
Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

27

Malaysian Journal of Computer Science. Vol. 30(1), 2017

LEARNING RANKING FUNCTIONS FOR INFORMATION RETRIEVAL
USING LAYERED MULTI-POPULATION GENETIC PROGRAMMING

Jen-Yuan Yeh1, Jung-Yi Lin*2

1Dept. of Operation, Visitor Service, Collection and Information Management,

National Museum of Natural Science, Taichung 40453, Taiwan

Innovation Digital System Business Group,
2Hon Hai Precision Industry Company Ltd., Taipei City 11492, Taiwan

Email: jenyuan@mail.nmns.edu.tw1, jungyilin@gmail.com2

*2 Corresponding author. Tel.: +886 2 2799 611165220.

ABSTRACT

Ranking plays a key role in many applications, such as document retrieval, recommendation, question
answering, and machine translation. In practice, a ranking function (or model) is exploited to determine the
rank-order relations between objects, with respect to a particular criterion. In this paper, a layered multi-
population genetic programming based method, known as RankMGP, is proposed to learn ranking functions for
document retrieval by incorporating various types of retrieval models into a singular one with high effectiveness.
RankMGP represents a potential solution (i.e., a ranking function) as an individual in a population of genetic
programming and aims to directly optimize information retrieval evaluation measures in the evolution process.
Overall, RankMGP consists of a set of layers and a sequential workflow running through the layers. In one
layer, multiple populations evolve independently to generate a set of the best individuals. When the evolution
process is completed, a new training dataset is created using the best individuals and the input training set of
the layer. Then, the populations in the next layer evolve with the new training dataset. In the final layer, the best
individual is obtained as the output ranking function. The proposed method is evaluated using the LETOR
datasets and is found to be superior to classical information retrieval models, such as Okapi BM25. It is also
statistically competitive with the state-of-the-art methods, including Ranking SVM, ListNet, AdaRank and
RankBoost.

Keywords: learning to rank for information retrieval, ranking function, supervised learning, layered multi-
population genetic programming, LAGEP, LETOR

1.0 INTRODUCTION

One central problem of information retrieval (IR) is the issue of determining which documents are relevant to
the user’s information needs, and which are not (i.e., finding the potentially relevant documents) [3]. In practice,
it is usually addressed as a ranking problem, whose goal is, according to the degree of relevance (or similarity)
between each document and the user’s query, to define a total order of documents that ranks relevant documents
in higher positions on the retrieved list than irrelevant ones.

Traditional IR models, including the Boolean model, the vector space model, and the probabilistic model, are
developed based on the bag-of-words model. In short, a document is decomposed into keywords (i.e., index
terms) and a ranking function (or retrieval function) is defined to associate a relevance degree with the
document and query [3]. The aforementioned models are typically realized in an unsupervised manner and thus,
the parameters of underlying ranking functions are usually tuned empirically. However, manual tuning suffers
high costs and sometimes leads to over-fitting, especially when the functions are carefully tuned to fit particular
needs [30].

Nowadays, as increasingly many IR results are accompanied by relevance judgments (e.g., query and click-
through logs), supervised learning-based methods, referred to as “learning to rank (LTR)” methods, e.g.,
Pranking [13], Ranking SVM [23][26], ListNet [8], AdaRank [56], RankBoost [21] and RankNet [7], have been

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

28

Malaysian Journal of Computer Science. Vol. 30(1), 2017

devoted to automatically learning an effective ranking function from training data, for tuning parameters or for
incorporating distinct retrieval models into a singular one with high effectiveness.

Since the performance of IR systems is generally evaluated in terms of measures, such as Mean Average
Precision (MAP) [3] and Normalized Discounted Cumulative Gain (NDCG) [25], LTR methods are practically
designed to optimize loss functions loosely related to IR evaluation measures [57]. A straightforward way of
efficiently finding a solution by directly optimizing evaluation measures is to use genetic programming (GP).
This paper proposes a GP-based LTR method, known as RankMGP, to learn ranking functions for document
retrieval by incorporating various types of IR evidences, such as classical content features, structure features and
query-independent features. RankMGP represents a potential solution (i.e., a ranking function) as an individual
in a population of GP. Instead of using traditional GP that works with only a single population, RankMGP
utilizes multi-population GP and a layered architecture that has proven effective in [29] to arrange multiple
populations. Overall, RankMGP consists of a set of layers and a sequential workflow running through the
layers. In one layer, multiple populations evolve independently to generate a set of the best individuals. In each
generation of evolution, a novel fitness function, which is modelled as the weighted average of NDCG scores, is
exploited to measure the performance of each individual in each population. When the evolution process is
completed, a new training dataset is created using the best individuals and the input training set of the layer.
Then, populations in the next layer evolve with the new training dataset. In the final layer, the best individual is
obtained as the output ranking function.

The main contributions of this study are summarized as below:

1. The use of layered multi-population GP in the context of LTR is investigated, and a novel learning
method, known as RankMGP, is proposed. In addition, a new fitness function, which is modelled as the
weighted average of NDCG scores, is introduced;

2. RankMGP is evaluated in a case study using the LETOR datasets. The results show that RankMGP is
superior to classical IR models, such as Okapi BM25 [40] and LMIR [62]. It is also suggested that
RankMGP obtains statistically competitive results as compared to the state-of-the-art methods, including
Ranking SVM [23][26], ListNet [8], AdaRank [56] and RankBoost [21];

3. In-depth discussions are given from various perspectives behind the design and the effectiveness of
RankMGP, e.g., the pros and cons, and the learning behaviors over layers.

The rest of this paper is organized as follows. Section 1.1 elaborates the general paradigm of LTR for IR.
Section 2.0 provides a brief review of related works. Section 3.0 introduces the proposed learning method,
RankMGP. The experimental results and discussions are provided in Sections 4.0 and 5.0, respectively. Finally,
Section 6.0 concludes this paper and points out possible directions for further research.

1.1. The general paradigm of LTR for IR

Fig. 1. The general paradigm of LTR for IR [58].

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

29

Malaysian Journal of Computer Science. Vol. 30(1), 2017

Fig. 1 presents the general paradigm of LTR for IR. The learning process consists of two phases, namely,
training and test. First, the training phase is introduced. Given a query collection, Q = {q1, q2, …, q|Q|}, and a
document set, D = {d1, d2, …, d|D|}, a training instance is a query-document pair, i.e., (qi, dj)  Q  D, upon
which a relevance judgment indicating the relationship between qi and dj is assigned by a labeller. The relevance
judgment can be (1) a class label, e.g., relevant or non-relevant; (2) a rating, e.g., 3-star rating scaling from 0 to
2 for non-relevant, possibly relevant, and definitely relevant; (3) an order, e.g., k, meaning that dj is ranked at
the k-th position of the ordering of documents when qi is considered; and (4) a score, e.g., sim(qi, dj), specifying
the degree of relevance between qi and dj. For each instance (qi, dj), a feature extractor produces a vector of
features that describes the match between qi and dj. Such features can be classical IR models (e.g., term
frequency, inverse document frequency and Okapi BM25 [40]) or newly developed models (e.g., Feature
Propagation [37] and Topical PageRank [33]). The inputs to the learning algorithm comprise training instances,
their feature vectors and the corresponding relevance judgments. The output is a ranking function (or model) f,
where f(qi, dj) is supposed to give the “true” relevance judgment for qi and dj. The learning algorithm attempts to
learn a ranking function, such that a performance measure (e.g., classification accuracy, error rate, and MAP)
with respect to the output relevance judgments can be optimized. In the test phase, the learned ranking function
is applied to judge the relevance between each document di in D and a new query q.

2.0 RELATED WORKS

The previous works are grouped into three categories [30]: (1) the point-wise approach; (2) the pair-wise
approach; and (3) the list-wise approach.1 In the point-wise approach, each training instance is associated with a
class or a rating. The learning process finds a model that maps instances into rates or classes close to their true
values. The point-wise approach can be further divided into three sub-categories, namely, regression-based (e.g.,
[12]), classification-based (e.g., [32] and McRank [28]), and ordinal regression-based (e.g., [43] and Pranking
[13]). A typical example is Pranking [13], which trains a perceptron model to directly maintain a totally-ordered
set via projects. Another one is McRank [28], which defines a 5-star rating scaling from 0 to 4, where 0
corresponds to “poor” relevance and 4 corresponds to “perfect” relevance. It casts the ranking problem as
multiple classifications in accordance with an observation that perfect classifications lead to perfect DCG
(Discounted Cumulative Gain) [25] scores. The classification model is learned via gradient boosting.

The pair-wise approach takes pairs of objects and their relative preferences as training instances and learns to
classify each object pair as correctly-ranked or incorrectly-ranked. Indeed, most existing methods are pair-wise
approaches, e.g., Ranking SVM [23][26], RankBoost [21] and RankNet [7]. Ranking SVM [23][26] employs
Support Vector Machines (SVM) to classify object pairs in consideration of large margin rank boundaries. Both
RankBoost [21] and QBrank [63] conduct boosting to find a combined ranking, which minimizes the number of
mis-ordered pairs of objects. RankNet [7] defines cross entropy as a probabilistic cost function on object pairs
and uses a neural network model to optimize the cost function. LambdaRank [6] also employs neural network
but uses gradient based on NDCG smoothed by the RankNet loss (see LambdaMART [5], the boosted tree
version of LambdaRank). FRank [48] adopts Fidelity to measure loss of ranking and uses a generalized additive
model to minimize the Fidelity loss. Semi-RankSVM [35] extends Ranking SVM by a graph-based regularized
algorithm to learn the ranking function that minimizes the least squares ranking loss.

Finally, the list-wise approach uses a list of ranked objects as training instances and learns to predict the list of
objects. There are two sub-categories which are, respectively, based on the direct optimization of IR evaluation

measures (e.g., SoftRank [46], AdaRank [56], and 
mapSVM [61]) and the minimization of list-wise ranking

losses (e.g., ListNet [8], and ListMLE [54]). Examples are briefed as follows. ListNet [8] introduces a
probabilistic-based list-wise loss function for learning. Neural network and gradient descent are adopted to train
a list prediction model. In ListMLE [54], the likelihood loss is used as the surrogate for IR evaluation measures.
It is worth noting that RankMGP belongs to the family of list-wise approaches since it directly predicts the
ranking permutation.

1 Please refer to [30] which gives a formal definition of the problem and provides a comprehensive survey of the
literature.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

30

Malaysian Journal of Computer Science. Vol. 30(1), 2017

More examples are described as follows: [32] treats IR as a binary classification of relevance and explores the
applicability of discriminative classifiers to solve the problem. [26] takes pairs of documents and their relative
preferences derived from click-through data as training instances and applies Ranking SVM for learning better
retrieval functions. [9] modifies the “Hinge Loss” function in Ranking SVM to consider two essential factors for
IR: (1) to have high accuracy on the top-ranked documents, and (2) to avoid training a biased model towards
queries with many relevant documents. [55] uses SVM and Ranking SVM to address definition search, where
the retrieved definitional excerpts of a term are ranked according to their likelihood of being good definitions.
[59] extends the well-studied SVM selecting sampling technique in classification for LTR. [31] proposes a
multiple nested ranker approach to re-rank the top scoring documents of the result list, in which RankNet is

applied to learn a new ranking at each iteration. 
mapSVM [61] is a SVM-based learning algorithm that

efficiently finds a globally optimal solution to a straightforward relaxation of MAP. RankCosine [38] uses
cosine similarity between the ranking list and the ground truth as a query-level loss function. AdaRank [56], a
novel learning algorithm within the framework of boosting, repeatedly constructs “weak rankers” and finally
linearly combines the weak rankers for making ranking predictions. RV-SVM [60] develops a 1-norm Ranking
SVM, which is based on 1-norm objective function, for faster training using much less support vectors than the
standard Ranking SVM.

On the other hand, other research directions, which are receiving increasing attention in recent years, include
[10]: online learning to rank for quickly learning the best re-ranking of the top position of the original ranked
list based on real-time user click feedback [11][42]; large-scale learning to rank which leverages both the
learning theory and computational theory for ranking when facing large-scale training data [39][45][50];
learning to rank for diversity aims to optimize not only for relevancy, but also for diversity (i.e., for minimum
redundancy) by taking into account document similarity and ranking context [41][44]; and robust learning to
rank optimizes the tradeoffs between model effectiveness and robustness for real-world retrieval scenarios [49].

2.1. Evolutionary learning techniques based methods

Owing to the freedom that evolutionary learning techniques offer in the definition of the problem and
representation of possible solutions [27], numerous attempts have been made at applying such techniques, in
particular GP, for discovering IR ranking functions by the direct optimization of non-convex objective functions
of IR evaluation measures. Prior studies concentrate on automatically generating term-weighting schemes. For
instance, [34] employs GP to perform a search for new tf-idf like schemes. [18] presents a GP-based learning
framework to automate the design of ranking functions (see also [17][19]). [47] exploits GP to develop new
general purpose ranking functions based on primitive atomic features. Four baseline ranking functions, namely,
inner product, cosine measure, probability measure and Okapi BM25 [40] are added in the initial population to
guarantee the worst performance of an individual is as good as the baselines. [14] uses GP to evolve term-
weighting schemes in an adhoc IR model. The evolution of the entire term-weighting scheme is divided into
three phases to learn a global scheme, a term-frequency scheme and a normalization scheme. [2] introduces a
combined component approach to train collection-adapted ranking functions in which atomic term weighting
components are combined using GP.

Instead of taking into account primitive atomic IR features, later studies learn ranking functions by
incorporating distinct retrieval models into a singular one with high effectiveness. RankGP [58] is one of the
first GP-based methods that evolves ranking functions with various types of IR models, including content
features, structure features and query-independent features. It adopts single-population GP to directly optimize
MAP for a linear ranking function. AdaGP-Rank [53] uses RankGP to develop linear ranking functions as weak
rankers, while the boosting procedure in AdaRank is applied to assist the evolved ranking functions concentrate
on the most ‘hard’ queries. RankGPES [24] enhances RankGP with evolution strategies to optimize parameters
by different selection schemes. Besides GP, the uses of other evolutionary learning techniques have been
explored. [51] presents RankIP, a ranking function discovery method using immune programming for its high
diversity. RankDE [4] is the first LTR method that uses differential evolution. It directly optimizes MAP
without requiring any convex approximations. [15] proposes Swarm-Rank, the first LTR method that applies
particle swarm optimization. The method learns ranking functions by optimizing the combination of various
ranking models where MAP is directly maximized. RankPSO [1] also uses particle swarm optimization to
construct ranking functions by directly optimizing IR evaluation measures. CCRank [52], the first parallel
framework for LTR, aims to significantly improve the learning efficiency while maintaining accuracy. CCRank

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

31

Malaysian Journal of Computer Science. Vol. 30(1), 2017

is developed with cooperative coevolution, a divide-and-conquer framework that has demonstrated high promise
in function optimization with large search space and complex structures.

2.2. Comparison between evolutionary learning techniques based related works and this work

Pioneer evolutionary-based studies devote to automate the generation of term-weighting schemes by combining
primitive atomic evidences of terms, documents and queries. In contrast, RankMGP learns ranking functions by
incorporating the state-of-the-art IR retrieval models.

Indeed, RankMGP is essentially an extension of RankGP [58]. While RankGP outputs linear functions using
traditional single-population GP with MAP being the fitness, RankMGP targets non-linear functions with
complex operators using layered multi-population GP and introduces a new fitness function modelled as the
weighted average of NDCG scores. Similar to RankGP [58], RankIP [51], RankDE [4], Swarm-Rank [15] and
CCRank [52], RankMGP also belongs to the family of evolutionary-based LTR methods. However, this work is
quite distinct from the others due to the underlying learning algorithm, the design of fitness function and the
target function type. Table 1 presents the differences between RankMGP and other evolutionary-based LTR
methods.

Table 1. Comparisons between RankMGP and other evolutionary-based LTR methods.
Method Learning techniques Fitness Function Type
RankMGP
(this work)

layered multi-population GP the weighted average of NDCG
scores

non-linear

RankGP [58] single-population GP MAP linear
AdaGP-Rank [53] single-population GP within a

boosting procedure
MAP linear

RankGPES [24] single-population GP with
evolution strategies

MAP; NDCG linear

RankIP [51] immune programming MAP; NDCG non-linear
RankDE [4] differential evolution MAP linear
Swarm-Rank [15] particle swarm optimization MAP linear
RankPSO [1] particle swarm optimization the summation of differences of IR

evaluation measures between the
ground truth ranking and the output
ranking

linear

CCRank [52] a parallel evolution framework
based on cooperative coevolution

MAP; NDCG non-linear

3.0 THE PROPOSED GP-BASED LEARNING METHOD

RankMGP is developed with LAGEP (Layered Architecture GEnetic Programming) [29]. LAGEP discovers
discriminant functions for binary classification using layered multi-population GP. It has proven effective in
real-world medical problems and is capable of generating highly accurate discriminant functions efficiently. In
contrast, the ranking problem that we address in this work is not a classification problem. A classification
problem considers the correct class that an object belongs to. However, a ranking problem is concerned about
the ordering relations between objects given a particular criterion. In the context of IR, this is document
classification versus document ranking regarding a given query. To utilize LAGEP for RankMGP, the following
steps are proposed: (1) viewing the output function as a ranking function that assesses the relationship between a
document and a query, where a high value implies the document is at a top position in the document list; and (2)
introducing IR evaluation measures as fitness functions to be directly optimized.

3.1. The training set and query-level feature normalization

Given a query collection, Q = {q1, q2, …, q|Q|}; a document set, D = {d1, d2, …, d|D|}; a feature set, F = {f1, f2,

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

32

Malaysian Journal of Computer Science. Vol. 30(1), 2017

…, f|F|}; and a relevance judgment set, Y = {definitely relevant, possibly relevant, not relevant},2 the training set,
T, is formulated as a set of triples:

T = { (qi, dj), (f1(qi, dj), …, f|F|(qi, dj)), yij) }, (1)

where (qi, dj)  Q  D, yij  Y and (f1(qi, dj), …, f|F|(qi, dj)) is a |F|-dimensional feature vector in which fk(qi, dj)
stands for the feature value for qi and dj in terms of fk.

Consider that, for different queries, the absolute values of a feature might not be comparable owing to the
different ranges of values. For fair comparisons, a query-level feature normalization needs to be conducted to
map feature values into a common range of [0, 1]. For a query qi, the normalized value of fk(qi, dj) is calculated
via min-max normalization, as shown in Eq. (2):3

)} ,(min{)} ,(max{

)} ,(min{) ,(
) ,(

liklik

likjik
jik dqfdqf

dqfdqf
dqf




 ,

(2)

where max{fk(qi, dl)} and min{fk(qi, dl)} are the maximum and the minimum values of fk(qi, dl), respectively, for
all dl  D.

3.2. The proposed learning method: RankMGP

Fig. 2 presents the layered multi-population GP architecture of RankMGP. RankMGP consists of a set of layers
and a sequential workflow running through the layers. In one layer, multiple populations evolve independently
to generate a set of the best individuals. When the evolution process is completed, a new training dataset is
created using the best individuals and the input training set of the layer. Then, populations in the next layer
evolve with the new training dataset. In the final layer, the best individual is obtained as the output ranking
function.

Eq. (3) provides the general encapsulation of RankMGP:

RankMGP = { Li | i = 1, 2, …,  }, (3)

where  is the number of layers. A layer in RankMGP is composed of a training set, a variable set and a set of
populations, as formulated in Eq. (4):

Li = (Ti, i
vS , (P1, P2, …, Pl(i))), (4)

where Pi implies a population, l(i) is the total number of populations in Li, i
vS denotes the variables used to

construct a functional expression and Ti represents the training set inputted to populations. Note that Li is a
multi-population GP model, in which several populations evolve concurrently, each to discover an optimal
solution. Two multi-population GP models have proven successful, namely, parallel and distributed GP
(PADGP) [36] and isolated multi-population GP (IMGP) [20]. For simplicity, the IMGP scheme is employed. In
such a way, each population evolves independently and no individual migrates from one population to another.

The individual with the best fitness subsists in each population as the evolution finishes. Denoting {i1, i2, …,
il(i)} as the set of the best individuals collected from the populations, a new training set, Ti+1, and a new

variable set, 1i
vS , are defined as follows:

Ti+1 = { t(i+1)j | t(i+1)j = (i1(tij), i2(tij), …, il(i)(tij)), tij  Ti } and (5)

1i
vS = { v(i+1)1, v(i+1)2, …, v(i+1)l(i) }, (6)

where tij indicates an instance in Ti and v(i+1)j is a new variable referenced to il. Obviously, an attribute of

2 The labelling scheme in this paper is a 3-star rating, scaling from 0 to 2 for non-relevant, possibly relevant and
definitely relevant.

3 The same normalization process is also conducted on the test dataset.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

33

Malaysian Journal of Computer Science. Vol. 30(1), 2017

instance t(i+1)j of Ti+1 is created by instance tij of Ti with a corresponding individual belonging to {i1, i2, …,
il(i)} obtained in the previous layer Li. It is said that an era ends while Ti+1 is produced. The layer Li+1 then
begins the evolution process with Ti+1.

Fig. 2. The layered multi-population GP architecture of RankMGP.

In the implementation, T1 and 1
vS are initialized as T and the feature set, F, in Eq. (1), respectively. The final

layer contains a population only. The reason for such a setting is obvious: RankMGP aims to produce a single
value for each document. Having multiple outputs will require a voting mechanism to decide which one is the
final judgment, hence making things more complicated. Another thing worth pointing out is that RankMGP
passes query-document pairs and their relevance judgments from the initial layer L1 to the next layer L2, from
the layer L2 to L3, and so forth. In this way, the effectiveness of one individual can be evaluated by comparing
the predicted relevance judgments and the given judgments.

The proposed RankMGP method is summarized in Fig. 3.

Learning Procedure

Input 1: the feature set, F; the training dataset, T; the validation dataset, V;
Input 2: RankMGP-related parameters
Output: a ranking function, f, which is supposed to bind a query and a document with a real number,

based on which a ranking of documents can be constructed

Step 1:

Set T1 = T and 1
vS = F.

Step 2:
for i = 1 to 

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

34

Malaysian Journal of Computer Science. Vol. 30(1), 2017

 Set i = Ø.
 for j = 1 to l(i)

(1) Randomly initialize a set of individuals as the initial population for Pj.
(2) Pj evolves with Ti for a number of generations and collects the best individuals in all

generations as candidate solutions.
(3) Use Ti and V to select the winning individual ij from the candidates obtained in Step (2)

and put it into i.
 end for

 Use i to generate a new training set, Ti+1, and a new variable set, 1i
vS , for the next layer, as

defined in Eq. (5) and Eq. (6).
end for

Step 3:
Output the best and only individual 1 in  as f.

Test Procedure

Input: the test dataset, T’; the ranking function, f;
Output: evaluation reports

Step 1: Input T’ into f and obtain a set of document rankings for queries.
Step 2: Generate evaluation reports in accordance with performance measures, such as MAP and

MeanNDCG (as defined in Section 4.2).

Fig. 3. The learning and test procedures of RankMGP.

3.2.1. The design of a single population

In GP, a population is composed of a set of individuals; each is a possible solution for the given problem [27].
In this paper, an individual is viewed as a potential ranking function to bind a query and a document with a real
number,4 according to which a ranking of documents can be reasoned with respect to a given query.

An individual, I, is defined as a functional expression with three components: Sv (variables), Sc (constants), and
Sop (operators); see Eq. (7):

I = (Sv, Sc, Sop), where

Sv = {v1, v2, …, v|v| | |v| is the number of dimensions of the feature vector that
represents a training instance},

Sop = {+, –, , /, sin, cos, log},

Sc = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,  , e},

(7)

where Sv is a set of symbolic notations, referring to the dimensions of the vector representation of a training
instance; Sc is a set of predefined real numbers, ranging from 0 to 1; and Sop is a set of arithmetic operators.
Notably, the operator / in Sop is a protected division, meaning that when the denominator equals zero, the
division gets 1. Though the computational costs increase, a logarithm operator and two trigonometric functions
are included in Sop for generating complex non-linear functions. Two constants  and e are also added in Sc,
particularly for operators {sin, cos, log}.

Consider that operators {+, −, , /} and {sin, cos, log} in Sop perform, binary and unary operations, respectively.
A broadly adopted way to formulate I is to represent it as a binary tree structure, in which an internal node

4 Ideally, the numerical value can be seen as the degree of relevance (or similarity) between a document and a
query.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

35

Malaysian Journal of Computer Science. Vol. 30(1), 2017

indicates a unary or binary operator while a leaf is a variable or a constant. The maximum number of available
nodes of an individual is determined by the depth of the tree. For example, Fig. 4 the tree structure for the
expression cos(-f1) / (f2 + 0.5  f3).

Fig. 4. The tree structure for the expression cos(-f1) / (f2 + 0.5  f3).

The fitness function is utilized to evaluate the fitness of an individual, i.e., how good an individual is for the
given task. Since this study focuses on the ranking problem of IR, measures such as Precision at Position n
(P@n) [3], MAP [3] and NDCG at Position n (NDCG@n) [25] are the candidates. This is due to the fact that an
individual implies a ranking function that measures the relationship between a query and a document, based on
which an ordering of documents can be established. Hence, IR evaluation measures can be calculated. For a
training set Ti and an individual I, the fitness function FFunc is provided by:

 FFunc(I, Ti) = n
n

n
@NDCG

)1(
1


 






,
(8)

where  is a constant and NDCG@n is the average NDCG@n over all queries. NDCG takes into account the
fact that the greater the ranked position of a relevant document, the less valuable it is since it is less likely to be
examined by the user [25]. From this perspective, the practical design of FFunc is in essence the weighted
average of NDCG@n, where NDCG@1 gets the highest weight, NDCG@2 gets the second highest weight, and
so forth. Please refer to Section 4.2 for details about NDCG.

For a population, P = {I1, I2, …, I|P|}, the individual with the best fitness can be obtained by an evolution process
of P that iterates through generations. The population in the initial generation is produced by the ramped half-
and-half method [27]. Individuals are generated by a random process, but it is ensured that half of the
individuals must have and the others might not have all branches of the maximum tree depth. In each generation,
the evolution process simulates a natural selection mechanism by performing genetic operations, including
crossover, mutation and reproduction, to produce a new population for the next generation. Theoretically, the
choice of the operations depends on a predefined probability over these operations. In this paper, however, an
elitism strategy is further taken into account. For the reproduction, a number of the best individuals in the
current generation pass through to the next generation. This is to imitate the principal of natural selection, that
is, survival of the fittest (i.e., the elite). In the implementation, only the fittest individual is passed to the next
generation in order to retain the most diversity of the new population. The remaining individuals are produced
via crossover and mutation, and the deterministic tournament selection [27] is exploited to bias the fitness. The
method first randomly selects a few individuals from the previous generation and returns one individual (for
mutation) or two individuals (for crossover) that have the best fitness values. For crossover, two new individuals
are produced by swapping randomly chosen sub-trees of the selected individuals. For mutation, a mutant is
created by randomly picking up an internal node of the selected individual (say, the mutation point) and
replacing its whole sub-tree with a randomly generated tree. The mutation benefits the evolution process
because a new structure, implying a new solution, is a great help to escape from the so-called “local optimum”.
Note that, in cases of crossover and mutation, only those offspring or mutants with better fitness values than the
parents are included in the new population.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

36

Malaysian Journal of Computer Science. Vol. 30(1), 2017

Traditional GP outputs the best individual in the final generation as the solution [27]. This study, instead,
collects the best individuals in all generations as the candidate solutions. To select the best solution as the final
output, Eq. (9) defines a score which leverages the fitness values on the training and validation sets:

 score(I, Ti) =   FFunc(I, Ti) +   FFunc(I, Vi), (9)

where  and  are constants and  +  = 1.0 holds; FFunc(I, Ti) and FFunc(I, Vi)5 represent the fitness values
on the training set Ti and the validation set Vi, respectively. Typically, the validation set helps to avoid over-
fitting, where the evolution process excessively learns to adapt to the training set. This study adopts a simple
principle that a good individual should have good fitness values both on the training and validation sets [22], so
as to examine the generalization of an individual.

3.2.2. The implementation

RankMGP has been implemented using the LAGEP toolkit. 6 The toolkit implements the layered multi-
population GP, proposed in [29], for classification problems. The output can be a linear or a non-linear function,
depending on the operators used to produce the functional expression of an individual. The function works as a
binary classifier, which recognizes positive instances if and only if their function values are greater than or equal
to a predefined threshold and otherwise repels negative instances. The default fitness function reports the
accuracy of the classification.

The changes that this study makes to LAGEP are (1) letting LAGEP produce a real number as the relevance
judgment for each query-document pair; (2) plugging in the new fitness function, as defined in Eq. (8); and (3)
implementing the selection rule, as indicated in Eq. (9), for choosing the best individual from the candidate
solutions. The layered structure and multi-population GP in LAGEP are employed in RankMGP. In addition, an
adaptive mutation rate tuning method (AMRT), coming with LAGEP, is adopted since it has been shown
effective in classification problems. AMRT dynamically changes the mutation rate during the learning process
(see [29]). In each generation, AMRT increases the mutation rate for the next generation if all individuals in the
current generation have similar fitness values; otherwise, the mutation rate is set as the initial one. AMRT
ensures that the mutation rate achieves a maximum of 0.5 in the last generation.

4.0 EXPERIMENTS

4.1. The LETOR benchmark datasets

The LETOR 4.0 benchmark datasets7 are used to conduct the experiments. The datasets are created as query-
document pairs, each containing a 46-dimensional feature vector and its corresponding relevance judgment. The
5-fold partitions are provided for cross-validation. In each fold, three subsets are for learning, one subset for
validation, and the other one for testing. RankMGP is tested on the MQ2008 dataset, following the settings for
supervised ranking defined in LETOR. There are in total 15,211 instances. In each fold, an average of 9,127
instances in the training set, an average of 3,042 instances in the validation set and an average of 3,042 instances
in the testing set. The features cover most of the standard IR features, such as low-level content features (e.g.,
term frequency, inverse document frequency and document length), high-level content features (e.g., Okapi
BM25 [40] and LMIR [62] with different smoothing methods), and others, such as the in-link number of a
webpage and the length of the URL. The relevance judgments are quantified on three levels, namely, 2 for
definitely relevant, 1 for possibly relevant and 0 for not relevant. Table 2 provides an illustration of the sample
data, in which each row indicates a query-document pair.

Table 2. Sample data excerpted from the MQ2008 dataset.
label query_id f1 f2 … f46 doc_id
2 10032 0.056537 0.000000 … 0.076923 GX029-35-5894638

5 Since an individual is a function formed with the original variable set, no additional effort is required for the
validation before calculating the fitness of it.

6 http://people.cs.nctu.edu.tw/~jylin/lagep/lagep.html.
7 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

37

Malaysian Journal of Computer Science. Vol. 30(1), 2017

0 10032 0.279152 0.000000 … 1.000000 GX030-77-6315042
0 10032 0.130742 0.000000 … 1.000000 GX140-98-13566007
1 10032 0.593640 1.000000 … 0.000000 GX256-43-0740276

4.2. Evaluation measures

The standard P@n, NDCG@n, and MAP measures are exploited in the evaluation.

(1) Precision at Position n (P@n) [3]

For a given query, the precision of the top n results of the ranking list is defined as:

P@n =
n

n results topin documentsrelevant of #
.

(10)

Note that, when computing P@n, a document with the relevance judgment of either definitely or possibly
relevant is regarded as a document relevant to the given query. The mean P@n is reported by averaging the
P@n values of all the queries.

(2) Mean Average Precision (MAP) [3]

For a query, the average precision, AP, is computed as shown in Eq. (11), where N is the number of retrieved
documents and rel(n) is either 1 or 0, indicating whether the n-th document is relevant to the query or not. The
MAP is obtained as the mean average precision over a set of queries.

AP =
query for this documentsrelevant of #

)(@
1n 


N

nrelnP
.

(11)

(3) Normalized Discounted Cumulative Gain (NDCG) [25]

For a query, the NDCG of its ranking list at position n is calculated by:

NDCG@n =  












n

j
jr

jr

n
j

j

j

Z
1

)(

)(

1 ,
)log(

12

1 ,12

,

(12)

where r(j) is the rating of the j-th document in the list, and the normalization constant Zm is set so that the perfect
list receives an NDCG of 1. The r(j) is set to the relevance judgment, i.e., configured to 2 when the j-th
document is definitely relevant to the query, configured to 1 when the j-th document is possibly relevant to the
query, and finally configured to 0 when the j-th document is irrelevant to the query. The NDCG@n is computed
as the average of the NDCG@n values of all the queries.

For comparison, this paper reports results for {NDCG@1, NDCG@2, …, NDCG@10}, {P@1, P@2, …,
P@10}, MAP and MeanNDCG.8

4.3. Baseline ranking algorithms

Several baseline ranking algorithms, namely, RankSVM-Struct (an efficient version of Ranking SVM [23][26]),
ListNet [8], AdaRank [56] (i.e., in two versions, AdaRank-NDCG and AdaRank-MAP) and RankBoost [21], are
tested for comparison studies. All baselines choose linear ranking functions except RankBoost which adopts
non-linear ranking functions. Query-level feature normalization (see Section 3.1) is also conducted. The same
settings mentioned in the original papers are used, and all the algorithms utilize MAP on the validation set for

8 The MeanNDCG is reported as the mean average NDCG over a set of queries, where for a query the average
NDCG is computed by averaging NDCG@n for all n.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

38

Malaysian Journal of Computer Science. Vol. 30(1), 2017

model selection.

In addition, the evaluation results of single features, including Okapi BM25 of the whole document (ID: 25),
LMIR.ABS of the whole document (ID: 30), LMIR.DIR of the whole document (ID: 35) and LMIR.JM of the
whole document (ID: 40), are provided.

4.4. Experimental settings

Table 3. Parameter settings of RankMGP.
Parameter Setting
Function type Non-linear function
 3
l(1), i.e., # of populations in L1 10
l(2), i.e., # of populations in L2 10
l(3), i.e., # of populations in L3 1
Population size 600 for each population in L1 and L2; 1000 for the population in L3
Generations 200 for all populations
Tree depth 10 (a total of 1023 nodes in a full tree)
Constants 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, , e
Operators +, , , /, sin, cos, log
Tournament size 5 for L1 and L2; 7 for L3
Crossover rate 0.9
Mutation rate 0.1 (Starts with 0.1 and is dynamically changed by ARMT [29]

during the evolution to a maximum of 0.5 in the last generation)
Reproduction Only the fittest individual in the generation gets through to the next

generation unmodified
 10 (i.e., only NDCG@1, …, NDCG@10 are considered)
 0.5
 0.5

Table 3 lists all the parameter settings of RankMGP. Most of the parameters are set empirically based on
preliminary experiments on a small randomly built held-out dataset. RankMGP targets the non-linear ranking
function since operators {/, sin, cos, log} are employed (see Section 3.2.1). The number of generations,
tournament size, crossover rate, mutation rate and reproduction are configured according to [29] and [58]. The
tree depth is set to at least cover the case that leaf nodes contain 46 distinct variables and 46 distinct constants.
In other words, a full binary tree with a depth of 10 has 512 leaf nodes, which is enough to include 92 nodes
(i.e., 46 + 46 = 92).

In the experiments, RankMGP is performed five times. In each run, 5-fold cross-validation is conducted and an
average score is obtained. The reported score of RankMGP is the average of those in the five runs. This is to
reduce the effects in which the initialization of the first population by a random process might accordingly affect
the final results [19].

4.5. Results

Three types of evaluation results of RankMGP are presented: (1) RankMGP (Avg), as mentioned in Section 4.4,
is the average score of five runs of 5-fold cross-validation; (2) RankMGP (Max-MAP) is the average score of
the best score, regarding MAP, of each fold in five runs; and (3) RankMGP (Max-NDCG) is the average score
of the best score, regarding MeanNDCG, of each fold in five runs. Note that RankMGP (Max-MAP) and
RankMGP (Max-NDCG) are both considered to be the upper bounds of performance.

Table 4 provides the performance of RankMGP in terms of MAP and MeanNDCG, where the 95% confidence
intervals for RankMGP are given in brackets. Taking into consideration MAP, RankMGP (Avg) outperforms
RankSVM-Struct with an improvement of 1.04% only. When MeanNDCG is considered, it outdoes RankSVM-
Struct and RankBoost with improvements of 0.55% and 0.19%, respectively. Overall, AdaRank-NDCG has the
best performance in both MAP and MeanNDCG. RankMGP (Max-MAP) has the second best performance in
MAP, with a slight difference of -0.19% as compared to AdaRank-NDCG. Meanwhile, RankMGP (Max-

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

39

Malaysian Journal of Computer Science. Vol. 30(1), 2017

NDCG) has the second best performance in MeanNDCG, with a difference of -0.63% as compared to AdaRank-
NDCG.

Table 4. Ranking performance of MAP and MeanNDCG.
Algorithm MAP MeanNDCG
BM25 0.3588 0.3595
LMIR.ABS 0.3497 0.3484
LMIR.DIR 0.3137 0.3082
LMIR.JM 0.4469 0.4529

RankSVM-Struct 0.4696 0.4832
ListNet 0.4775 0.4914
AdaRank-NDCG 0.4824 0.4950
AdaRank-MAP 0.4764 0.4915
RankBoost 0.4775 0.4850

RankMGP (Avg) 0.4745 [± 0.0028] 0.4859 [± 0.0024]
RankMGP (Max-MAP) 0.4815 [± 0.0444] 0.4893 [± 0.0460]
RankMGP (Max-MeanNDCG) 0.4771 [± 0.0444] 0.4919 [± 0.0455]

Table 5 and Table 6 present the relative performance of MAP and MeanNDCG, respectively, of RankMGP and
other ranking methods. A widely used test in machine learning, namely the k-fold cross-validated paired t-test
[16], is exploited for comparing different algorithms. Given a ranking method in a column, a (+) sign is included
when RankMGP is statistically better than the method. On the other hand, a (−) sign is included when
RankMGP is statistically inferior to the method and a (=) sign is included when RankMGP is statistically equal
to the method. The values x/y/z stand for the number of wins, ties and losses. For instance, RankMGP (Avg) is
statistically equal to RankSVM-Struct in Table 5, although the relative improvement of RankMGP (Avg) over
RankSVM-Struct is 1.03%. 3/1/1 implies that RankMGP (Avg) outperforms RankSVM-Struct three times,
RankMGP (Avg) and RankSVM-Struct tie one time while RankMGP (Avg) loses to RankSVM-Struct one time.

In Table 5, RankMGP is found to be significantly superior to all single features. It is also observed that the
performance of MAP of RankMGP is statistically equal to the performance of other baselines, except that
RankMGP (Avg) is statistically inferior to AdaRank-NDCG with a difference of -1.65% and RankMGP (Max-
MAP) statistically outperforms RankSVM-Struct with an improvement of 2.54%. In Table 6, it is again shown
that no single feature is statistically better than RankMGP. In most comparisons, a similar behavior can be seen,
where the performance of MeanNDCG of RankMGP is statistically equal to the performance of other baselines.
However, RankMGP (Avg) is statistically inferior to ListNet and AdaRank-NDCG with differences of -1.12%
and -1.84%, respectively; the performance of RankMGP (Max-MAP) is statistically worse than that of
AdaRank-NDCG with a difference of -1.16%. Overall, Table 5 and Table 6 illustrate that the proposed
RankMGP performs well with statistically competitive results, as compared to other baselines.

Table 5. Relative performance of MAP among different ranking algorithms.
 RankMGP (Avg) RankMGP (Max-MAP) RankMGP (Max-MeanNDCG)
BM25 32.24% (+, 5/0/0) 34.21% (+, 5/0/0) 32.98% (+, 5/0/0)
LMIR.ABS 35.68% (+, 5/0/0) 37.70% (+, 5/0/0) 36.44% (+, 5/0/0)
LMIR.DIR 51.25% (+, 5/0/0) 53.5% (+, 5/0/0) 52.1% (+, 5/0/0)
LMIR.JM 6.17% (+, 5/0/0) 7.75% (+, 5/0/0) 6.77% (+, 5/0/0)
RankSVM-Struct 1.03% (=, 3/1/1) 2.54% (+, 4/0/1) 1.61% (=, 3/0/2)
ListNet -0.64% (=, 0/0/5) 0.85% (=, 3/1/1) -0.08% (=, 1/0/4)
AdaRank-NDCG -1.65% (, 0/0/5) -0.18% (=, 1/0/4) -1.09% (=, 0/0/5)
AdaRank-MAP -0.41% (=, 2/0/3) 1.08% (=, 4/0/1) 0.16% (=, 2/0/3)
RankBoost -0.64% (=, 2/0/3) 0.85% (=, 3/0/2) -0.08% (=, 3/0/2)

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

40

Malaysian Journal of Computer Science. Vol. 30(1), 2017

Table 6. Relative Performance of NDCG among different ranking algorithms.
 RankMGP (Avg) RankMGP (Max-MAP) RankMGP (Max-MeanNDCG)
BM25 35.15% (+, 5/0/0) 36.10% (+, 5/0/0) 36.82% (+, 5/0/0)
LMIR.ABS 39.46% (+, 5/0/0) 40.44% (+, 5/0/0) 41.18% (+, 5/0/0)
LMIR.DIR 57.65% (+, 5/0/0) 58.75% (+, 5/0/0) 59.59% (+, 5/0/0)
LMIR.JM 7.28% (+, 5/0/0) 8.03% (+, 5/0/0) 8.6% (+, 5/0/0)
RankSVM-Struct 0.55% (=, 3/0/2) 1.26% (=, 4/0/1) 1.79% (=, 4/0/1)
ListNet -1.12% (, 0/0/5) -0.43% (=, 2/0/3) 0.09% (=, 2/0/3)
AdaRank-NDCG -1.84% (, 0/0/5) -1.16% (, 0/0/5) -0.63% (=, 1/0/4)
AdaRank-MAP -1.14% (=, 2/0/3) -0.45% (=, 2/0/3) 0.07% (=, 2/0/3)
RankBoost 0.18% (=, 2/0/3) 0.88% (=, 2/0/3) 1.41% (=, 4/0/1)

5.0 DISCUSSIONS

5.1. From classification to ranking

In Section 3.1, each query-document pair is labelled with a 3-star rating of relevance, namely, non-relevant,
possibly relevant and definitely relevant. To address the ranking problem, the simplest way is to treat it as a
classification problem. In other words, to learn a multi-class classification model such that each document is
classified to one rating, and then to rank documents according to their class labels. This can be done as perfect
classifications leads to perfect IR performance. However, there are two major shortcomings of classification-
oriented methods [28]: (1) the classification result is not always perfect; and (2) documents with the same labels
are arbitrarily ranked, which might lead to highly unstable ranking results.

Instead of following the classification paradigm, this paper assumes that there is a function that gives a score for
each document while a particular query is considered. In accordance with the scores, all documents are sorted in
order and IR evaluation measures can be calculated based on the known rating of relevance for each query-
document pair. So far, the only issue is to find such a function. Fortunately, GP naturally provides an
evolutionary computation scheme that is able to efficiently find a solution in a functional expression by directly
optimizing IR evaluation measures, which can be transformed as the fitness function to score the ability of a
possible solution fitting with the addressed problem.

5.2. Why GP is naturally beneficial for LTR for IR

The reasons GP is employed in this work include (1) the use of functional expressions to represent individuals9
and (2) the ability to find out a near or exact global optimal solution [27]. In comparison with other methods
(e.g., Ranking SVM [23][26] and RankBoost [21]), which decouple the problem into individual pairwise
evaluations, the main advantage of RankMGP is that non-convex objective functions of IR evaluation measures
(e.g., the weighted average of NDCG scores of this paper) can be directly optimized.

In the literature, many studies have aimed to find a linear ranking function that can be optimized using greedy
search algorithms (e.g., conjugate gradient descent). In contrast, RankMGP is designed to generate a wider class
of non-linear ranking functions by using more complex operators in Sop. This makes the benefits of RankMGP
much clearer, since a non-linear function cannot be directly optimized with greedy algorithms. Note that
RankMGP can also learn a linear ranking function as long as only simple operators are engaged.

However, the computational cost of RankMGP is higher and more disproportionate to other methods. Running
the current implementation of RankMGP with the parameter settings listed in Table 3, it takes approximately 8
hours to conduct a run of 5-fold cross-validation on MQ2008 with a PC equipped with one 3 GHz processor and
8 GB memory. It is the user’s choice to determine whether RankMGP or other methods are suitable for the cases
he/she is facing. In general, it is suggested to apply RankMGP when the main goal is to find a potentially
optimal solution, provided that computing resources and time are not limited.

9 It is natural to represent a ranking function for IR in a function expression.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

41

Malaysian Journal of Computer Science. Vol. 30(1), 2017

5.3. The layered multi-population GP in RankMGP

The advantages of RankMGP are discussed below. First, a layer has a great probability of having a higher
fitness value than its previous layer (see Section 5.4). Secondly, the employment of multi-population GP in
RankMGP provides greater diversity among populations, better search space coverage and faster convergence
against traditional GP [20]. Thirdly, recall that RankMGP replaces features by evolutionary feature generation
to construct new training instances (i.e., a training instance t(i+1)j  Ti+1 is derived by transforming tij  Ti, with
the set of the best individuals obtained in Li, to a new space). Each feature value of an instance provides ranking
information inherited from its corresponding instance in the previous layer. In other words, the layer
architecture is capable of passing ranking information through layers. Furthermore, the number of new features
decreases gradually since the number of populations over layers is usually set degressively. Therefore, a
successive layer evolves with shorter individuals, which speeds up the entire evolution process. This is
especially beneficial for handling high-dimensional training instances. Finally, the layered architecture allows
each layer to have its own configuration. The scope of the configuration includes the number of populations, the
number of generations and the depth limitation of individuals. One can benefit from the flexibility of
configuration for an attempt to find better solutions with different specified configurations or for the accelerated
learning speed.

5.4. The learning behaviors of RankMGP over layers

Fig. 5 graphs the average learning scores of distinct folds in different layers. The average score is computed by
averaging scores of populations. An upward trend of scores is observed during the learning processes of each
layer, indicating that RankMGP is able to discover a better ranking function (i.e., individual) through the layers
for the training dataset. RankMGP also demonstrates different learning capacities for different folds; e.g.,
relatively high scores for Fold 2 and Fold 3, but a relatively low score for Fold 5. This phenomenon might occur
when the data partition of folds varies greatly. In such a situation, it is difficult for RankMGP to find a suitable
function. In Fig. 6, the average learning scores of five runs for 5-fold cross-validation are provided. It is shown
that RankMGP gradually obtains better scores through layers, which testifies that the layered multi-population
architecture of RankMGP has a better learning capacity than traditional single-population GP.

Fig. 5. The average learning values of FFunc of folds in different layers.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

42

Malaysian Journal of Computer Science. Vol. 30(1), 2017

Fig. 6. The average learning values of FFunc of five runs for 5-fold cross-validation in different layers.

The average learning scores of distinct folds in different layers are shown in Fig. 7. Similar to Fig. 5, an upward
trend of scores is observed during the learning processes of each layer, except for Fold 1. Fig. 8 provides further
information about RankMGP on Fold 1. It can be seen that the fitness on the training data increases smoothly
through each layer. However, the fitness on the validation data fluctuates. The fitness on the validation is
approximately 2.3 in Layer 1, then drops off to about 2.1 in Layer 2, and finally increases to approximately 2.19
in Layer 3. It is conjectured that the properties of the validation data in Fold 1 might be quite different from
those of the training data. Note that the validation set is used to prevent over-fitting since an individual with a
good fitness on the training dataset but with a bad fitness on the validation set is not considered a good
individual. In such a case, the selection of the best individual based on its score might be affected and hence
fails to find a good individual for Fold 1.

Fig. 7. The average learning scores of folds in different layers.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

43

Malaysian Journal of Computer Science. Vol. 30(1), 2017

Fig. 8. The average fitness values in different layers, obtained from the training and validation datasets.

6.0 CONCLUSION AND FUTURE WORK

This paper proposed a novel layered multi-population GP based method, called RankMGP, for LTR for IR. The
main idea behind RankMGP is to generate a function that gives a score to each document while a particular
query is considered. By arranging documents in order according to the scores, IR evaluation measures can be
utilized as fitness functions to guide RankMGP for finding an effective ranking function. RankMGP consists of
a set of layers and a sequential workflow running through the layers. In one layer, multiple populations evolve
independently to generate a set of the best individuals. When the evolution process is completed, a new training
dataset is created using the best individuals and the input training set of the layer. Then, populations in the next
layer evolve with the new training dataset. In the final layer, the best individual is obtained as the output ranking
function. Experiments are conducted to evaluate the effectiveness of RankMGP using the MQ2008 dataset of
the LETOR benchmark package. Several baseline ranking algorithms, namely, Ranking SVM, ListNet,
AdaRank and RankBoost, are also tested to prove the effectiveness of RankMGP. The results show that
RankMGP performs well with statistically competitive results.

As for future work, we will continue to investigate the relationships between features for developing feature
selection methods to identify significant features for the ranking problem. It is also important to compare the use
of linear and non-linear functions in RankMGP and study the effects of different parameter settings of the
algorithm. Another interesting issue is to explore whether more complex operators will help in finding a better
ranking function. Moreover, it is intended to study the effectiveness of RankMGP with different population
configurations (e.g., the heterogeneous multi-population GP model). Lastly, the scalability issues need to be
taken into account to speed up the training process of RankMGP, e.g., to evolve populations in a distributed
manner by the parallel and distributed GP model [36].

REFERENCES

[1] O. Alejo, J. M. Fernandez-Luna, J. F. Huete, & R. Perez-Vazquez, “Direct Optimization of Evaluation

Measures in Learning to Rank Using Particle Swarm”, in Proceedings of the 21st International Workshop
on Database and Expert Systems Applications, Bilbao, Spain, 2010, pp. 42-46.

[2] H. M. Almeida, M. A. Goncalves, M. Cristo, & P. Calado, “A Combined Component Approach for
Finding Collection-Adapted Ranking Functions Based on Genetic Programming”, in Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2007), Amsterdam, Netherlands, 2007, pp. 399-406.

[3] R. Baeza-Yates, & B. Ribeiro-Neto, Modern Information Retrieval: The Concepts and Technology behind
Search. Addison-Wesley Professional, 2011.

[4] D. Bollegala, N. Noman, & H. Iba, “RankDE: Learning a Ranking Function for Information Retrieval

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

44

Malaysian Journal of Computer Science. Vol. 30(1), 2017

Using Different Evolution”, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (GECCO 2011), Dublin, Ireland, 2011, pp. 1771-1778.

[5] C. J. C. Burges, “From RankNet to LambdaRank to LambdaMART: An Overview”. Microsoft Research
Technical Report (MSR-TR-2010-82), 2010.

[6] C. J. C. Burges, R. Ragno, & Q. V. Le, “Learning to Rank with Nonsmooth Cost Functions”, in
Proceedings of the 20th Annual Conference on Neural Information Processing Systems (NIPS 2006),
Vancouver, BC, Canada, 2006, pp. 193-200.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, & G. Hullender, “Learning to Rank
Using Gradient Descent” in Proceedings of the 22nd International Conference on Machine Learning
(ICML 2005), Bonn, Germany, 2005, pp. 89-96.

[8] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, & H. Li, “Learning to Rank: From Pairwise Approach to Listwise
Approach”, in Proceedings of the 24th International Conference on Machine Learning (ICML 2007),
Corvallis, OR, 2007, pp. 129-136.

[9] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, & H.-W. Hon, “Adapting Ranking SVM to Document
Retrieval”, in Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2006), Seattle, WA, 2006, pp. 186-193.

[10] O. Chapelle, Y. Chang, & T.-Y. Liu, “Future Directions in Learning to Rank”, in Proceedings of the
Yahoo! Learning to Rank Challenge, Haifa, Israel, 2011, pp. 91-100.

[11] Y. Chen, & K. Hofmann, “Online Learning to Rank: Absolute vs. Relative”, in Proceedings of the 24th
International Conference on World Wide Web (WWW 2015), Florence, Italy, 2015, pp. 19-20.

[12] D. Cossock, & T. Zhang, “Subset Ranking Using Regression”, in Proceedings of the 19th Annual
Conference on Learning Theory (COLT 2006), Pittsburgh, PA, 2006, pp. 605-619.

[13] K. Crammer, & Y. Singer, “Pranking with Ranking”, in Proceedings of the 15th Annual Conference on
Neural Information Processing Systems (NIPS 2001), Vancouver, BC, Canada, 2001, pp. 641-647.

[14] R. Cummins, & C. O’Riordan, “Term-Weighting in Information Retrieval Using Genetic Programming: A
Three Stage Process”, in Proceedings of the 17th European Conference on Artificial Intelligence (ECAI
2006), Riva del Garda, Italy, 2006, pp. 793-794.

[15] E. Diaz-Aviles, W. Nejdl, & L. Schmidt-Thieme, “Swarming to Rank for Information Retrieval”, in
Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009),
Montreal, QC, Canada, 2009, pp. 9-16.

[16] T. G. Dietterich, “Approximate Statistical Tests for Comparing Supervised Classification Learning
Algorithms”. Neural Computation, Vol. 10, No. 7, 1998, pp. 1895-1923.

[17] W. Fan, M. Gordon, & P. Pathak, “Automatic Generation of Matching Function by Genetic Programming
for Effective Information Retrieval”, in Proceedings of the 5th Americas Conference on Information
Systems (AMCIS 1999), Milwaukee, WI, 1999, pp. 49-51.

[18] W. Fan, M. Gordon, & P. Pathak, “A Generic Ranking Function Discovery Framework by Genetic
Programming for Information Retrieval”. Information Processing and Management, Vol. 40, No. 4, 2004,
pp. 587-602.

[19] W. Fan, M. Gordon, & P. Pathak, “Discovery of Context-Specific Ranking Functions for Effective
Information Retrieval Using Genetic Programming”. IEEE Transactions on Knowledge and Data
Engineering, Vol. 16, No. 4, 2004, pp. 523-527.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

45

Malaysian Journal of Computer Science. Vol. 30(1), 2017

[20] F. Fernandez, M. Tomassini, & L. Vanneschi, “An Empirical Study of Multipopulation Genetic
Programming”. Genetic Programming and Evolvable Machines, Vol. 4, No. 1, 2003, pp. 21-51.

[21] Y. Freund, R. Iyer, R. E. Schapire, & Y. Singer, “An Efficient Boosting Algorithm for Combining
Preferences”. Journal of Machine Learning Research, Vol. 4, No. 6, 2003, pp. 933-969.

[22] C. Gagne, M. Schoenauer, M. Parizeau, & M. Tomassini, “Genetic Programming, Validation Sets, and
Parsimony Pressure”, in Proceedings of the 9th European Conference on Genetic Programming (EuroGP
2006), Budapest, Hungary, 2006, pp. 109-120.

[23] R. Herbrich, T. Graepel, & K. Obermayer, “Large Margin Rank Boundaries for Ordinal Regression”, in
A. J. Smola, P. Bartlett, B. Scholkopf, & D. Schuurmans (Eds.), Advances in Large Margin Classifiers,
pp. 115-132. The MIT Press, 2000.

[24] M. A. Islam, “RankGPES: Learning to Rank for Information Retrieval Using a Hybrid Genetic
Programming with Evolutionary Strategies”. Master Thesis in Computer Science, Ryerson University,
Toronto, ON, Canada 2013.

[25] K. Jarvelin, & J. Kekalainen, “Cumulated Gain-based Evaluation of IR Techniques”. ACM Transactions
on Information Systems, Vol. 20, No. 4, 2002, pp. 422-446.

[26] T. Joachims, “Optimizing Search Engines Using Clickthrough Data”, in Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), Edmonton,
AB, Canada, 2002, pp. 133-142.

[27] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Nature Selection. The
MIT Press, 1992.

[28] P. Li, C. J. C. Burges, & Q. Wu, “McRank: Learning to Rank Using Multiple Classification and Gradient
Boosting”, in Proceedings of the 21st Annual Conference on Neural Information Processing Systems
(NIPS 2007), Vancouver, BC, Canada, 2007, pp. 897-904.

[29] J.-Y. Lin, H.-R. Ke, B.-C. Chien, & W.-P. Yang, “Designing a Classifier by a Layered Multi-Population
Genetic Programming Approach”. Pattern Recognition, Vol. 40, No. 8, 2007, pp. 2211-2225.

[30] T.-Y. Liu, Learning to Rank for Information Retrieval. Springer, 2011.

[31] I. Matveeva, C. Burges, T. Burkard, A. Laucius, & L. Wong, “High Accuracy Retrieval with Multiple
Nested Ranker”, in Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2006), Seattle, WA, 2006, pp. 437-444.

[32] R. Nallapati, “Discriminative Models for Information Retrieval”, in Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2004), Sheffield, UK, 2004, pp. 64-71.

[33] L. Nie, B. D. Davison, & X. Qi, “Topical Link Analysis for Web Search”, in Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2006), Seattle, WA, 2006, pp. 91-98.

[34] N. Oren, “Reexamining tf.idf Based Information Retrieval with Genetic Programming”, in Proceedings of
the 2002 Annual Conference of the South African Institute of Computer Scientists and Information
Technologists on Enablement through Technology (SAICSIT 2002), Stellenbosch, South Africa, 2002,
pp. 224-234.

[35] Z. Pan, X. You, H. Chen, D. Tao, & B. Pang, “Generalization Performance of Magnitude-Preserving
Semi-Supervised Ranking with Graph-Based Regularization”. Information Sciences, Vol. 221, 2013, pp.
284-296.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

46

Malaysian Journal of Computer Science. Vol. 30(1), 2017

[36] R. Poli, “Parallel Distributed Genetic Programming”, in D. Corne, M. Dorigo, & F. Glover (Eds.), New
Ideas in Optimisation, pp. 403-432. McGraw-Hill Inc., 1999.

[37] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, & W.-Y. Ma, “A Study of Relevance Propagation for Web
Search”, in Proceedings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2005), Salvador, Brazil, 2005, pp. 408-415.

[38] T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y. Liu, & H. Li, “Query-Level Loss Functions for
Information Retrieval”. Information Processing & Management, Vol. 44, No. 2, 2008, pp. 838-855.

[39] V. C. Raykar, R. Duraiswami, & B. Krishnapuram, “A Fast Algorithm for Learning a Ranking Function
from Large-Scale Data Sets”. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30,
No. 7, 2008, pp. 1158-1170.

[40] S. E. Robertson, “Overview of the Okapi Projects”. Journal of Documentation, Vol. 53, No. 1, 1997, pp.
3-7.

[41] R. L. T. Santos, C. Macdonald, & I. Ounis, “On the Suitability of Diversity Metrics for Learning-to-Rank
for Diversity”, in Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2011), Beijing, China, 2011, pp. 1185-1186.

[42] A. Qazi, H. Fayaz, A. Wadi, R. G. Raj, N.A. Rahim, W. A. Khan, “The artificial neural network for solar
radiation prediction and designing solar systems: a systematic literature review”, Journal of Cleaner
Production, vol. 104, pp. 1-12, 2015. ISSN 0959-6526,
http://dx.doi.org/10.1016/j.jclepro.2015.04.041.(http://www.sciencedirect.com/science/article/pii/S095965
2615004096).

[43] A. Shashua, & A. Levin, “Ranking with Large Margin Principles: Two Approaches”, in Proceedings of
the 16th Annual Conference on Neural Information Processing Systems (NIPS 2002), Vancouver, BC,
Canada, 2002, pp. 961-968.

[44] A. Slivkins, F. Radlinski, & S. Gollapudi, “Ranked Bandits in Metric Spaces: Learning Diverse Rankings
over Large Document Collections”. Journal of Machine Learning Research, Vol. 14, 2013, pp. 399-436.

[45] N. Tax, “Scaling Learning to Rank to Big Data: Using MapReduce to Parallelise Learning to Rank”.
Master Thesis in Computer Science, University of Twente, Enschede, Overijssel, Netherlands, 2014.

[46] M. Taylor, J. Guiver, S. Robertson, & T. Minka, “SoftRank: Optimising Non-Smooth Rank Metrics”, in
Proceedings of the 2008 International Conference on Web Search and Data Mining (WSDM 2008),
Stanford, CA, 2008, pp. 77-86.

[47] A. Qazi, K. B. S. Syed, R. G. Raj, E. Cambria, M. Tahir, D. Alghazzawi, “A concept-level
approach to the analysis of online review helpfulness”, Computers in Human Behavior, Vol. 58,
May 2016, PP. 75-81, ISSN 0747-5632, http://dx.doi.org/10.1016/j.chb.2015.12.028.

[48] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, & W.-Y. Ma, “FRank: A Ranking Method with Fidelity Loss”,
in Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2007), Amsterdam, Netherlands, 2007, pp. 383-390.

[49] A. Qazi, R. G. Raj, M. Tahir, M. Waheed, S. U. R. Khan, and A. Abraham, “A Preliminary Investigation
of User Perception and Behavioral Intention for Different Review Types: Customers and Designers
Perspective,” The Scientific World Journal, vol. 2014, Article ID 872929, 8 pages, 2014.
doi:10.1155/2014/872929.

[50] L. Wang, J. Lin, D. Metzler, & J. Han, “Learning to Efficiently Rank on Big Data”, in Proceedings of the
23rd International Conference on World Wide Web (WWW 2014), Seoul, Korea, 2014, pp. 209-210.

Learning Ranking Functions For Information Retrieval Using Layered Multi-Population Genetic Programming. pp 27-47

47

Malaysian Journal of Computer Science. Vol. 30(1), 2017

[51] S. Wang, J. Ma, & Q. He, “An Immune Programming-Based Ranking Function Discovery Approach for
Effective Information Retrieval”. Expert Systems with Applications, Vol. 37, No. 8, 2010, 5863-5871.

[52] S. Wang, Y. Wu, B. J. Gao, K. Wang, H. W. Lauw, & J. Ma, “A Cooperative Coevolution Framework for
Parallel Learning to Rank”. IEEE Transactions on Knowledge and Data Engineering, Vol. 27, No. 12,
2015, 3152-3165.

[53] F. Wang, & X. Xu, “AdaGP-Rank: Applying Boosting Technique to Genetic Programming for Learning
to Rank”, in Proceedings of the 2010 IEEE Youth Conference on Information Computing and
Telecommunications (YC-ICT 2010), Beijing, China, 2010, pp. 259-262.

[54] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, & H. Li, “Listwise Approach to Learning to Rank: Theory and
Algorithm”, in Proceedings of the 25th International Conference on Machine Learning (ICML 2008),
Helsinki, Finland, 2008, pp. 1192-1199.

[55] J. Xu, Y. Cao, H. Li, & M. Zhao, “Ranking Definitions with Supervised Learning Methods”, in
Proceedings of the 14th International Conference World Wide Web (WWW 2005), Chiba, Japan, 2005,
pp. 811-819.

[56] J. Xu, & H. Li, “AdaRank: A Boosting Algorithm for Information Retrieval”, in Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2007), Amsterdam, Netherlands, 2007, pp. 391-398.

[57] J. Xu, T.-Y. Liu, M. Lu, H. Li, & W.-Y. Ma, “Directly Optimizing Evaluation Measures in Learning to
Rank”, in Proceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2008), Singapore, Singapore, 2008, pp. 107-114.

[58] J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, & W.-P. Yang, “Learning to Rank for Information Retrieval Using Genetic
Programming”, in Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval
(LR4IR 2007), Amsterdam, Netherlands, 2007, pp. 41-48.

[59] H. Yu, “SVM Selective Sampling for Ranking with Application to Data Retrieval”, in Proceedings of the
11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2005),
Chicago, IL, 2005, pp. 354-363.

[60] M. Moohebat, R.G. Raj, S.B.A.Kareem, D. Thorleuchter, “Identifying ISI-indexed articles by their lexical
usage: A text analysis approach”, Journal of the Association for Information Science and Technology,
Vol. 66, No. 3, pp. 501–511. doi: 10.1002/asi.23194.

[61] Y. Yue, T. Finley, F. Radlinski, & T. Joachims, “A Support Vector Method for Optimizing Average
Precision”, in Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2007), Amsterdam, Netherlands, 2007, pp. 217-278.

[62] C. Zhai, & J. Lafferty, “A Study of Smoothing Methods for Language Models Applied to Ad Hoc
Information Retrieval”, in Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2001), New Orleans, LA, 2001, pp. 334-342.

[63] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, & G. Sun, “A General Boosting Method and Its
Application to Learning Ranking Functions for Web Search”, in Proceedings of the 21st Annual
Conference on Neural Information Processing Systems (NIPS 2007), Vancouver, BC, Canada, 2007, pp.
1697-1704.

