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ABSTRACT 
 
Owing to an exponential increase in computational time associated with increasing number of system 
components, exhaustive testing is increasingly become impractical. Here, many researchers opt to adopt 
pairwise testing to minimize the overall number of tests. Recently, many existing works are focusing on the use 
of Search-Based algorithms as the basis of the implementation algorithm for pairwise test suite generation; 
however, there is no single strategy that can be the best for all cases. Currently, researches on Flower 
Pollination Algorithm (FPA) are very active and its applications have been proven successful to solve many 
optimization problems. This paper proposes a new search-based strategy for generating the pairwise test suite, 
called Pairwise Flower Strategy (PairFS). The main feature of PairFS is that it is the first pairwise strategy that 
adopts FPA as its core implementation. To evaluate and benchmark our proposed strategy, several existing 
comparative experiments are adopted from the literature. The results of the experiment show that PairFS in 
many cases are more efficient than the existing strategies in terms of the generated pairwise test suite size. 
 
 
Keywords: Pairwise Testing, Flower Pollination Algorithm, Software Testing, Combinatorial Problem, 
Search Based Software Engineering. 
 
 

1.0 INTRODUCTION 

 
Search Based Software Engineering (SBSE) is one of attractive fields in the past five years [1]. To be specific, 
SBSE has been successfully applied to address a wide range of software engineering problems on design, 
testing, software engineering management, requirements engineering and refactoring. SBSE involves applying 
optimization algorithms to solve software engineering problems [2, 3]. In the field of interaction testing, much 
recent works are focusing on searching (and minimizing) of test cases from a large potential of values based on 
defined interaction strength. Any software systems that have many of customizable options (e.g. Microsoft 
Word) can have an enormous number of input configurations need to be tested. Combinatorial Interaction 
Testing (CIT) is sampling technique that has been used extensively to test high-configuration software systems 
such that every t-combinations (where 𝑡 indicates the interaction strength) of input values is covered by test case 
at least once [4]. 
 
As a special case of CIT is the pairwise testing. Pairwise testing is an effective technique that is based on the 
most software failures are often caused by interaction of two parameters [5]. In the literature, many studies have 
reported that pairwise testing is very effective to detect 2-way interaction faults. Kuhn, Wallace et al reports that 
on several systems [6], 76% of bugs can be detected by pairwise testing. A study conducted by Brownlie, 
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Prowse, and Phadke, researchers proposed a new method called Robust Testing™ [7]. The study uses AT&T's 
PMX/StarMAIL system as a case study.  In this system, there are 1500 test cases need to be tested. However, 
due to time and resource constraints, only 1000 test cases can be performed. Robust Testing™ is applied to 
generate pairwise test cases resulting into reduction from 1000 to 422 test cases (i.e. potentially reducing more 
than halve of the testing efforts). 
 
Finding a minimal pairwise test suite from potential large possible test parameter values is NP-hard (Non-
deterministic Polynomial-time hard) problem. Many SBSE pairwise strategies have been proposed in an attempt 
to generate the smallest test suite size including  Hill Climbing (HC) [8], Simulated Annealing (SA) [8], Genetic 
Algorithm (GA) [9], Ant Colony Optimization algorithm (ACO) [9], Particle Swarm Optimization (PSO) [10, 
11], and Harmony Search (HS) [5]. Although useful, most of the previous studies are not without limitation. 
Strategies based on TS and SA are often given optimal results for small test configurations, but they are prone to 
get stuck in local minimum solution [4]. Strategies based on GA, ACA, PSO, and HS often require frequent 
interaction with the environments during computation. For instance, GA exploits the crossover and mutation 
operators with historical information to explore regions of better solutions. ACA requires indirect 
communication of a colony via pheromone trails. In a similar manner, PSO interacts with individual particles 
through velocity updates in the given swarm until the solution is reached. HSS requires the use probabilistic 
value from Pitch Adjustment Rate (PAR) and Harmony Memory Considering Rate (HMCR) to select the 
solution from Harmony Memory (HM) or regenerate newly random solution. 
 
Compared to existing strategies adopting SBSE based approach, FPA mimics more straightforward nature 
abstraction of the (local and global) flower pollination process. In this manner, the learning curve for FPA is 
rather low. Unlike existing SBSE, FPA has two search capabilities: global pollination and flower consistency. 
Global pollination using Lévy flight allows FPA to jump for a long distance out of local optimum and thus can 
explore a larger search space very efficiently. Flower consistency reproduces a new solution from similarity of 
two flowers, thus maximizing the reproduction of the same flower species and guarantees the convergence 
speed more quickly. Global pollination via Lévy flight combined with Flower consistency make FPA explores 
the search space more efficiently. Moreover, currently researches on FPA are very active and its applications 
have been proven successes to solve many problems such as, image classification problem [12], image  
compression problem [13], and Wireless Sensor  Network [14], to name a few. Many existing studies show that 
FPA is very efficient and outperform most of existing algorithms.  
 
Arguably, no single strategies are capable to obtain the most minimal test suite in all cases at hand. 
Complementing existing works and focusing on the SBSE based approach; this paper proposes a new pairwise 
strategy, called Pairwise Flower Pollination Strategy (PairFS). The main contribution of PairFS is that it is the 
first pairwise strategy that adopts FPA as its core implementation.  
 
The rest of this paper is organized as follows. Section 2 gives an overview of pairwise testing. Related works are 
stated in Section 3. Detailed reviews of SBSE pairwise strategies are provided in Section 4. Section 5 
demonstrates Flower Pollination Algorithm. Section 6 introduces the proposed strategy, PairFS.  Section 7 
highlights the experimental results and discussion. Section 8 gives threats to validity for the experiments.  
Lastly, Section 9 gives the conclusion and future work. 
 

2.0 BACKGROUND 

 
In general, any system consists of number of components, which interact with each other (termed parameters 
with their associated values). Practically, testing all combinations is expensive.  CIT minimizes tests by 
generating on the desirable interaction for every t-combination. In many classes of systems, faults are often 
related to 2-way interaction, thus, it is worthwhile to focus on pairwise testing. 
 
Definition (Pairwise testing): Given a set of N parameters P1, P2, P3, ..., PN, each parameter having Vi possible 
values {v1,v2,...vm}. A set of test data values Tc, contains N test values, is selected for each of the parameter 
values such that the test cases in Tc cover all pairs of input parameter values once. To illustrate the concept of 
pairwise testing, consider a Simple Find Dialog example as given in the following Fig. 1: 
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Fig. 1: Simple find dialog example 
 

The dialog box treats an input text string and returns all records that match that string. This dialog box consists 
of four inputs (i.e. Text string, Match whole word, case sensitivity and direction of the search). By ignoring 
illegal values for simplicity; the values for each parameter can be summarized as the following: Text string: 
uppercase/lowercase/mixed, Match whole word: match/do not match, Case: match/do not match and Direction: 
Up/Down. Therefore, in order to test this system exhaustively, there are 24 test cases need to be considered. By 
using pairwise testing, all possible combinations of each pair of input parameters need to be tested at least one 
time. To generate a pairwise test suite, in our example, there are 30 pairs need to be covered, called interaction 
pairs. By using greedy algorithm, the first test case can cover 6 interaction pairs. Prudently selecting the test 
cases, all the 24 interaction pairs can minimize into 6 test cases. From optimization perspective, the pairwise test 
suite generation problem can be stated mathematically as follows: 

 

Maximize 𝑓(𝑥)  =  ෍ 𝑥௜

ே

ଵ
                                (1) 

subject to 𝑥 ∈  𝑥௜   , 𝑖 =  1,2, … . , 𝑁                 (2) 
 

where, 𝑓(𝑥) is an objective function to be optimized that capture the weight of the test case in terms of the 
number of covered pairwise interactions, xi are the decision variables that is, 𝑥௜  = {𝑥୧ (1), 𝑥௜(2), . . . , 𝑥௜(𝐾)}  for 
discrete decision variables (𝑥୧ (1) <  𝑥௜(2) <. . . <  𝑥௜(𝐾)); N is the number of decision parameters; and 𝐾 is the 
number of possible values for the discrete variables. 
  
The interesting property of pairwise test cases, as Fig. 2 demonstrates, is that any two columns contain all 
possible pairs of these two columns, occur somewhere in any order. For example, as we see in columns A, and 
B contain all possible pairs of AB combination (i.e. 00, 01, 10, 11, 20, and 21), as well, C and D columns 
contain all possible pairs of CD combination (i.e. 00, 01, 10, 11). 

 
Fig. 2: Pairwise test suite generation for find dialog example 

 only pairs of AB, AC, and CD are highlighted 
 

3.0 RELATED WORKS 

 
This section provides an overview of the existing works for constructing a pairwise test suite. Based on  [10],  
the existing approaches can be classified into two main categories: algebraic construction, computational 
construction. Considering algebraic approach, test data sets are constructed without enumerating any 
combinations. Thus, this approach requires lightweight computations. There are two types of algebraic 
approach. The computation in the first type of algebraic approach is based on mathematical functions [15-17]. 
The second type of algebraic approach employs a recursive process to construct test sets by construct a large test 
sets from small test sets [18]. Strategies adopting this approach (such as CA, MCA and TConfig) are often 
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restricted to small configurations. Computational approach uses a greedy algorithm to construct the test cases. 
Each step tries to cover as many combinations as possible uncovered combinations. In Computational 
Approach, generating test set is accomplished by either using one-test-at-a-time strategy (OTAT) or one-
parameter-at-a-time strategy (OPAT).  
 
OTAT strategies start to build one complete test case per iteration and checks if this test case is the best test case 
to cover the most uncovered interaction or not, this procedure is repeated until all the combinations are covered. 
In the literature, there are many strategies and tools have developed uses OTAT techniques such as AETG [19], 
TConfig [20], Jenny [21], and WHITCH [22]. One-parameter-at-a-time (OPAT) strategy starts by building a 
completed test suite for the first two parameters, or the smallest number of components, then extends horizontal 
by adding one parameter per iteration, and sometimes, extends vertically until all the parameters is covered, 
such as an IPO [23] and its improvement (i.e. IPOG [24], IPOG-D [25], IPOF and IPAD2 [26] ). Much recent 
works on test suite generation is adoption search based algorithms in software testing, which called Search 
Based Software Engineering Testing (SBSE). 
 

4.0 SEARCH BASED SOFTWARE ENGINEERING TESTING 

 
This section explores an overview of Search Based Software Engineering Testing (SBST) strategies. SBST 
strategies are one of the most emerging technologies for the last 20 years. SBST can be classified into two 
categories namely heuristic search algorithms and meta-heuristic search algorithms. Heuristic search is a way to 
find an approximate and reasonable solution but without guarantee to give an optimal solution such as Hill 
Climbing (HC). Meta-heuristic as term  is first introduced in Tabu Search algorithm by Glover [27]. Meta-
heuristic algorithms are a top level of heuristic search algorithms characterized by attempt escape from local 
optima. Meta-heuristic algorithms have been used successfully in software testing problems such as Simulated 
Annealing, Genetic algorithm, Ant Colony Optimization algorithm, Particle Swarm Optimization, and Harmony 
Search, to name a few [5, 8, 10, 11, 19, 28].  
 

4.1 Hill Climbing 

 
Cohen (2009) adopts a Hill Climbing (HC) algorithm to generate a pairwise test suite [8]. HC algorithm is a 
heuristic search algorithm which can be considered as the fundamental pillar of local search. The algorithm 
begins from a random feasible test case x and then generate transformation test case x' from the x, if x' is better 
than current test case, x' is accepted as the new solution, if it is not better than current solution, we check another 
transformation neighbor. This process is repeated until all the pair combinations are covered. A study conducted 
by Cohen shows that HC often fails to find optimal test suite size. This study suggests to repeat the algorithm 
many times, each time with different initial configurations to increase the chance of finding a good solution [8]. 
The key advantage of hill climbing is only need a limited amount of memory [29]. 
 

4.2 Simulated Annealing 

 
Simulated Annealing (SA) has been implemented to construct the pairwise test suite by Cohen, 2004, and Patil 
and Nikumbh, 2012 [8, 30]. SA-based is a similar to HC, but SA allows wrongs movements to poor solution or 
test case, with an acceptable probability to avoid getting stuck in a local optimum solution. The acceptance 
probability function P(e, e′, T) decides to move to the new test case x′ or staying in current test case x (where e= 
E(x) is the energy of current test case x, e′= E(x′)  is new candidate test case x, and T controlling temperature) 
[31]. The algorithm used randomized searches to generating a pairwise test suite by finding the best test case per 
iteration until cover all interaction pairs. HC and SA can be considered as single-solution based strategies, 
where finding a solution starts from one position in the search space and then move to new solution [8].  
 

4.3 Genetic Algorithm 

 
Another meta-heuristic search technique that has been used to generate pairwise test data is Genetic algorithm 
(GA) (i.e.  Shiba, Tsuchiya et al (2004) and Qi, Wang et al. (2015)). GA is based on AETG strategy [19]. GA-
based strategy is considered the early works in adopting population-based search algorithms to generate a 
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pairwise testing strategy [9, 32, 33]. GA exploits the idea of genetic evolution by selecting and combining the 
best two chromosomes to ensure that only the best solutions are carried to next generations. For constructing test 
suite using GA, randomly a set of feasible chromosomes (or test cases) are generated. Each test case represents 
as a chromosome and the fitness for chromosome x is the number of pair combinations that are covered by x. In 
evaluation loop, the algorithm employs three processes: (1) Selection: GA selects two chromosomes randomly 
and then a copy of the winner is deposited mating pool. (2) Crossover: is taking two chromosomes and produce 
a child by exchanges between the two chromosomes values with probability. (3) Mutation process replaces the 
value of chromosomes randomly. Hereby, based on the fitness function the best chromosomes are selected at 
each generation and survive to the next generation until exceeds the maximum number generation, and then the 
best chromosomes or test case added to the final test suite. Recent work on GA for pairwise testing suite 
generation explore the uses of parallelize GA with Spark [33]. 
  

4.4 Ant Colony algorithm 

 
Ant Colony Optimization algorithm (ACO) mimics the behavior of colonies of ants for finding food paths. The 
places of food represent the parameter and the food represents the value of the parameter, and each test case 
represents the quality of the paths to the food. The paths to the food are evaluated based on the quantity of 
pheromones which is reinforced by the ants. Over time, the density gets higher for some paths which are chosen 
by many ants. By comparison, the best path is selected to be added to the final test suite. The search process in  
ACO allows each ant to build a part of the solution or establishes a complete solution [9, 32]. Another important 
issue, among SBSE strategies, both of GA and ACO include some expensive computations such as crossover 
and mutation operations in GA and ant search process in ACO. Thereby both of GA and ACO address only 
small configurations [34].  
 

4.5 Particle Swarm Optimization 

 
Particle Swarm Optimization (PSO) algorithm has been implemented for pairwise test suite generation using 
two different two different based approaches OTAT and OPAT [10, 11]. The discrete version of PSO is adopted 
in  Particle Swarm-based Test Generator (PSTG)  strategy [11]. Each test case represents Particle. The algorithm 
starts by initializing a set of particle swarms, and interaction elements which presents the search space, and 
initializes the velocity of each particle Vi. During the procedure of test suite generation, the velocities are 
updated according to the best test case when the particle moves around the search space, and then make a move 
from current test case to the new test case based on the velocity. The particle continues its motion until 
termination criteria is met the test case is selected to be added to final test suite. 
 

4.6 Harmony Search 

 
Much recent work undertaken in this field, As the name suggests, harmony search has been adopted for 
harmony search algorithm-based strategy (PHSS) to implement and generate pairwise tests suite. PHSS is 
pairwise test data generation. Using PHSS, the test data generation process is mimicking the improvisation 
process by a skilled musician  [5]. PHSS passes through many phases.  
 
The core part of the PHSS is updating current solution process to cover more interaction elements. To this end, 
PHSS uses harmony search algorithm. Updating process, (also known as improvise new harmony) updates the 
new test case based on the value of harmony memory considering rate (HMCR). Based on HMCR chose the 
new value either from Harmony memory (HM) or randomly. If the new value is coming from HM, Based on 
pitch adjusting rate (PAR), HSS can choose to make a small change or not. Unlike PSTG, number of parameters 
in PHSS is less PSTG.  PHSS requires harmony memory size, Iteration, pitch adjustment rate and harmony 
memory consideration rate as its parameter [4]. 
 
Summing up, our related work section highlights and analysis the strengths and the limitations for each SBSE-
based strategy. At the end of each subsection of related work, our analysis focused on the search procedure of 
each strategy and parameter setting requirements in each strategy, as well as the tuning issues and how each 
algorithm balances between local intensification and global diversification. Table 1 gives a summary of the 
description and comparison of existing pairwise strategies. From the table, it can be seen that most of existing 
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SBSE-based strategies do not sufficiently address high configuration systems due to its high computational 
complexity. Based on some studies [2, 5, 34], strategies based on GA, ACO and PSO consider as expensive 
computation strategies due to the frequent communication needs with the environments during computation. 
Thereby, both of GA and ACO address only small configuration systems, whereas, other algorithms such HC, 
SA and HS based only on transformations. Most of existing pairwise testing requires the tuning of many 
parameters which add extra effort except HC.  Here, it is worth mentioning HC has low computation and free 
parameters, however, it often fails to find optimal test suite size because it is single-based algorithm. 
 

Table 1: The Summary and Limitation of the Existing Strategies  
 

Year Strategy 
Non-

deterministic 
Complexity of 
Computation 

Support High 
configurations 

Population 
Control 

parameters 

2004 HC √ Low × Single-Population Free parameters 

2001 SA √ Low × Single-Population 3 Parameters 

1995 GA √ High × Population-based 2 Parameters 

2008 ACA √ High × Population-based 4 Parameters 

2010 PSTG √ High × Population-based 3 Parameters 

2012 PHSS √ Low √ Population-based 3 Parameters 

 

5.0 FLOWER POLLINATION ALGORITHM 

 
Flower pollination algorithm (FPA) is a new met heuristic algorithm developed by Xin-She Yang [35]. FPA 
inspired by the pollination behavior of flowering plants.  Flower pollination is the process of transferring pollen 
grains from male part of flower to female part via pollinators such as birds, bees, butterflies, bats and other 
animals. There are two mechanisms of pollen transfer: biotic and abiotic. Biotic pollination refers to transfer 
pollen via pollinators such insects or animals, while abiotic does not require any pollinators to transfer pollen. 
As well, pollen can be transferred from male parts to female parts in the same flower (self-pollination) or 
transfer to another flower (cross-pollination) as Figure 3 shows. Another point of interest in flowering plants, 
Some flowers help and restrict a specific pollinators to pollinate them [36, 37]. 

 
Fig. 3: Flower Pollination Methods, (1) Self Pollination in the same flower, (2) Self -Pollination from same 

plant but different flower, and (3) Cross-Pollination from different plant. 
 

 

Based on the pollination characteristics of flowering plants described above, a new meta-heuristic algorithm, 
called Flower Pollination Algorithm (FPA), is proposed. For simplicity purposes, in FPA the above description 
is idealized as the following four rules [35]: 
 

Rule 1. Biotic and cross-pollination can be considered as a process of global pollination process, and 
pollen-carrying pollinators move in a way that obeys Lévy flights. 

Rule 2. For local pollination, a biotic and self-pollination are used. 
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Rule 3. Pollinators such as insects can develop flower constancy, which is equivalent to a reproduction 
probability that is proportional to the similarity of two flowers involved. 

Rule 4. The interaction or switching of local pollination and global pollination can be controlled by a 
switch probability p ϵ [0, 1], with a slight bias toward local pollination. 

 
Based on the above rules, FPA can be represented mathematically as two core parts: Global Pollination step and 
Local Pollination step. In global pollination, the flower pollens are transferred by pollinators such as insects, 
over a long distance. This guarantee the fittest pollens with high quality will carry over to the next reproduction. 
Hence, Rule 1 and flower constancy can be represented as followings: 

  𝑥௜
(௧ାଵ)   = 𝑥௜

(௧)  +  𝛾𝐿൫𝑥௜
(௧)   −  𝑔𝑏𝑒𝑠𝑡൯                                      (3) 

where x୧
(୲) the current pollen,  gbest is the current best, γ>0 is the step size and 𝐿 is Lévy flight. In FPA, Lévy 

flight mimics the characteristic of long-distance movement of the pollinators. The Lévy flight essentially is a 
random walks interspersed by long jumps which are distributed according to a power law to different regions. 
 
The second core part of FPA, Local pollination is represented in a biotic and self-pollination, can formulated by 
following equation: 

  𝑥௜
(௧ାଵ)   = 𝑥௜

(௧)  +  ϵ(𝑥௝
(௧)  −  𝑥௞

(௧))                                                    (4) 

Equation 4 mimics the characteristic of self-pollination and abiotic pollination where x୨
(୲) and x୩

(୲) two selected 
pollens from different flowers, ϵ is random number obey to uniform distribution in [0, 1]. 
 
In real-world, plants can employ self-pollination where pollen’s flower can successfully pollinate the same 
flower or another flower in the same plant, or pollinate another flower in different plants; therefore, a switch 
condition pa can be used to alternate between common global pollination and intensive local pollination. Based 
on those four rules plus, FPA can be summarized as shown in Fig. 4. 
 

Objective function f(x), x = (x1, ..., xd) 
Initialize a population of n flowers/pollen gametes with random solutions 
Find the best solution gbest in the initial population 
Define a switch probability 𝑝𝑎 ∈ [0, 1] 
While (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

For i = 1 : n (all n flowers in the population) 
If  ( rand < 𝑝𝑎 ) 

Draw a (d-dimensional) step vector L which obeys Lévy distribution 
Global pollination via xt

i+1 = xt
i + L(xt

i  −  gbest) 
Else 

Draw ǫ from a uniform distribution in [0,1] 
Randomly choose j and k among all the solutions 
Do local pollination via xt

i+1 = xt
i + ǫ(xt

j − xt
k) 

End if 
Evaluate new solutions 
If new solutions are better, update them in the population 

End for 
Find the current best solution 𝑔𝑏𝑒𝑠𝑡 
End while  

End-procedure 
 

 
Fig. 4: Pseudo code of Flower Pollination Algorithm [35] 

 

6.0 PAIRWISE FLOWER STRATEGY 

 
In this research, a new strategy, called Pairwise Flower Strategy (PairFS), is proposed for pairwise test suite 
generation. FPA is adopted in the proposed strategy to generate an optimal pairwise test suite. In PairFS, each 
pollen or flower represents one test case, and flower’s fitness is the number of interaction pairs that can be cove 
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by the test case. The proposed strategy, as Fig. 5 shows, is a composition of three main steps: (A) Input Analysis 
step, (B) Generating Interaction Pairs step, and (C) Test Suite Generation step by performing a search using 
FPA to find a set of optimal test cases.  

 
Fig. 5: Graphical representation of PairFS steps 

 
In Input Analysis step, PairFS receives the inputs values (i.e. a set of parameters P and parameters values V) and 
initialize the values of population size pollen_size, switch probability pa, and stopping criteria. Next, PairFS 
generates all possible binary combinations of P-digit that contain only two 1’s. For our running example (i.e. 
Find Dialog Example stated in Section 1.1), all possible binary combinations for a given set of parameters P (i.e. 
P1, P2, P3, and P4) are 1100, 1010, 1001, 0110, and 0101. Based on binary combinations of the parameters and 
its values, all Interaction Pairs are generated and added to Interaction Pairs List (PairList). For our example, P1, 
P2, and P3 having two values (i.e., 0 and 1), and P4 has three values (0, 1, and 2). For instance, for the binary 
combination 1100 (i.e. refers to P1, P2) has 2×2 possible interaction elements (i.e., 0:0, 0:1, 1:0, and 1:1), while 
1001 (i.e. refers to P1, P4) has 2×3 possible interaction elements (i.e., 0:0, 0:1, 1:0, 1:1, 2:0, and 2:1).  
 
The third step of PairFS is performing search using FPA to generate the pairwise test suite that cover all 
interaction pairs. In this step population of flower is generated randomly. Because of our strategy follows OTAT 
technics, which is more suitable for treatment as an optimization problem, at each cycle of iteration of the 
strategy, we find one optimal flower (or test case) that cover the maximum number of interaction pairs as 
Equation 1 illustrates. In general, there are two core operations performed on the population of pollen. The first 
core part of the strategy is generating new pollen using global pollination or Lévy flight Equation 3 showed. The 
second part is generating new pollen using local pollination. In local pollination two pollens are selected 
randomly from different flowers to generate new pollen as Equation 4 showed. Finally, the optimal pollen or test 
case is added to final test suite until all interaction pairs are covered. Fig. 6 describes the pseudo code of 
Pairwise Flower Strategy. 
 

A 

Input Analysis 

Input 

2,2,2,3 

B 

Generating Interaction Pairs 

C 

Test Suite Generation 

Perform search using Flower 
Pollination Algorithm 

Analysis input values and 
initialize parameter values 

0011 
0101 
0110 
… 0:1:0:2 

0:0:0:1 
1:0:1:0 

… 

1:0:1:2 
0:1:0:0 

… 

Output 

Optimal test 
cases 
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Input:  
P: Features number n, and  
V:  set of values for each feature V = [v0 ..vj];  

Output:   
Final test suite list FTS;  

Begin 
Let FTS be a set of candidate tests;  
Generate all possible Interactions Pairs List (PairList) based on P and V 
Generate initial population of pollens randomly 
while PairList is not empty do   

while t <MaxGeneration  or  stop criterion do 
for i = 1 : n (all n pollens in the population) 

if  ( rand < pa ) 
Draw a (d-dimensional) step vector L which obeys Lévy distribution 
Global pollination via xt

i+1 = xt
i + L(xt

i − gbest) 
Else 

Draw ǫ from a uniform distribution in [0,1] 
Randomly choose j and k among all the solutions 
Do local pollination via xt

i+1 = xt
i + ǫ(xt

j − xt
k) 

End if 
Evaluate new solutions 
If new solutions are better, update them in the population 

End for 
Find the current best solution gbest 

End while 
Add the best test case, gbest, into FTS.  
Remove covered interactions elements from PairList. 

End while 
End-Procedure 

Fig. 6 : Pairwise flower strategy pseudo code 

 

7.0 EVALUATION OF PAIRFS  

 
The main purpose of this paper is to propose an effective pairwise testing strategy to generate optimum test suite 
by minimizing the test cases. To this end, this section aims to evaluate the efficiency of the proposed strategy to 
generate the smallest test suite size and assess the statistical significance of the generated test suite size. Thus, 
this section is divided into two subsections. The first subsection is to evaluate the efficiency of the proposed 
strategy giants other exiting strategies by comparing the proposed strategy with other existing pairwise 
strategies. The second subsection deals with the statistical analysis based on the Wilcoxon signed-rank test of all 
experimental results conducted in this research. 
 

7.1 Comparison of PairFS with other Strategies 

 
In order to evaluate the efficiency of proposed strategy in term of test suite size, which is a main criterion for 
test suite generation, comparisons of proposed strategy against existing computational strategies and search-
based strategies are made.  
 
Preparing for the experiments, a detailed parametric study for PairFS’s parameters is conducted by using 
different values for switch probability pa (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9), iteration size (10, 20, 50, 
100, 300, 500 and 1000) and population size pollen_size (10, 20, 50, 100, 500 and 1000), carried out that the 
optimal results are obtained when Pa = 0.8, iteration size = 500 iterations, and population size 30 pollens. 
Therefore, in our experiments, we have used these values as initial values for PairFS’s parameters.  Several 
existing comparative experiments [5, 10, 11] are adopted in our experiments. All experiments were employed 
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within the environment consists of a desktop PC with Windows 7 professional and 32-bit Operating System, 
Intel (R) core™ i7-3770 CPU @ 3.40 GHz, and 4GB of RAM.  
 
The results of the experiments are reported in Tables 2-4. Each column represents the results of one strategy and 
each cell in these tables represents the smallest test suite size obtained by corresponding strategy. Regarding 
table rows, each table rows are varied from table to table according to the objective of each experiment. Here, 
we have performed three different experiments.  

 First experiment, PairFS is compared with published results, which involve 11 different well-known 
system configurations. C1 through C11 indicate different system configurations as stated in the second 
column Table 1. For example, C1 = 33 represent a system with 3 parameters each parameter with 3 
values, while C2 = 313 refer to a system with 13 parameters each parameter with 3 values. 

 Second experiment, we adopt a system configuration with 2-valued parameters and P varied From 3 to 
12. 

 Third experiment takes with 10 V-valued parameters, where V varied from 3 to 10. 
 

We run each system configuration for 20 times, and report only the best test size. In all tables, one cell in each 
row is marked with * to show the best results obtained for the test configurations.  The cell marked as “NA” 
indicates that the results are not available in the literature. 
 

Table 2 : Comparison with existing strategies using 11 different systems configurations 
 

Configurations 
 Computational Strategies  Search-based Strategies 

PIC
T 

TVG 
AET

G 
mAE
TG 

TCon
fig 

CTE-
XL 

AllPai
rs 

Jenny IPO IRPS IPOG 
G2Wa

y  SA GA ACA 
PPS
TG 

PHS
S 

PairFS 

C1 33 10 11 NA NA 10 10 9* 10 NA 9* 11 10  NA NA NA 9* 9* 9* 

C2 34 13 12 9* 11 10 10 13 10 9 9* 12 10  9* 9* 9* 9* 9* 9* 

C3 313 20 20 15* 17 20 21 20 22 17 17 20 19  16 17 17 17 18 18 

C4 1010 170 189 NA NA 170 192 157 177 169 149* 176 160  NA 157 159 170 155 150 

C5 1510 NA 473 NA NA NA NA 336 390 361 321* 373 343  NA NA NA NA 341 344 

C6 1020 NA NA 180 198 NA NA NA 230 212 210 NA 200  183* 227 225 NA 224 205 

C7 510 47 50 NA NA 48 50 45 49 47 45 50 46  NA NA NA 45 43 42* 

C8 51 38 21 21 23 19 20 22 21 41 21 NA 17 19 23  15* 15* 16 21 20 20 

C9 61 51 46 38 23 38 41 34 35 33 39 31* NA NA NA 36 NA  NA 33 32 39 39 37 

C10 71 61 51 46 38 23 46 52 45 44 49 53 51 NA NA NA 44 NA  NA 42* 42* 49 48 48 

C11 101 91 81 71 61 

51 41 31 21 
101 100 NA NA 92 102 98 NA NA NA 91* NA  NA NA NA 97 95 92 

yx means: means that task take x parameters, each parameter with y values. 

 

 



Pairwise Test Data Generation Based On Flower Pollination Algorithm.  pp 242-257 
 
 
 

 
252 

Malaysian Journal of Computer Science.  Vol. 30(3), 2017 
 
 

Table 3 : Comparison with existing strategies, with v = 2 and p varied from 3 to 12 
 

P 
Parameter value (V) = 2 

TVG CTE_XL PICT TConfig Jenny IPOG PPSTG PHSS PairFS 

3 4* 6 4* 4* 5 4* 4* 4* 4* 

4 6 6 5* 6 6 6 6 6 6 

5 6* 6* 7 6* 7 6* 6* 6* 6* 

6 6* 8 6* 7 8 8 7 7 7 

7 8 8 7 9 8 8 7* 7* 7* 

8 8 7 8 9 8* 8* 8* 8* 8* 

9 8 9 9 9 8* 8* 8* 8* 8* 

10 9 9 9 9 10 10 8* 8* 8* 

11 9 10 9 10 9 10 9 8* 8* 

12 10 10 9* *9 10 10 9* 9* 9* 

 
 

Table 4 : Comparison with existing strategies, with p = 10 and v varied from 3 to 10 
 

V 
Parameter Size (P) = 10 

TVG CTE_XL PICT TConfig Jenny IPOG PPSTG PHSS PairFS 

3 18 18 18 17 19 20 17 17 16* 

4 33 33 31 31 30 31 29 28* 28* 

5 50 50 47 48 45 50 45 43 42* 

6 72 71 66 64 62 68 62 60* 60* 

7 98 97 88 85 83 90 81 79* 79* 

8 124 125 112 114 104 117 109 105 101* 

9 152 161 139 139 129 142 139 127 126* 

10 189 192 170 170 157 176 170 155* 155* 

 

 
At first glance, as Tables 2, 3, and 4 shows that most of SB strategies perform similarly. We also can observe 
that computational strategies perform better than search-based strategies in many cases but the scale 
configurations considered has been small. Taking a closer look at existing strategies, we observe that mAETG, 
AETG, ACA, SA and GA perform better that other strategies due to their randomization. 
 
Referring to Table 2, most of existing strategies including the proposed strategy produces the most minimum 
test size for C1, and C2.  In the case of C3, AETG outperforms all other strategies while IRPS outperforms all 
other strategies in case of C4 and C5. In the cases of C7 the proposed strategy outperforms all other strategies, 
while, in the cases of C4, C5 and C11 the proposed strategy produces the second best test size among the 
existing strategies. In the other cases, proposed strategy gives competitive results as compared to other existing 
strategies. Putting computational strategies aside, SA appears to be better than other search-based strategies but 
limited to small configurations. The performance of GA and ACA is almost the same in most of cases, which 
still better than PairFS, however GA, and ACA, as well PSO, require expensive computation owing to the need 
for the frequent communication with the environments during the searching process [2]. Comparing with 
PPSTG and PHS strategies, PairFS produces better test suite size.  
 
Tables 3 and 4 show that PairFS obtains the smallest test suite in most case, only PICT has managed to 
outperform PairFS , where  the test suite size produces by PairFS is equal to 7 test cases while the test suite size 
produces by PICT is  6 test cases,  that is,  in the case of p = 6. PairFS appears to generate the most optimum 
results in most of the configurations as marked with (*) owing to the good balance between global search and 
local search through the adoption of lévy flight.  
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7.2 Statistical Analysis  

 
Further analysis of the experimental results, Wilcoxon Signed Rank Test technique is performed.  The Wilcoxon 
test is a non-parametric analysis technique that can be used to compare two sets of ordinal data that are subject 
to different conditions. In this statistic analysis, the PairFS strategy will be compared to each individual strategy 
separately; to test if there is a significant difference between the proposed strategy results and other strategies 
results. Here, we have two hypotheses null hypothesis (H0) and alternative hypothesis (H1) as following: 
 

𝐻଴:  μ1 −  μ2 = 0           (𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠ᇱ𝑟𝑒𝑠𝑢𝑙𝑡𝑠) 

𝐻ଵ: μ1 − μ2 ≠  0                 (𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠ᇱ𝑟𝑒𝑠𝑢𝑙𝑡𝑠) 
 
From the experiments results, Wilcoxon test statistic is calculated. Then the test statistic is converted into a 
conditional probability called a P-value. A small P-value means that it is strong evidence to reject the null 
hypothesis H0 (i.e. there is no difference between two strategies' results) in favor the alternative hypothesis. 
Decision making is based on a probability threshold called Alpha (α) or significance level. 
 

Table 5: Wilcoxon signed rank test using SPSS for experiments results from table 2 
 

Categories  Pairs 

Ranks Asymp. 
Sig. (2-
tailed) 

Conclusion Negative 
Ranks 

Positive 
Ranks 

Ties Total 

Computational  
Strategies 

PICT- PairFS 1 7 0 8 0.029 Reject the null hypothesis 𝐻଴ 

TVG- PairFS 2 3 1 6 0.446 Retain the null hypothesis 𝐻଴ 
AETG- PairFS 5 0 1 6 0.020 Reject the null hypothesis 𝐻଴ 

mAETG- PairFS 4 1 1 6 0.088 Retain the null hypothesis 𝐻଴ 
TConfig- PairFS 1 7 0 8 0.045 Reject the null hypothesis 𝐻଴ 

CTE-XL- PairFS 0 8 0 8 0.006 Reject the null hypothesis 𝐻଴ 

AllPairs- PairFS 2 6 1 9 0.241 Retain the null hypothesis 𝐻଴ 
Jenny- PairFS 0 8 0 8 0.006 Reject the null hypothesis 𝐻଴ 

IPO- PairFS 1 3 2 6 0.072 Retain the null hypothesis 𝐻଴ 
IRPS- PairFS 5 1 2 8 0.071 Retain the null hypothesis 𝐻଴ 
IPOG- PairFS 3 6 0 9 0.055 Retain the null hypothesis 𝐻଴ 
G2Way- PairFS 2 6 0 8 0.144 Retain the null hypothesis 𝐻଴ 

Search-Based  
Strategies 

SA- PairFS 3 0 2 5 0.054 Retain the null hypothesis 𝐻଴ 
GA- PairFS 4 2 1 7 0.300 Retain the null hypothesis 𝐻଴ 
ACA- PairFS 0 0 7 7 0.500 Retain the null hypothesis 𝐻଴ 
PPSTG- PairFS 0 0 8 8 0.500 Retain the null hypothesis 𝐻଴ 
PHSS- PairFS 2 3 5 10 0.393 Retain the null hypothesis 𝐻଴ 

 
 

Table 6: Wilcoxon signed rank test using SPSS for experiments results from table 3 and 4 
 

Categories Pairs 

Ranks Asymp. 
Sig. (2-
tailed) 

Conclusion Negative 
Ranks 

Positive 
Ranks 

Ties Total 

Computational  and 
Search-Based 

Strategies 

TVG - PairFS 1 12 5 18 .003 Reject the null hypothesis 𝐻଴ 

CTE_XL - PairFS 1 15 2 18 .001 Reject the null hypothesis 𝐻଴ 

PICT - PairFS 2 12 4 18 .004 Reject the null hypothesis 𝐻଴ 

TConfig - PairFS 0 13 5 18 .001 Reject the null hypothesis 𝐻଴ 

Jenny - PairFS 0 15 3 18 .001 Reject the null hypothesis 𝐻଴ 

IPOG - PairFS 0 13 5 18 .001 Reject the null hypothesis 𝐻଴ 

PPSTG - PairFS 0 9 9 18 .003 Reject the null hypothesis 𝐻଴ 

PHSS - PairFS 0 4 14 18 .059 Retain the null hypothesis 𝐻଴ 

 
The statistics in Tables 5 and 6 gives the values of the Wilcoxon Signed Rank Test for PairFS compared with 
each strategy of our experiments. As the tables show, the Wilcoxon signed-rank test gives negative ranks (i.e. 
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number of cases that PairFS unable to outperform another strategy), and positive ranks (i.e. number of cases that 
PairFS is better than another strategy), along with ties, which is the total number of observations. The column 
labeled Asymp. Sig. (2-tailed) shows p-value probability; if p-value less than 0.005, as recommended in [38], 
there is no significant difference between the compared results.  
 
Referring to Table 5 (i.e. showing Wilcoxon signed-rank test using SPSS for experimental results of Table 2), 
the p-value show that there is no significant differences between the results obtained by PiarFS and, TVG, 
mAETG, AllPairs, Jenny, IPO, IRPS,IPOG, G2Way, SA, GA, ACA, PPSTG, and PHSS. Statistically significant 
improvement was seen only when compare PairFS with PICT, AETG TConfig, and CTE-XL. However, even 
though the statistical analysis shows no significant improvement in the test suite size in most of cases, ranks 
column can figure out the rank of the proposed strategy. Ranks column show that the positive ranks of PairFS 
are higher than negative ranks.  
 
Considering Table 5 I.e. the statistical analysis for the performance of PairFS for experiments results of Table 3 
and 4), the null hypothesis H଴ is rejected in most of cases with the exceptions when compared PairFS with 
PHSS, which proves that PairFS gives favourable results and better test suite size than other strategies in table 3 
and 4. 
 
After having considered above results, we can summarize that although PairFS proved its efficiency in 
generating better test suites sizes in most cases, there are no single strategy can overcome all other strategies and 
there are some positive and some negative capabilities for each strategy. Therefore, finding a general strategy 
for the construction of optimum pairwise test suite generation is difficult and still an open problem. Secondly, 
we observe that the computational strategies tend to outperform search-based strategies but search-based 
strategies are more effective in dealing with high configuration systems. 
 
 

8.0 THREATS TO VALIDITY 

 
In this study, empirical experiments face different threats to validity. Here, we identified a number of threats to 
validity that may our experiments suffer from. First, the code we have used may not be representative of other 
strategies’ code as we may have used language specific functions for our data structure implementation (e.g. 
array lists). Specifically, we have adopted the Java programming language on the Netbean platform. The way to 
address this threat would be to repeat the experiments using other code implementation and adopting more than 
one implementation platform. Second, the adopted benchmark is considered a set of toy example. For further 
evaluation and determining the strengths and weaknesses of PairFS, we need more experiments that are 
representative of real world case studies. Finally, all of non-deterministic strategies is often affected by chances. 
Therefore, iterations size may affect the findings of the strategy as higher iteration gives higher chance to get the 
optimum results. In such a case, taking an average values instead of the best values can be more representative 
of the performance of each strategy. In the absence of the average values, our work takes the best values for 
comparison.   
 

9.0  CONCLUSION AND FURTHER WORK 

 
Pairwise testing is an indispensable technique to reduce the size of test cases for saving time and effort. A 
number of pairwise strategies based on search algorithms have been proposed such as Hill Climbing, Simulated 
Annealing, Genetic algorithm, Ant Colony Algorithm, Particle Swarm Optimization, and Harmony Search. This 
paper proposes a new pairwise strategy based on Flower Pollination Algorithm (FPA), called Pairwise Flower 
Strategy (PairFS). Our results are encouraging. As far as the scope for future work, there are potentially two 
directions considering the effectiveness of SBSE for pairwise test generation. The first direction is to adopt 
hybrid search algorithm as an ensemble of two or more search-based algorithms. The second direction relates to 
the adoption of hyper-heuristic algorithms [39, 40] to choose a particular heuristic for execution adaptively 
during run-time.  
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