5. 

Step 5: Update the availability of the customer on period p.  
 If (temp_move<real_move) 
  Go to Step 6. 
 Else 
  Go to Step 7. 
Step 6: Check is there any available customer on period p. 
 If yes, go to Step 4. Otherwise, go to Step 7.  
 
Step 7:sum_move += temp_move. Go to Step 8. 
Step 8: Update the inventory level and inventory cost for each customer on each period. 
Step 9: Select the set of inventory level that had been built for the current best solution to continue with the  
 routing. 
 
 
 
 
4.0 COMPUTATIONAL RESULTS 
 
The algorithms were written in C++ language by using Microsoft Visual studio 2008. The results of this study 
are compared with the lower bound (LB) and the upper bound (UB) generated by solving the formulation pre-

0ijpq 1p

1p

Fig. 3: Algorithm for updating inventory level 
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sented in Section 2.0 using CPLEX 12.4. All the computations were performed on 3.10 GHz processor with 
8GB of RAM. 
 

4.1 Datasets 
 
The algorithm is tested on 12, 20, 50 and 100 customers, and combination with a different number of periods, 5, 
10, 14 and 21. The coordinates for each customer are generated randomly in the square of100 × 100. The coor-
dinates of each customer for the 20 customers instance comprises the existing 12 customer instance with addi-
tional 8 newly randomly generated coordinates. The same procedure is used to create the 50 and 100 customer 
instances. Fig.4 illustrates the distribution of the data sets. The holding cost for each customer lies between 0 
and 10 while the demand for each of the customer is generated randomly between 0 and 50. The vehicle capaci-
ty is 100.  
 
4.2  Results and discussion 
 
In this study, we let CPLEX version 12.4 run for a limited time 9000s (2.5 hours) to obtain the lower bound and 
the best integer solution for all the instances. 
 
 
4.2.1  Sensitivity analysis 
 
 
Since the two most important parameters in any ACO are𝛼 and 𝛽 that control on the decision policy in the 
selection of customers, we conduct the computational experiments to test on the different combination of pa-
rameters𝛼 = [1, 2, 3] and 𝛽 = [1, 2, 3, 4, 5] to determine the appropriate values of 𝛼and 𝛽. The performance 
of the modified ACO is measured for each data set, and averaged over 5 runs. Table 1 shows the mean and 
standard deviation over 5 runs of the different combinations of parameter 𝛼 and 𝛽 and parameter 𝛼 is repre-
sented by alphabet A (A1, A2 and A3) while B(B1, B2, B3, B4 and B5) refers to parameter 𝛽. The results show 
that the combination of (𝛼, 𝛽) =  (1,5) gives the best average in the larger data set. However, the best combi-
nation of 𝛼 and 𝛽 for S12 and S20 are (𝛼, 𝛽) =  (2,1) and (𝛼, 𝛽) =  (2,3) respectively. Extra computations 
are done to compare between using existing parameters (𝛼, 𝛽) =  (1,5) and the best parameter settings for 
instances of S12 and S20 and the results are tabulated in Table 2 (S12) and Table 3 (S20).The improvement in 
the mean between (𝛼, 𝛽) =  (1,5)and (𝛼, 𝛽) =  (2,1) of S12and (𝛼, 𝛽) =  (2,3) of S20 are small which is 
less than 1.7%. Therefore we set the parameter values for (𝛼, 𝛽) =  (1,5)for all data sets and the results are 
tabulated in Table 4. 
 
 
4.2.2  Results of ACO 
 
The parameters for both versions of ACO (ACO and ACO2) are set as follows: 𝑞଴ = 0.9, 𝜌 = 0.1, 𝜏଴ = 1/(𝑁 ×
𝐿ேே) where 𝐿௡௡is the total distance obtained from the nearest neighbor algorithm. The algorithm is run for 
5000 iterations and each of the iterations consists of 25 ants to build a solution. N_moveData is determined 

by {
ଵ

ଵଶ
× 𝑇 × 𝑁} while N_moveTime is set to be equal to 3.The number of vehicles (LB) is calculated by the 

following formula: 
 

𝑇𝑜𝑡𝑎𝑙𝑑𝑒𝑚𝑎𝑛𝑑𝑓𝑜𝑟𝑎𝑙𝑙𝑝𝑒𝑟𝑖𝑜𝑑𝑠

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑜𝑓𝑡ℎ𝑒𝑣𝑒ℎ𝑖𝑐𝑙𝑒
 

 
We performed 10 runs for each data set. Table1 shows the results of ACO, which only applies Swap and 2-optas 
local search and ACO2 which includes 2 - opt* as inter route optimization procedure. Table 4 presents the best 
total costs, the number of vehicles, the CPU time, the lower bound and the upper bound (best integer solutions) 
obtained from CPLEX. From Table 4, we observed that the gaps that are calculated as the ratio of the difference 
between the lower bound and the upper bound to the lower bound, for all the solutions are greater than 10%. 
This ratio increases as the periods and the number of customers increase. Thus, it is hard to justify the quality of 
the lower bound obtained by CPLEX. This may due to the lower bound is really loose or the upper bound is 
rather poor. 



Ant Colony Optimization For Split Delivery Inventory Routing Problem. pp 333-348 

 
 

 
344 

Malaysian Journal of Computer Science. Vol. 30(4), 2017 
 

From the results, we note that the total costs of the data sets with 100 and 50 customers are less than the upper 
bound, which mean that the algorithm is able to obtain better results when compared with the upper bound. 
However, ACO gives less than 9 percent gaps for the small and medium instances with 12 customers and 20 
customers. Meanwhile, ACO2 performs equally well for the small and medium instances and producing the gaps 
of less than 4.5 percent between the results and the best integer solutions. We can conclude that ACO2 out per-
forms ACO in all data sets. 
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Fig. 4: Distribution of the data sets 
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Combination of 
parameters 

MEAN STDEV 

S12T14 S20T21 S50T21 S100T14 S12T14 S20T21 S50T21 S100T14 

A1B1 6501.44 14397.58 37401.46 45549.38 4.880 49.947 214.086 198.486 
A1B2 6480.71 14477.42 36978.60 44780.64 23.131 38.739 76.765 81.299 
A1B3 6494.63 14534.18 36825.98 44494.96 26.374 46.013 48.109 57.527 
A1B4 6509.66 14545.96 36788.92 44314.14 9.268 20.261 125.782 72.611 
A1B5 6502.01 14554.66 36729.76 44216.72 22.996 45.268 77.270 43.506 
A2B1 6394.06 14383.48 37162.56 45341.20 20.631 85.372 225.680 341.760 
A2B2 6502.29 14336.86 37038.28 45032.00 16.981 46.222 89.375 224.243 
A2B3 6505.26 14309.66 36789.50 44693.04 12.281 56.123 180.622 110.700 
A2B4 6503.11 14372.46 36919.64 44400.80 13.745 51.106 109.498 155.846 
A2B5 6506.18 14545.30 36820.14 44282.44 5.637 70.642 60.905 100.351 
A3B1 6410.164 14437.34 37369.62 45386.00 15.728 96.595 139.770 289.770 
A3B2 6461.848 14349.34 37116.32 45304.10 42.698 58.585 117.479 117.729 
A3B3 6489.428 14357.42 37050.30 44631.50 24.138 96.583 83.243 317.133 
A3B4 6502.286 14315.22 36930.08 44531.80 9.043 26.120 106.103 186.044 
A3B5 6500.422 14411.86 36842.48 44561.46 30.014 52.133 70.393 47.792 

 
 
 

Data Sets LB 
UB 

(Best Integer) 
A1B5 A2B1 

Best costs Gaps ** (%) Mean STDEV Best costs Gaps ** (%) Mean STDEV 

S12T5 2033 2231.96 2290.38 2.62 2296.98 7.682 2254.04 0.99 2272.04 9.976 

S12T10 4047.64 4305.33 4453.58 3.44 4512.78 30.855 4409.91 2.43 4459.50 24.550 

S12T14 5329.58 6196.35 6462.09 4.29 6505.47 17.702 6361.24 2.66 6403.95 17.333 
   Gaps** refers to the difference between the obtained results and the CPLEX Upper Bound 

Table 2: Comparison of the results for S12 with two different parameters 

Table 1: The results of mean and standard deviation for different parameters settings over 5 runs.  
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Data Sets LB 
UB 

(Best Integer) 
A1B5 A2B3 

Best costs **Gaps (%) Mean STDEV Best costs **Gaps (%) Mean STDEV 

S20T5 3208.35 3394.78 3527.00 3.89 3551.21 11.566 3431.84 1.09 3456.66 16.788 
S20T10 6330.97 6759.71 7046.34 4.24 7114.85 36.759 6924.58 2.44 6946.81 25.406 
S20T14 8769.73 9368.08 9707.08 3.62 9783.33 52.582 9609.24 2.57 9678.84 39.873 
S20T21 12407.58 13929.21 14514.10 4.20 14598.30 82.124 14262.00 2.39 14325.30 53.532 

 Gaps** refers to the difference between the obtained results and the CPLEX Upper Bound 
 

 

Data 
LB  

(Objective) 

UB (Best Integer) 
#veh 
(LB) 

ACO ACO2  

Costs # veh 
Best 

Costs 
#veh 

Time 
(secs) 

Gap* 
(%) 

Best 
Costs 

#veh 
Time 
(secs) 

Gap* 
(%) 

S12T5 2033 2231.96 19 16 2353.04 19 16 5.42 2290.38 19 15 2.62 

S12T10 4047.64 4305.33 36 31 4604.56 37 30 6.95 4453.58 36 30 3.44 

S12T14 5329.58 6196.35 52 44 6665.05 52 42 7.56 6462.09 52 41 4.29 

S20T5 3208.35 3394.78 28 26 3617.39 28 47 6.56 3527 28 47 3.89 

S20T10 6330.97 6759.71 56 52 7293.06 56 90 7.89 7046.34 56 91 4.24 

S20T14 8769.73 9368.08 77 71 9982.36 77 126 6.56 9707.08 77 128 3.62 

S20T21 12407.58 13929.21 115 104 15093.5 113 184 8.36 14514.1 113 188 4.20 

S50T5 7614.43 8213.22 64 58 8176.18 59 317 -0.45 8115.38 61 324 -1.19 

S50T10 13913.84 17359.2 135 120 17205.7 124 653 -0.88 16935.4 124 664 -2.44 

S50T14 19300.45 25181.61 197 171 24357.1 176 942 -3.27 23969.1 178 941 -4.82 

S50T21 29418.86 38626.96 311 261 37485.6 272 1438 -2.95 36620.4 273 1432 -5.19 

S100T5 13208.54 16130.13 134 120 15247.6 122 1709 -5.47 15117 122 1734 -6.28 

S100T10 25601.69 34388.15 293 245 31407.6 249 3527 -8.67 30963.9 249 3517 -9.96 

S100T14 - - - - 44610.5 355 4960 - 44155 355 4956 - 

Table 4: Results for ACO 

Table 3: Comparison of the results for S20 with two different parameters  

Gaps* refers to the difference between the obtained results and the CPLEX Upper Bound 
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5.0 CONCLUSION 
 
The integration of inventory and transportation plays an important role in supply chain management. This paper 
presents the formulation of the model that consists of multi-products and multi-periods IRP as well as the devel-
opment of a modified ACO that includes the inventory component in the pheromone updating. A new trans-
fer/swap aims at combining the split customers is also proposed. This is carried out in order to obtain the im-
provement in term of the transportation costs. Consequently, the number of vehicles, when compared to the 
number of vehicles for the best integer, is much reduced especially for large instances. For small instances the 
number of vehicles is comparable. The lower bound for the number of vehicles is calculated using the formula 
 

ቜ
∑ ∑ 𝑑௜௧

௡
௜ୀଵ

்
௧ୀଵ

𝐶
ቝ 

 
that is the total demands in all periods divide by the vehicle capacity. This lower bound is used to gauge the 
number of vehicles obtained by the CPLEX and the algorithms. Generally, our algorithms, ACO and ACO2 per-
forms well in large instances and less than 5% difference for small instances. 
 
We note that both ACO and ACO2 are more likely to give savings in term of transportation costs instead of in-
ventory costs even though we did embedded the inventory cost component in the global pheromones updating. 
We observed that this is due to larger component of the total transportation costs than the inventory costs. There-
fore, improvement can be obtained by selecting appropriate weights to balance between transportation and inven-
tory costs. However selecting appropriate weights is very complex. 
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