
Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

225
Malaysian Journal of Computer Science. Vol. 29(3), 2016

FINE-GRANULAR MODEL MERGE SOLUTION FOR MODEL-BASED VERSION
CONTROL SYSTEM

Waqar Mehmood1, Nadir Shah2, Majid Jamal Khan3, Mukhriar Memon4, M Ikramullah5

1, 2Department of Computer Science,
3Department of Management Science,

1, 2, 3COMSATS Institute of Information Technology, Wah Campus.
4Information Technology Center, Sindh Agriculture University, Tandojam.

5Department of Computer Science and IT, University of Sargodha.

Email: drwaqar@ciitwah.edu.pk1, nadir@ciitwah.edu.pk2, m4majid@gmail.com3,
mukhtiar.memon@sau.edu.pk4, drikramullah@uos.edu.pk5

 ABSTRACT
Software Configuration Management (SCM) aims to provide a controlling mechanism for the evolution of
software artifacts created during software development process. Controlling software artifacts evolution
requires many activities to be carried out such as, construction and creation of versions, computation of
mappings and differences between versions, merging (i.e. combining of two or more versions) and so on.
Traditional SCM systems are file-based SCM systems, which are not adequate for performing software
configuration management activities. File-based SCM systems consider software artifacts as a set of text files,
while today’s software development is model-driven and models are the main artifacts produced in the early
phases of software development process. New challenges of model mappings, differencing, merging, and
conflict detection arise when applying file-based solution to model-driven software. The goal of this paper is to
develop a configuration management solution for model merging and conflict resolution that overcomes the
challenges faced by traditional SCM systems for model-based development. We represent models at fine-
grained level as graph structures, which is an intermediate representation based on graph t h e o r y . Our
approach follows a 3-way model merge process, where a base and its derived versions are used for
comparison. To differentiate between conflicted and non-conflicted cases, we have defined different merge
cases, and established a merge policy based on merge cases. Merge cases are used along with the
comparison result in order to perform conflict resolution and merge operation. We performed a
controlled experiment using open source eclipse modeling framework and compare our approach with an open
source tool Eclipse Modeling Framework (EMF) Compare. The results proved the accuracy and efficiency of
our proposed approach.

Keywords: fine-granular model representation, model diff, model merge, conflict detection, model driven
engineering
 1.0 INTRODUCTION Large software projects, which involve more than one person, essentially need efficient management of

software artifacts created during software development. In the absence of an efficient management
mechanism, the software products are delivered later than its schedule, may cost more than anticipated, and
would have been poorly designed and documented [20]. Software Configuration Management (SCM) aims to
provide an efficient controlling mechanism to avoid such problems. SCM deals with controlling the evolution
of software systems [21]. Controlling the evolution of software systems requires many activities to perform,
such as, construction and creation of versions of the software artifacts, performing diff activity (i.e. the
identification of mappings and differences between versions), conflict detection (i.e. identifying conflicting
changes), and merge activity (i.e. combining two or more versions into single one) [22].

Traditional version control systems (VCS), such as Subversion [1], CVS [2], are file-based, i.e.,
these approaches consider a software system as a set of text files mainly in the form of source code.
However today, software development is based on model-driven activities. Model-Driven Engineering

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

226
Malaysian Journal of Computer Science. Vol. 29(3), 2016

(MDE) [23] is a modern software development technique that aims to reduce the complexity of
software development by assigning models as a central role in the development process. MDE
emerges as a new paradigm which creates many challenges for traditional SCM systems. With the
advent of MDE for software development, models become first-class artifact, to ensure the quality of the
models, they must be designed, analyzed, maintained and subject to version control. Existing SCM
systems (such as CVS [2], Subversion [1] etc.), are used during the later phases of software development,
notably during implementation where the main artifact is source code in the form of text files. However,
these systems will not be well suited for performing configuration ma na gement tasks on the models
[3]. For instance, in MDE, software documents a r e not only text files, but also consist of models such
as, different types of UML diagrams. These models are often stored as Exte nsible Markup Langua ge
(XMI) formats, s u c h as a class diagram. The order of these sections of text is irrelevant in a file
and the CASE tools can store the sections representing classes or other diagram elements in
arbitrary order [3–5]. Therefore, applying diff and merge operations a t the level of plain text will not
produce meaningful results. On the other hand, efficient management requires a close interaction within
the development team. Usually, each developer is responsible for one part of the whole software system.
Therefore, it is necessary to let developers work independently without disturbing their teammates as
well as allowing them to share their results at a certain time and to merge their developed software
artifacts with the whole software system. In this paper, we provide a generic fine-granular model
merge solution for a model-based control system. Our approach for conflict detection and merging is
based on our previous work in [16] for model diff, since model merge component is buil t on
top of model diff component. First part of our approach deals with how to avoid the problems o f
textual representation of models. For this, we represent models at fi ne-granular l e v e l as graph
structure metamodel. The main concepts of the metamodel a r e Node, Edge, Link, Operation,
Attribute, Parameter and DataType, one important benefit of this metamodel is that it is generic and
can be used to represent different types of UML diagrams at fine-grained level, since most of the
UML diagrams except sequence diagram is presented as a graph [5]. We present a 3-way merge
process, where a base and its derived are used for merging. The process of merging consists of three
steps: 1) comparison of versions, 2) merging versions, and 3) conflict resolution. Comparison of versions
will be done by model diff component and the results will be reused in model merge component. The process
of merging cannot be completely automated [3]. Manual interaction is required in case of conflict detection
in software artifacts. A conflict usually occurs if same element of an entity is modified in parallel by
different teammates. In order to differentiate c o n f l i c t e d and non-conflicted cases we define different
merge cases to analyze t he difference result from the merge operation for model merge.

The implementation is done using the open source EMF [6] framework using Java as a source
language. The transformation component loads the inputs m ode l conforming to source metamodel and
transform it into graph structures conforming to target m e t a m o d e l . The diff component then performs
the diff algorithm on the graph structures for model comparison. To benchmark our approach, we
performed different test and compare our approach with the open source tool EMF Compare [7]. EMF
Compare [7] uses EMF technology project to compare models in EMF. It is realized by a package of
Eclipse plugins that overwrites Eclipse’s standard comparing behavior . We select EMF Compare for
comparison with our approach because it is an available open source tool. The main assessment
criteria of our evaluation are the quality of the calculated results and the execution time.

The rest of this paper organized as follows. In Section 2, related work is given. Section 3 briefly elaborates
model diff which deals with comparing model versions to identify matching and differences between
them during software development. Section 4 describes the proposed model merge approach in detail. Our
experiment design, results, and performance evaluation of the proposed approach is explained in Section 5.
Finally, Section 6 concludes the paper and a sketch of the future work is drawn.

2.0 RELATED WORK ON MODEL-BASED SCM SYSTEMS

Many solutions to model-based SCM exist in literature. In this section, to describe the existing solutions, we
categories the existing solutions in two areas, i.e. a) existing solutions in model diff, and b) existing solutions
in model merge. We first describe the comparison parameters for model diff and merge approaches and then
describe the related work in both areas.

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

227
Malaysian Journal of Computer Science. Vol. 29(3), 2016

2.1 Model Comparison Parameters

In order to compare the existing model diff approaches we set an evaluation criterion. The evaluation
parameters are based on following features.

 o Delta computation method
 State-based method
 Operation-based method o Delta matching Criteria
 UID-based criteria
 Language-based criteria
 Signature-based criteria o Independency
 Tool-independency
 Diagram-independency o Merge

2.1.1 Delta computation methods
 Delta in SCM means the value of differences between two versions of a model. There are two ways to
compute the delta: (i) State-based approach and (ii) Operation-based approach. In the state-based
approach, two states, such as a base version and its successor are compared to compute the differences.
In an operation-based approach, changes are described by using the original sequence of the editor
operations that caused the changes. Operation-based approach records a sequence of change operations
(say op1 ,. . . ,opn) while these operations occur. Delta computation methods are further explained in
section 3.2.

2.1.2 Delta matching method
The basis for identifying mapping and differences is called correspondence criteria. This is a metric
which defines the information needs to be considered when comparing two models to obtain mapping
and differences. Existing approaches of model comparison are based on different correspondence
criteria [25]. These existing approaches can be categorized based on following criterion:

a) Unique Identifier-based (UID) Criteria
b) Similarity-based Criteria
c) Language-specific Criteria
d) Hybrid Criteria

 a) Unique Identifier-based Criteria
In UID-based criteria, the assumption is that each element of the model has a universally

unique identifier, which is assigned to newly created element by the model repository. The identity
of the object remains the same, and it is only the structure of the object is different in different
versions. Model comparison is performed based on these persistent identifiers. The main advantage
of this criteria is its efficiency, i.e., it is fast and requires no configuration. The problem with such
a criteria is that it can only be applied to two models that are subsequent versions and created in a
same development environment. Such a solution can't be applied when two models are not
subsequent versions or created by different development tools [26, 28].

b) Similarity based Criteria

The similarity or signature based criteria for model comparison is based on similarity of the
syntactical information of the compared elements. Persistent identifier based approaches treat the
problem of model matching as true/false identity matching, while similarity-based approaches
attempts to identify matching elements based on the aggregated similarity of their features [25].

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

228
Malaysian Journal of Computer Science. Vol. 29(3), 2016

The idea is that a pair of corresponding model elements needs to share a set of properties which
can be a subset of their syntactical information. This syntactical information mainly includes name,
type, and attributes. It may also include the context or structure similarity, in which the structure of
model entities is also considered. The structure includes the number of edges connected to an
entity and the end entities of a relationship. The syntactic information of an element also called
signature, hence this criteria is also called signature-based matching [27]. As these approaches do
not rely on persistent identifiers, they can be also used to compare models that have been
constructed independently of each other. However, the developers need to specify a series of
functions to calculate the identities of different types of model elements, while no such
configuration effort is required in persistent identifier based approach.

c) Language-specific Criteria
The matching approaches in this category are tailored to a particular modeling language such

as UML. The main advantage of this approach is that it takes into account the semantics of the
target language to produce more accurate results, and it also reduces the search space. For instance,
when comparing two UML models, two classes with the same name always constitute a match
regardless of their location in the package structure. Similarly, two operations will be compared if
they belong to the match classes, same is the case of properties and parameters, thus reducing the
number of comparisons that need to be performed. However, this approach requires manual
comparison algorithm, which can be challenging. As identified in [25], to ease the development of
custom matching algorithms, approaches such as EMF Compare [7] and the Epsilon Comparison
Language (ECL) [28] provide infrastructure that can automate the trivial parts of the comparison
process, allowing developers to concentrate on the comparison logic only. Nevertheless, even with
such tool support, the effort required to implement a custom matching algorithm is still
considerably high.

d) Hybrid Criterion
Our approach is a hybrid criterion, which is a combination of both unique-identifier and signature-
based criterion. Our justifications for the proposed approach are as follow: First, by using unique-
identifier based criteria we obtained the efficiency requirement of the algorithm. In contrast to
other approaches [3, 5, 17] which use this criterion at the cost of tool dependency, we handle this
problem by using the name of the entity as unique-identifier. Thus even different tools are used for
model development there is no dependency on the tools. Secondly, our approach also perform
signature match to detect syntactic differences.

2.3 Tool-independency In MDE, the same model can be developed using different CASE tools, e.g., a class diagram can be
developed using CASE tool, like MagicDraw [29] or MS Visio [30]. There is always the problem of
compatibility when a model developed using one CASE tool with other due to their different internal
representation. For instance, the class diagram developed in MarigDraw is not supported by MS Visio.
In such a scenario the goal of model diff tool is the independency from the tools which were used to
create the diagram.

2.4 Diagram-independency There are different diagram types that can be developed during software development lifecycle. The
model diff tool should be applicable to a large set of diagram types [24]. However, in our study we
have noticed that some approaches are tailored to some specific diagrams [5, 18, 31] and are not
applicable to other diagrams while some approaches [24, 26, 7,17,18] offer generality.

2.5 Model Merge Model merge deals with combining two or more versions of a model into a single one [21]. The
process of merging consists of three steps: 1) comparison of versions, 2) merging versions, and
3) conflict resolution.

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

229
Malaysian Journal of Computer Science. Vol. 29(3), 2016

2.2 Existing Solutions of Model Diff

Alanen and Porres in [17] discuss the difference and union of models in the context of a version control
system. Three meta-model-independent algorithms are given that calculate the difference between two
models, merge, and calculate the union of two models. However, these algorithms crucially rely on the
existence of a universally unique identifier for each model element. The output produced by the approach is in
form of a sequence of edit operation, while in our approach the results are brought back into a model which is
more comprehensible. Ohst et al. [5] addresses the problem of how to detect and visualize differences between
versions of UML documents, such as, class or object diagrams. The approach assumes that each model
element has a unique identifier for model comparison. To show the differences between two documents, the
unified document is used that contains the common and specific parts of both base documents; the specific
parts are highlighted. EMF Compare [7] is an open source tool to compare models in EMF. It is realized by a
package of Eclipse plugins that overwrite Eclipse's standard comparing behavior. EMF Compare uses a
generic algorithm for model comparison. The comparison is performed in two-phases: In the first phase the
match engine tries to find similar elements and creates a match model. Based on this model, different engine
is used to generate detailed information about the differences of certain model elements. A difference model is
the result of the second phase. Both match and difference model are EMF models and therefore can be treated
like any other model. Compared to our approach, the diff and match model produced by EMF Compare
cannot be converted to graphical representation.

Table 1. Comparison chart with existing approaches

Xing et al. [18] presented an automated UML-aware structural-differencing algorithm, UMLDiff, for
automatically detecting structural changes between the designs of subsequent versions of object-oriented
software. It takes as input, two class models of a java software system and reverse engineers from two
corresponding code versions. This approach uses language-based matching criterion and identifies
corresponding entities based on their name and structure similarity. If two objects have the same name, they
are identified as equal, if not, their structural similarity is considered, computed from the similarity of names
and other criteria specific of the considered entity type. Kelter et al. [19] presented a generic algorithm SiDiff
which uses an internal data model comparable with simplified UML meta-model. A diagram is extracted from

Approaches
Delta Computation

Method
Calculation Criteria Independency Merge

State-
based

Operation-
based

UID-
based

Signature-
based

Language-
based

Tool Diagram
Alanen et al. √ × √ × × × √ √
DSMDiff √ × × √ × √ √ ×
D.Ohst √ × √ × × × × √
SiDiff √ × × √ × √ √ ×
UMLDiff √ × × × √ √ × ×
Pounamu × √ √ × × × √ √
Girschick × √ √ × × × × ×
Workflow √ × √ × × √ × √
Odyssey - - - - - - × √
AMOR - - - - - × - √
CoObRA × √ √ × × × - √
Unicase × √ √ × × × - √
Our Approach √ × √ √ × √ √ √

Legends: Supported Not supported × √

- Unknown

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

230
Malaysian Journal of Computer Science. Vol. 29(3), 2016

an XMI file and is represented as a tree consisting of a composition structure. In this approach, the model
elements are characterized by their elements and the difference algorithm start s with a bottom-up traversal at
the leaves of the composition tree. This approach uses a signature-based matching criterion. The Pounamu
approach presented in [8] describes a generic approach for diff and merge via a set of plug-in components.
Plug-ins is developed for the meta-CASE tool Pounamu which support version control, visual differencing
and merging. The approach uses operation-based method for different computation which results in the
dependency of the tool in which diagrams are edited using a universal unique identifier (UID)-based matching
criteria.

2.3 Existing Solutions of Model Merge The Pounamu approach presented in [8] is a generic approach for diff and merge via a set of plug-in
components. Plug-ins are developed for the meta-CASE tool Pounamu which support version control, visual
differencing, and merging. The approach uses operation-based method for difference computation which
results in the dependency of the tool in which diagrams are edited, contrary to our approach which uses State-
based approach. The approach uses a universal unique identifier (UID)-based matching criteria.

An approach for comparison and versioning of scientific workflows is presented i n [9]. A version
model for workflow is presented as a directed g r a p h . The approach is based on modified 3-way merge
algorithm called 3-way subgraph d i f f /merge algorithm w hi c h is based on graph theory. A 3-way
subgraph is analyzed as an atomic part and taken into consideration for merge decisions. The main
problem with the approach is that it dealt only with one specific kind of model, i.e., workflows, thus, it
is not generic. The approach uses UID-based matching cr i ter ia while our approach uses hybrid criteria.
Merging UML documents as described in [3, 5] splits the merging process into three steps. First, a pre-
merged document is created, then identified conflicts are solved manually and finally the merged
document is created. Conflicts occur if the same attribute has been changed in both versions, or if an
entity has been modified in one version and deleted in the other version. In case of change conflict
the user has to decide which modification should be applied. Similarly, in case of deletion-modification
conflicts, user has to decide whether the entity should be deleted or modified. The pre-merged
document is an extended unified document consisting of common parts, automatically merged parts and
conflicts. Software document is transformed into an abstract syntax tree at fine-grained level. These
a p p r o a c h e s work for UML class diagram specifically, a s compared to our approach, which is generic
and work for both UML and domain specific models. Furthermore, these approaches only consider
unique identifiers for comparison while our approach uses a hybrid criterion. In CoObRA versioning
framework [10], all edit operations that are executed on the diagrams are logged by the tool.

The approach in [3, 5] uses 3-way merging but gives priority to the version that was committed first. A
developer has to check the version v1 of the repository into the local workspace to modify it by applying
the operation sequence ∆2. But if the operation sequence ∆1 has been applied to the version in the
repository, where the developer fails to commit his/her changes, then the developer has to update his/her
local version first. This means applying the changes ∆1 on the origin version v1 to reach the actual
version v2 stored in the repository, then trying to apply the change operations in ∆2 again. The
difference between this approach and our approach is that the former is based on operation-based deltas
and hence dependent on the editor tool which logged the edit operations. Furthermore, these approaches
use Uid-based matching criteria and do not support conflict resolution. Oliveira et al. [11] have
implemented Odyssey-VCS to provide configuration management support for CASE tools that work
with UML models. This approach uses XMI as the protocol for communication between CASE tools and
the VCS. Oliveira at al. [11] only describe the implementation of merge in their approach. When a
conflict is detected, the developer receives a conflict description along with the original, user and
current configurations. After performing manual merge, developer resubmits the model to the repository.
Merge algorithm follows a 3-way merge approach. Their approach is limited to UML models only.
Furthermore, this approach is based on performing diff/merge operation o n structured data, i.e., XMI,
which is not suitable for such operations.

Kogel et al. [12, 13] present a SCM approach for software engineering artifacts that manages change
in graph-structured artifacts and supports traceability. Their approach is based on operation-based

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

231
Malaysian Journal of Computer Science. Vol. 29(3), 2016

deltas, change packages and product versioning. They have also developed Unicase [14], which is a CASE-
tool integrating models that allows viewing and editing models in the form of textual, tabular, and
diagrammatical visualization, stored in a repository and can be versioned. Three-way and directed delta
approach is applied for the merge process, where the edit operations are obtained from the Unicase
client. The difference between their approach and ours is that the former is based on operation-based
deltas and hence dependent on editor tool used. Furthermore their approach uses UID-based matching
criteria.

Altmanninger et al. [15] present AMOR (Adaptable Model Versioning), a semantic-based methods and
techniques to leverage version control in MDE. It was claimed that AMOR supports precise conflict
detection, i.e., previously undetected and wrongly indicated conflicts a r e avoided. This is because AMOR
incorporates knowledge about the type of modifications and knowledge of the modeling concepts used.
They also claim that AMOR focuses on intelligent conflict resolution by providing techniques for the
representation of conflicting modifications as well as suggesting proper resolution strategies. AMOR
targets an adaptable versioning framework, empowering modelers to flexibly balance between reasonable
adaptation effort and proper versioning support while ensuring generic applicability in various domain-
specific modeling languages and associated tools. AMOR uses the semantics of the modeling concepts. The
main focus of the approach is on conflict detection and resolution, and it is not clear on the method used
for model diff.

 3.0 MODEL DIFF
The goal of this work is to develop a generic model merge solution for merging two versions of a model.
However since model merge component is built on top of model diff component, we need to perform diff
activity first. Model diff deals with comparing two versions of a model to detect differences and matches
between them. We address the problem of computing the mappings and differences between the models by
exploring the issues of, a) how to represent models at a fine-grained level, b) how to compute deltas, namely
the state-based or operation-based approaches, and c) designing algorithms that can be used to discover the
mappings and differences between the models.

3.1 GRAPH STRUCTURE REPRESENTATION
In software development life cycle two main types of software documents are text files and graphical models.
Text files may contain source code, documentation, software requirement specification (SRS) document, test

Fig. 1. Graph structure data model

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

232
Malaysian Journal of Computer Science. Vol. 29(3), 2016

reports and so on, whereas graphical models can be UML models. A model can be represented in three
different ways [28], i) the graphical representation i.e. the diagram itself, ii) the persistence representation, e.g.
XMI, and iii) intermediate representation, e.g. syntax tree or graph structure. To avoid the problems
mentioned in Section 2.1, we represent models at fine-granular level as graph structures. A graph structure
data model defines the elements, attributes, and relationships between the elements at the fine-grained level
[9]. The selection of an appropriate data model has a strong impact on the capabilities of the diff and merge
tool. For instance, a simple data model could perform a simple and efficient diff and merge operations for
versions of a model. In our proposed approach, at a fine-grained level, we represent models in an intermediate
representation, as graph structures (e.g. as shown in Fig. 1). The proposed structure represents graph with
typed elements that can be decorated with attributes. The basic elements of the metamodel are: Nodes, Edges,
Links, Operations, Attributes, Parameters, and DataTypes. Besides other advantages, one more important
benefit of the metamodel is that it is generic and can be used to represent various types of UML models, at the
fine-grained level. This is an important issue, as most of the UML diagrams except that of the sequence
diagram is represented by a graph [6].

Node: Node resembles an entity (e.g. a class in a Class diagram, or an activity in an Activity diagram) of a
model. Nodes are identified by an id and may contain a number of attributes. A Node can be connected with
other Nodes by different form of associations. In our graph structure the connection between the Nodes are
represented by VLinks and Edges.
Attribute: Attribute represents data which represent features of node. They are identified by name and have a
data type.
DataType: Data types model simple types such as Int, String, Boolean etc. They are identified by name and
are most commonly used as attribute types.
Edge: Edge models the type of association between two nodes. Every edge has source and target node.
Different types of association between nodes can be identified by Edgetype, which includes association,
inheritance, containment etc.
Operation: Operation represents the operations of a Node. An operation is identified by a name and a list of
zero or more typed parameters representing the overall signature. Like all typed elements, an operation
specifies a type, which represents the return type; it may be null to represent no return type.
Parameter: Parameter models an operation's input parameters. A parameter is identified by a name and type
of a value that may be passed as an argument corresponding to that parameter.
VLink: Node can have links which express unidirectional relationships between two Nodes. Vlink are used to
connect all the nodes in a linear order. It is used as auxiliary element which do not map to any element of the
source model.

Mapping between UML and Graph structure
The mapping between source models like UML and Graph structure will be done based on the concepts
defined above. For instance, in Table 2.0 the mappings between UML class and activity diagram with the
Graph structure elements are given.

Class-mapTo-Node: In UML the classifier Class defines a set of model entities. The corresponding concept
in Graph structure is defined by Node. Therefore, we map Class onto Node.

Activity-mapTo-Node: Similar to the classifier Class, classifier Activity also defines a set of model entities.
The corresponding concept in Graph structure is defined by Node. Since Activity is a supertype of classes
InitialNode, ForkNode, MergeNode, JoinNode, DecisionNode, CallBehaviourAction, ActivityFinalNode and
CentralBufferNode therefore, we map all the subtypes of Activity onto Node.
Operation-mapTo-Operation: Operations belonging to Class are defined in the UML as Operation. The
corresponding concept in Graph structure is defined by Operation belonging to Node. Therefore, we map
Operation onto Operation.
Attribute-mapTo-Attribute: Attributes belonging to Class are defined in the UML as Attribute. The
corresponding concept in Graph structure is defined by Attribute. Therefore, we map Attribute onto Attribute.
Parameter-mapTo-Parameter: Parameters are defined in the UML as Parameter. The corresponding concept
in Graph structure is defined by Parameter. Therefore, we map Parameter onto Parameter.

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

233
Malaysian Journal of Computer Science. Vol. 29(3), 2016

DataType-mapTo-DataType: Datatypes are defined in the UML as DataType. The corresponding concept in
Graph structure DSL is defined by DataType. Therefore, we map DataType onto DataType.
Association-mapTo-Edge: A relationship between two entities is described by Association in UML. The
corresponding concept in Graph structure is defined by Edge. Therefore, we map Association onto Edge. The
type of Association corresponds to the type of Edge, i.e., EdgeType.

Table 2: Mappings between UML and GraphStructure DSL

UML GraphStructure
Class Node
InitialNode Node Node
ForkNode Node Node
MergeNode Node Node
JoinNode Node Node
DecisionNode Node Node
CallBehaviorAction Node Node
ActivityFinalNode Node Node
CentralBufferNode Node Node
Reference Edge
ControlFlow Edge
ObjectFlow Edge
Attribute Attribute
Operation Operation
Parameter Parameter

3.2 DELTA COMPUTATION

When comparing two versions of a model, a model mapping defines those model entities that represent a
single conceptual entity, while the unmatched entities represent the model differences. The difference between
the two versions of a model is known as delta. There are two ways to compute delta or difference between
two versions of a model:

i) State-based approach
ii) Operation-based approach

i) State-based Approach

In state-based approach two states, e.g., a version and its successor are compared to determine the
differences. Deltas are reconstructed using a differencing algorithm that compares the different state
representations. The delta in state-based approach is known as symmetric delta. In this approach
changes are recorded after they occur. A symmetric delta of two versions v1 and v2 contains all
elements which belong to v1 but not to v2 and vice versa. Using set notation loosely, the symmetric
delta may be written as ∆(v1,v2) = (v1 \ v2) U (v2 \ v1) [24]. Since changes are derived after they occur,
so change not considered at first level concept is state-based approach. A big advantage of state-based
approach over an operation-based approach is a total separation of modeling tools and the version
control system. This is because version control system needs not to observe the changes as they occur.

i) Operation-based approach

In operation-based approach, changes are described by using the original sequence of editor
operations that caused the changes [24]. Operation-based approaches record a sequence of change
operations op1,. . . ,opn while they occur and when these operations are applied to one version v1, yields
another version v2. The changes in an operation-based approach are considered as a first class concept.
The difference calculation is not required, as the changes are already available by design. The delta in
operation-based approach is known as directed delta. A directed delta may be formalized as a sequence
∆ = op1,. . . ,opm such that ∆ (v1) = v2. The major drawback of operation-based approach is its

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

234
Malaysian Journal of Computer Science. Vol. 29(3), 2016

dependency on the editor tool. The approach needs the version control system to be present when the
changes occur, i.e., when the models are manipulated by modeling tool. This requires the integration of
version control system into the modeling tool.

A big advantage of the state-based approach over an operation-based approach is a total separation of
modeling tools and the version control systems (VCS). As such, we also adapt a state-based procedure in our
proposed approach, as it provides generality and independency of the tools.

3.3 MODEL DIFF COMPARISON ALGORITHMS

The model diff comparison algorithm takes two versions of a model as input and produces output in two sets
MapSet{} and ChangeSet{}. MapSet{} that contains all of the pairs of model elements that are similar in
both versions, having the same identifier. The ChangeSet{} that contains such entities, whose contents
(e.g. the attributes of) are modified in the second version. The algorithm takes node-signature and edge-
signature of elements for comparison. The Node-signature consists of node IDs, attributes, and operations;
whereas, for the structural properties of the nodes, the algorithm compares the edge-signature of the nodes.

4.0 MODEL MERGE SOLUTION This section presents a solution to the problem of merging in model-based software configuration
management systems. Model merge deals with combining two or more versions of a model into a single one,
based on model diff activity. As discussed earlier, traditional SCM systems use textual or structured
data to represent models at fine-grained level, which is not a suitable representation to determine the
differences or to merge software diagram produced in the early phases of software development, such as
UML diagrams [3]. We present a 3-way merge process, where a base and its derived versions are
used for merging. The process of merging consists of three steps: 1) comparison of versions, 2) merging
versions, and 3) conflict resolution. The comparison process of versions is done by model diff
component described in section 3. We reuse the results of model diff in merge activities as shown in Figure
2. The first step is to transform base and derived versions into graph structures. The base and derived
versions are the instances of any source model, whereas the transformed models are the instances o f
graph structure model. After transformation, a model diff is applied on base version vs derived V1 and
base version vs derived V2. Then a 3-way merge algorithm is applied using the merge policy to
compares the versions for matched, unmatched, added and deleted elements. Based on difference result
and merge policy, the possible actions can be categorize into add, delete, include changed and include
unchanged elements. In case of the conflicted elements, a manual i n t e r a c t i o n is carried out to resolve
the conflict. A conflict usually o c c u r s if same element of an entity is modified in parallel. To
differentiate conflicted and non-conflicted cases, we define different merge cases. Merge cases are used
to analyze the difference result in order to perform the merge operation. Finally the merge diagram will
be obtained.

 4.1 Merge Policy Merge policy is used for possible automation during merge process to differentiate conflicted and non-
conflicting cases, and to identify the need for manual interaction. For 3-way merging we need to
compare base version elements with derived version elements. We have identified 11 different merge cases
(cf. table 1) based on which we created our merge policy. In case 1 the base element remains
unchanged in both derived versions. Case 2 & 3 represent base element changed in one version while
remains unchanged in second version. Case 4 & 5 represent base element deleted in one version while
unchanged in other version. In case 6 base element is deleted in both versions. Case 7 & 8 represents
an element is added in either ve r s i on . Case 9 & 10 represent base element changed in one version
while delete in other version. Case 11 represent base element is changed in both versions. Note that
case 9, 10 and 11 are conflicted scenario, since same element is modified parallel in both versions.

Based on merge cases, we establish o u r merge policy as follows: If the base element is unchanged in
both versions, then the unchanged element is included into the merge version. If the base element is
changed i n both versions, then both changed elements are included in merge version. Since this is a
conflicted scenario, merge version will be manually updated to resolve the conflict. If the base element

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

235
Malaysian Journal of Computer Science. Vol. 29(3), 2016

is unchanged in one version and changed in other version then both changed and unchanged element will
be included into merge version. If the base element is changed in one version and deleted in other version
then the changed element will be included into merge version. Since this is also a conflicted scenario,
merge version will be manually updated to resolve the conflict. If the element remains unchanged in one
version and deleted in other version then the element will be considered deleted and should not be
included in merge version. If the element is deleted in both version then it is also considered deleted and
should not be included in merge version. All elements that are added in the derived versions are included
into the merged version.

Table 3: Merge Cases

4.3 Merging Algorithm

Our 3-way merge algorithm consists of three parts: mergeModelsP1, mergeModelsP2, and
mergeModelsP3. First two parts deal with non-conflicting cases whereas the third part deals with
conflicting cases. Furthermore, mergeModelsP2 given in algorithm 2.0 covers those cases which can
be automated in the merge process.
Following notations are used in merge algorithm.
Base version V: Base version represents the original model.
Derived version V1: Derived version V1 represents the first modification to the base version.
Derived version V2: Derived version V2 represents the second modification to the base version.
MapSet{}: To represent the map elements of the base version and the derived versions.
ChangeSet{}: To represent the elements which are modified in the derived versions.
NewSet{}: To represent the elements which are added in the derived versions.
DeleteSet{}: To represent the elements which are deleted in the derived versions.

The whole merge algorithm works as follows; for the given model ‘m’, the diff results of base version
‘m’ and its derived version V 1 and the base ‘m’ and its derived version V 2 a merge model will be
generated based on the cases given in Table 3. The algorithm 1.0 mergeModelsP1 starts from the first
case of the 3-way merge, i.e., if a base element is unchanged in both derived versions, it is mapped
and included into merge model as mapped node (lines 1 − 8) in Algorithm 1.0. For all the elements in
V1’s MapSet{} and V2’s MapSet{} (both MapSet{} computed by model diff component) are compared,
and the match element is added to merge model. Then the second case of the 3-way merge is
covered (lines 9 − 17) in Algorithm 1.0, if a base element is unchanged in version V 1 and changed in
version V 2 then both the unchanged and changed element are included into merge model. For this
all the elements in V1’s MapSet{} and V2’s ChangeSet{} are compared and the match element are
added to merge model as changed node in version 2 and mapped node in version 1. Then the third
case of the 3-way merge is covered (lines 18 − 26) in Algorithm 1.0, if a base element is changed in

Cases Base Vs V1 Base Vs V2 Action Type
1 unchanged unchanged include unchanged -
2 unchanged changed include changed -
3 changed unchanged include changed -
4 deleted unchanged deleted -
5 unchanged deleted deleted -
6 deleted deleted deleted -
7 new - include new -
8 - new include new -
9 changed deleted include changed conflict

10 deleted changed include changed conflict
11 changed changed include both changed conflict

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

236
Malaysian Journal of Computer Science. Vol. 29(3), 2016

version 1 and unchanged in version 2 then both the unchanged and changed element will be included
into merge model. For this all the elements in V1 ChangeSet{} and V2 MapSet{} will be compared
and the match element will be added to merge model as changed node in version 1 and mapped node
in version 2. Algorithm 2.0 mergeModelsP2 starts from the fourth case of the 3-way merge (lines 1 −
8), i.e., if a base element is deleted in version 1 and unchanged in version 2 then element is not
included into merge model, i.e., considered deleted. For this, all the elements in V1 DeleteSet{} and
V2 MapSet{} are compared and the match element is not added to the merge model. Then the fifth case
of the 3-way merge is covered (lines 9 − 16), i.e., if a base element is unchanged in version 1 and
deleted in version 2 then element is not be included into merge model, i.e., considered deleted.
For this, all the elements in V1 MapSet{} and V2 DeleteSet{} are compared and the match element is
not be added to merge model. Then the sixth case is covered (lines 17 − 24), i.e., if a base element is
deleted in both versions. For this, all the elements in V1 DeleteSet{} and V2 DeleteSet{} are
compared and the match element is not be added to merge model. Then the seventh and eighth cases
are covered (lines 25 − 32), i.e., if an element is new in either version then the element are included
into merge model. For this, all the elements in V1 NewSet{} and V2 NewSet{} are traversed and the
new elements are added to merge model.

Fig. 2. Merging workflow

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

237
Malaysian Journal of Computer Science. Vol. 29(3), 2016

The conflicting cases are covered in mergeModelsP3 g i v e n in Algorithm 3 . 0 . The algorithm starts
from the ninth case of the 3-way merge (lines 1 − 9), i.e., if a base element is deleted in version 1
and changed in version 2 then both the deleted and changed element are included in the merge
model. For this all the elements in V1 DeleteSet{} and V2 ChangeSet{} are compared and the
match element is added to merge model as deleted node in version 1 and changed node in version
2. Then the tenth case is covered (lines 10 − 18), i.e., if a base element is changed in version 1 and
deleted in version 2 then both the deleted and changed element are included into the merge model. For
this all the elements in V2 DeleteSet{} and V1 ChangeSet{} are compared and the match element
will added to merge model as deleted node in version 2 and changed node in version 1. Then the
eleventh case is covered (lines 19 − 34), i.e., if a base element is changed in both version 1 and
version 2 then both the changed elements will be included into merge model. For this all the elements
in V1 ChangeSet{} and V2 ChangeSet{} will be compared and the match element will added to merge
model as changed node in version 1 and changed node in version 2.

Algorithm 1.0 mergeModelsP1
Require: V1 MapSet{}, V2 MapSet{}, V1 ChangeSet{}, V2 ChangeSet{},

1: V1 DeleteSet{}, V2 DeleteSet{}, V1 NewSet{},V2 NewSet{}
2: // Case 1: Unchanged + Unchanged
3: for all elements of V1 MapSet{} traverse V1 MapSet{} do
4: for all elements of V2 MapSet{} traverse V2 MapSet{} do
5: if any element of V1 MapSet{} equals to V2 MapSet{} then
6: add element to the MergeModel as mapped node
7: end if
8: end for
9: end for

10: // . Case 2: Unchanged + Changed
11: for all elements of V2 ChangeSet{} traverse V2 ChangeSet{} do
12: for all elements of V1 MapSet{} traverse V1 MapSet{} do
13: if any element of V1 MapSet{} equals to V2 ChangeSet{} then
14: add element to the MergeModel as mapped node in V1
15: add element to the MergeModel as mapped node in V2
16: end if
17: end for
18: end for
19: // . Case 3: Changed + Unchanged
20: for all elements of V1 ChangeSet{} traverse V1 ChangeSet{} do
21: for all elements of V2 MapSet{} traverse V2 MapSet{} do
22: if any element of V1 ChangeSet{} equals to V2 MapSet{} then
23: add element to the MergeModel as changed node in V1
24: add element to the MergeModel as mapped node in V2
25: end if
26: end for
27: end for

Algorithm 2.0 mergeModelsP2

1: // Case 4: Deleted + Unchanged
2: for all elements of V1 DeleteSet{} traverse V1 DeleteSet{} do
3: for all elements of V2 MapSet{} traverse V2 MapSet{} do
4: if any element of V1 DeleteSet{} equals to V2 MapSet{} then
5: do not include element in MergeModel
6: end if
7: end for
8: end for
9: // Case 5: Unchanged + Deleted

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

238
Malaysian Journal of Computer Science. Vol. 29(3), 2016

10: for all elements of V2 DeleteSet{} traverse V2 DeleteSet{} do
11: for all elements of V1 MapSet{} traverse V1 MapSet{} do
12: if any element of V2 DeleteSet{} equals to V1 MapSet{} then
13: do not include element in MergeModel
14: end if
15: end for
16: end for
17: // Case 6: Deleted + Deleted
18: for all elements of V2 DeleteSet{} traverse V2 DeleteSet{} do
19: for all elements of V1 DeleteSet{} traverse V1 DeleteSet{} do
20: if any element of V2 DeleteSet{} equals to V1 DeleteSet{} then
21: do not include element in MergeModel
22: end if
23: end for
24: end for
25: Case 7: New element in V1
26: for all elements of V1 NewSet{} traverse V1 NewSet{} do
27: add element to the MergeModel as new node in V1
28: end for
29: Case 8: New element in V2
30: for all elements of V2 NewSet{} traverse V2 NewSet{} do
31: add element to the MergeModel as new node in V2
32: end for

Algorithm 3.0 mergeModelsP3

1: // Case 9: Deleted + Changed
2: for all elements of V1 DeleteSet{} traverse V1 DeleteSet{} do
3: for all elements of V2 ChangeSet{} traverse V2 ChangeSet{} do
4: if any element of V1 DeleteSet{} equals to V2 ChangeSet{} then
5: add element to the MergeModel as deleted node in V1
6: add element to the MergeModel as changed node in V2
7: note conflict for V1
8: end if
9: end for

10: end for
11: // Case 10: Changed + Deleted
12: for all elements of V2 DeleteSet{} traverse V2 DeleteSet{} do
13: for all elements of V1 ChangeSet{} traverse V1 ChangeSet{} do
14: if any element of V2 DeleteSet{} equals to V1 ChangeSet{} then
15: add element to the MergeModel as deleted node in V2
16: add element to the MergeModel as changed node in V1
17: note conflict for V1
18: end if
19: end for
20: end for
21: // Case 11: Changed + Changed (V1)
22: for all elements of V1 ChangeSet{} traverse V1 ChangeSet{} do
23: for all elements of V2 ChangeSet{} traverse V2 ChangeSet{} do
24: if any element of V1 ChangeSet{} equals to V2 ChangeSet{} then
25: add element to the MergeModel as changed node in V1
26: note conflict for V1
27: end if
28: end for
29: end for
30: // Case 11: Changed + Changed (V2)

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

239
Malaysian Journal of Computer Science. Vol. 29(3), 2016

31: for all elements of V2 ChangeSet{} traverse V2 ChangeSet{} do
32: for all elements of V1 ChangeSet{} traverse V1 ChangeSet{} do
33: if any element of V2 ChangeSet{} equals to V1 ChangeSet{} then
34: add element to the MergeModel as changed node in V2
35: end if
36: end for

37: end for

5.0 EMPIRICAL PERFORMANCE EVALUATION To benchmark our approach, we performed several tests and compare our approach with the open
source tool EMF Compare[7]. The main assessment criteria of our evaluation are the quality of the
calculated solutions and the required runtime.

Case Study 1:
We have performed a controlled experiment on a library system class model to benchmark the diff algorithm.
We took six different cases to run our tests consisting different versions of the input models, in term of the
size of the versions of the models. Since we are performing a 3-way merge, we took 3 versions of the
model in every case, where one version is the base case and the other two versions are the derived
versions. The tests were performed on a standard PC Intel Core Duo CPU P9400 with 4 GB memory.
The results of the evaluation are shown in F igure 3 for our approach and F igure 4 for EMF Compare.
Figure 5 shows the comparison table for both approaches and Figure 6 shows the comparison chart. The
first column of the table shows different cases (Cases) on which the test were performed. The
second column (Model Versions) shows the three versions of the model. The third column (Ele.) of the
table shows the sum of the number of XMI elements of all versions. The fourth column (Cla.) shows the
total number of classes. The fifth column (Diff Det. ∑) shows the total number of differences detected
using 3-way merge. The sixth column (Ele. Ad. Md.) shows the number of elements which are either
added or modified. The seventh column (Ele. Del.) shows the number of elements which are deleted.
The eighth column (Conflict Changes) shows the number of conflicting changes. The ninth column (Diff.
Ele. %) shows the percentage of changed elements between the versions. Finally, the last column (Exe.
Time (ms)) shows the runtime of the diff operation in milliseconds. The runtime shown in the table are
the average of five test runs.

 5.1 Case A
 In first case, we took the three versions Vb, V0 and V1 of the model of relatively small size, where Vb
represents the base version and V0, V1 represent the derived version 0 and 1, respectively. The number
of elements was 34 and the number of classes was 13 in three versions. From this test, the total number of
differences detected was 4 element addition & modification changes. The percentage of the detected
differences was 11% and the execution time was 470ms. For EMF Compare, the same results for
element addition & modification changes were obtained but EMF Compare also showed the difference of
one deleted element. Thus the total number of differences showed by EMF Compare was 6. Our
approach also detected this difference but in the merge model we didn’t show this difference because
the deleted element was deleted in V1 and unchanged in V0 and according to our merge policy, a non-
conflicting scenario and the deleted element is not included in the merge model. The execution time of
EMF Compare was 632 ms, compared to 470ms for our approach.

 5.2 Case B
 In case B, we have increased the number of elements from 34 to 55 and the number of classes from 13 to

18. The two derived versions of the base version are V2 and V3. The total number of differences detected
by our approach was 25 (21 element addition and modification changes, 2 element delete changes, and 2
conflicting changes). The conflicting changes exist because one of the attribute and reference of a

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

240
Malaysian Journal of Computer Science. Vol. 29(3), 2016

the class was modified in V1 while deleted in V2. The percentage of the detected differences is 45%,
and the execution time is 481ms. For EMF Compare, the total number of differences detected by EMF
Compare was 21, 4 less than our approach. By closely analyzing the output of EMF Compare, it was
observed that EMF Compare did not record the reference addition of new elements’ in the second version.
Our approach identified 21 changes for element addition and modification, whereas EMF Compare only
detected 17. This is because EMF Compare did not detect the 4 new references of 3 new classes added
in both derived versions. EMF Compare takes 653ms to perform the merge operation for the given input,
compared to ours of 481ms. Furthermore, the difference between the execution time in performing case
A and case B was 11ms in our approach and 21ms for EMF Compare.

5.3 Case C
 In case C, 119 elements and 33 number of classes was used. The two derived versions in case C were V4

and V5. The total number of differences detected by our approach is 40, (36 element addition and
modification changes, 2 element delete changes, and 2 conflicting changes). The percentage of the
detected differences was 33% in 517ms. For EMF Compare, the total number of differences detected
was 27 (23 element addition and modification changes, 2 element delete changes, and 2 changes of
reordering of the elements), 13 less than the differences calculated by our approach. The 2
conflicting changes were not identified by EMF Compare, which are layout change, shows the
inaccuracy of the results execution time by EMF Compare was 693ms, whereas our approach took
517ms. Furthermore, the difference between the execution time in performing case B and case C was
36ms for our approach and 40 md for EMF Compare.

5.4 Case D
 In case D, we have increased the number of elements from 119 to 181 and the number of classes from 33

to 50. The two derived versions in case D of the model were V5 and V6. The total number of differences
detected by our approach is 67 (55 element addition and modification changes, 4 element delete changes,
and 8 conflicting changes). The percentage of the detected differences is 37% in 535ms. For EMF
Compare, the total number of differences detected is 50 (40 element addition and modification changes, 3
element deleted changes, 5 conflicting changes, and 2 changes of reordering of the elements), 17 less
than the differences calculated by our approach, the 3 unidentified conflict changes, 1 unidentified
delete change, and 2 reordering changes identification, errors showed the inaccuracy of the results.
EMF Compare took 741ms to perform the merge operation whereas our approach took 535ms. The
difference between the execution time in performing case C and case D was 18ms in our approach and
48ms for EMF Compare.

 5.5 Case E
 In case E, we have used 240 elements and 61 classes. The two derived versions in case E of the

model were V6 and V7. The total number of differences detected by our approach for case E is 78 (61
element addition and modification changes, 7 element delete changes, and 10 conflicting changes).

Fig. 3: Test results of our approach

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

241
Malaysian Journal of Computer Science. Vol. 29(3), 2016

The percentage of the detected differences is 32% executed in 546ms. For EMF Compare, the total number
of differences detected by EMF Compare is 64, (50 element addition and modification changes, 4
element deleted changes, 8 conflicting changes, and 2 changes of reordering of the elements) in
760ms. The difference between the execution time in performing case D and case E was 11ms for our
approach and 19ms for EMF Compare.

 Fig. 4: Test results of EMF Comp approach
5.6 Case F
 For case F, we have increased the number of elements from 240 to 290 and the number of classes from 61

to 73. The two derived versions in case F of the model were V5 and V6. The total number of differences
detected by our approach is 96 (82 element addition and modification changes, 5 element delete changes,
and 9 conflicting changes). The percentage of the detected differences is 33% in 560ms. For EMF
Compare, the total number of differences detected is 75 (64 element addition and modification changes,
3 element deleted changes, 5 conflicting changes, and 3 changes of reordering of the elements), 21 less
than the differences calculated by our approach. The execution time taken by EMF Compare was
775ms and the difference between the execution time in performing case E and case F was 14ms in our
approach and 15ms for EMF Compare.

 Fig. 5: Results comparison

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

242
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Fig. 6: Comparison chart Case Study 2: In this case study, we took the class diagram of ECore metamodel given in the plugins directories of eclipse

installation folder [19]. ECore metamodel consists of hundreds of elements in form of classes and association
between these classes. However, for our test purposes we have modified the model for different test cases. For
instance, Vb, V0, and V1 are the three versions, where Vb represents the base version, V0, V1 represents the
derived versions. In base version Vb, we have the classes, EClass, EReference, EOperation, EAttribute,
EParameter, and EDataType. EClass class has association to EReference, EOperation, and EAttribute classes.
The name of the associations are eOperations, eReferences, eAttributes, and eIDAttribute. There are six
operations in the EClass. EReference class contains three attributes and having associations to EClass and
EAttribute. EAttribute class has one and association relationship to EDataType class. EDataType class has one
attribute and no relationship. EOperation class contains two operations and one association to EParameter class.
EParameter class has association to EOperation class. In derived version V0 we have the following classes.
EClass, EReference, EOperation, EClassifier, EParameter, EDataType, EGenericType, and EFactory. EClass
class has association to EReference, EOperation, and EClassifier classes. The name of the associations are
eOperations, eAllReferences, and eType. There are four operations in the EClass. EReference class contains
one attribute and having association to EClass. EClassifier class has one attribute and association to
EGenericType class. EDataType class has one attribute and no relationship. EOperation class contains two
operations and associations to EParameter and EDataType class. EParameter class has association to EOperation
class. EGenericType class has association to EFactory class. EFactory class has one attribute and no
relationship. EGenericType, and EFactory classes has been added and EAttribute class has been deleted in
second version. Similarly, in V1, we have further modified the base version Vb. Figure 7 and Figure 8 show the
results of execution time taken in these experiments. The comparison chart for second experiment is given in
Figure 9 which shows the execution time comparison for all the tests performed.
In case A we took the three versions Vb, V0 and V1 of the model of relatively small size. The number of
elements was 74 and the number of classes was 19 in three versions. When we executed our proposed merge
approach on the given versions, we got the following results given in Fig. 7. The execution time taken by our
approach is 481ms. The results of test performed on EMF Compare are given in Fig. 8. The execution time
taken by EMF Compare is 656ms.

In case B, we increased the number of elements of the three versions Vb, V2 and V3 as compared to case A,
where Vb represents the base version and V2, V3 represent the derived version 2 and 3, respectively. The
number of elements was 123 and the number of classes was 21 in three versions. The execution time taken by

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

243
Malaysian Journal of Computer Science. Vol. 29(3), 2016

our approach is 511ms. The execution time taken by EMF Compare is 674ms. The difference between the
execution time in performing case A and case B was 30ms in our approach and 18ms for EMF Compare.

In case C, the number of elements was 139 and the number of classes was 39 in three versions. When we
executed our proposed merge approach on the given versions, the execution time is 535m. The execution time
taken by EMF Compare is 710ms. The difference between the execution time in performing case B and case C
was 24ms for our approach while 36ms for EMF Compare.

 In case D, the number of elements was 205 and the number of classes was 56 in three versions. The execution
time taken by our approach was 575ms. The execution time taken by EMF Compare was 788ms to perform the
merge operation for the given input. The difference between the execution time in performing case C and case D
was 40ms in for our approach while 78ms for EMF Compare.

In case E, the number of elements was 275 and the number of classes was 75 in three versions. The execution
time taken by our approach is 587ms and 857ms for EMF Compare. The difference between the execution time
in performing case D and case E was 12ms for our approach and 69ms for EMF Compare.

In case F, the number of elements was 332 and the number of classes was 87 in three versions. When we
executed our proposed merge approach on the given versions, the execution time taken by our approach is
617ms and 906ms for EMF Compare. The difference between the execution time in performing case E and case
F was 30ms for our approach while 49ms for EMF Compare.

 Fig. 7: Test results of our approach for case study 2

 Fig. 8: Test results of EMFComp approach for case study 2

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

244
Malaysian Journal of Computer Science. Vol. 29(3), 2016

 Fig. 9: Comparison chart for case study 2 6.0 CONCLUSION Model versioning, differencing, merging are relatively young but key research areas in MDE. In this paper we
presented a fine-granular model merge solution for model-based version control system in MDE. We
represented models at fine-grained level as graph structures, which is an intermediate representation based on
graph theory. Our approach followed a 3-way model merge process, where a base and its derived versions
are used for comparison. To differentiate between conflicted and non-conflicted cases we defined different
merge cases. A merge policy was established based on merge cases. Merge cases were used along with
the comparison result in order to perform conflict resolution and merge operation. We performed a
controlled experiment using open source eclipse modeling framework and compare our approach with an
open source tool EMF Compare. The results proved the accuracy and efficiency of our proposed
approach.

There are several future directions that we can consider. On one hand, this generality gives the advantage
that different kinds of domain specific models can be compared with each other but on the other h a n d ,
as a consequence, diff and merge results are very generic too, only primitive changes, such as add
or delete are recognized. Similarly, in model diff and merge activities, an appropriate visualization of
differences between two versions is important for understanding the differences. In our approach, we used
annotations to highlight the differences, w h i l e an alternative solution is the use of di f f erent colors.
Different colors can be used to distinguish between different parts. However, doing so, one has to consider
the editor tool dependency issue. In future we will work on these issues.

REFERENCES [1] M. Pilato. “ Version Control with Subversion”. O’Reilly & Associates, Inc., Sebastopol, CA, USA,

2004. ISBN 0596004486.
[2] Cvs project. cvs web site. http://www.nongnu.org/cvs.
[3] D. Ohst, M. Welle. U. Keller “Merging UML documents.” Technical report, Universitt Siegen,

2004.
[4] D. Ohst. “ A fine-grained version and configuration model in analysis and design”. In ICSM’02:

Proceedings of the International Conference on Software Maintenance (ICSM’02), page 521,
Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1819-2.

[5] D. Ohst, M. Welle, U. Kelter. “ Differences between versions of uml diagrams”. In ESEC/FSE-
11: Proceedings of the 9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software engineering, PP. 227–

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

245
Malaysian Journal of Computer Science. Vol. 29(3), 2016

236, New York, NY, USA, 2003. ACM. ISBN 1-58113-743-5. doi:
http://doi.acm.org/10.1145/940071.940102.

[6] Eclipse.org: Eclipse modeling framework (emf), http://www.eclipse.org/modeling/emf/.
[7] Eclipse foundation, emf compare, 2008. In

http://www.eclipse.org/modeling/emft/?project=compare#comp
[8] A. Mehra, J. Grundy, J. Hosking. “A generic approach to supporting diagram differencing and

merging for collaborative design”. In ASE ’05: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, PP. 204–213, New York, NY, USA, 2005. ACM.
ISBN 1-59593-993-4. doi: http://doi.acm.org/10.1145/1101908.1101940.

[9] A. Qazi, K. B. S. Syed, R. G. Raj, E. Cambria, M. Tahir, D. Alghazzawi, “A concept-level
approach to the analysis of online review helpfulness”, Computers in Human Behavior, Vol. 58,
May 2016, PP. 75-81, ISSN 0747-5632, http://dx.doi.org/10.1016/j.chb.2015.12.028.

[10] C. Schneider, A. Zndorf, J. Niere. “CoObRA – a small step for development tools to collaborative
environments”. In Workshop on Directions in Software Engineering Environments in 26th
international conference on software engineering, Edinburgh, Scotland, UK, May 2004. URL
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/SZN04.pdf.

[11] H. Oliveira, L. Murta, C. Werner. “ Odyssey-vcs: a flexible version control system for uml model
elements”. In SCM ’05: Proceedings of the 12th international workshop on Software configuration
management, PP. 1–16, New York, NY, USA, 2005. ACM. ISBN 1-59593-310-7. doi:
http://doi.acm.org/10.1145/1109128.1109129.

[12] M. Kogel. “ Time – tracking intra- and inter-model evolution”. In Software Engineering
(Workshops), PP. 157–164, 2008.

[13] M. Kogel. “Towards software configuration management for unified models”. In CVSM ’08:
Proceedings of the 2008 international workshop on Comparison and versioning of software models,
PP. 19–24, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-045-6. doi:
http://doi.acm.org/10.1145/1370152.1370158.

[14] J. Helming, M. Koegel. Unicase. http://unicase.org.
[15] P. Brosch, P. Langer, M. Seidl, M. Wimmer. 2009. Towards end-user adaptable model versioning: The

By-Example Operation Recorder. In Proceedings of the 2009 ICSE Workshop on Comparison and
Versioning of Software Models (CVSM '09). IEEE Computer Society, Washington, DC, USA, 55-60.
DOI=10.1109/CVSM.2009.5071723 http://dx.doi.org/10.1109/CVSM.2009.5071723

[16] W. Mehmood, N. Shah, Z. ur-din, E. U. Munir, “Fine-Granular Model Diff Solution in Model-
based Version Control Systems”, Malaysian Journal of Computer Science, Vol. 28, No. 2, June 2015.

[17] M. Alanen, I. Porres, "Difference and union of models," In Proceedings of the UML Conference,
Springer-Verlag LNCS 2863, San Francisco, California, PP. 2–17, Oct.2003.

[18] E. Xing, Zhenchang, Stroulia, "Umldiff:An algorithm for object-oriented design differencing," In Proc,
IEEE/ACM International Con-ference on Automated Software Engineering(ASE’05), Nov.2005, Long
Beach, California, USA, ACM, pp 54–65.

[19] U. Kelter, J. Wehren, J. Niere, "A generic difference algorithm for uml models," In Peter Liggesmeyer,
Klaus Pohl, Michael Goedicke, editors, Software Engineering, volume 64 of LNI, pp 105–116, GI, 2005,
ISBN 3-88579-393-8.

[20] E. H. Berso, V. D. Henderson, S. G. Siegel. Software configuration management. Software configuration
management: a tutorial. IEEE Computer, Vol. 12 No. 1, January 1979, pp. 6-14.

Fine-Granular Model Merge Solution For Model-Based Version Control System. pp 225-246

246
Malaysian Journal of Computer Science. Vol. 29(3), 2016

[21] R. Conradi, B. Westfechtel, “Version models for software configuration management”. ACM Comput.
Surv. Vol. 30 No. 2, June 1998, pp. 232-282.

[22] M. A. Shayegan, S. Aghabozorgi, R. G. Raj, “A Novel Two-Stage Spectrum-Based Approach for
Dimensionality Reduction: A Case Study on the Recognition of Handwritten Numerals,” Journal of Applied
Mathematics, vol. 2014, Article ID 654787, 14 pages, 2014. doi:10.1155/2014/654787.

[23] M. Brambilla, J. Cabot, M. Wimmer, “Model-Driven Software Engineering in Practice” Morgan &
Claypool, 2012.

[24] S. Foertsch, B. Westfechtel. Differencing and merging of software diagrams - state of the art and
challenges. In ICSOFT (SE), PP. 90-99, 2007.

[25] D. S. Kolovos, D. D. Ruscio, A. Pierantonio, R. F. Paige. Different models for model matching: An analysis
of approaches to support model differencing. In CVSM '09: Proceedings of the 2009 ICSE Work-shop on
Comparison and Versioning of Software Models, PP. 1-6, Washington,DC, USA, 2009. IEEE Computer
Society. ISBN 978-1-4244-3714-6. doi:http://dx.doi.org/10.1109/CVSM.2009.5071714.

[26] Y. Lin, J. Gray, F. Jouault. Dsmdiff: A differentiation tool for domain-specific models. In European Journal
of Information Systems (Special Issue on Model-Driven Systems Development), vol. 16, no. 4, PP. 349-
361, 2007.

[27] A. Qazi, R. G. Raj, M. Tahir, M. Waheed, S. U. R. Khan, and A. Abraham, “A Preliminary Investigation of
User Perception and Behavioral Intention for Different Review Types: Customers and Designers
Perspective,” The Scientific World Journal, vol. 2014, Article ID 872929, 8 pages, 2014.
doi:10.1155/2014/872929.

[28] L. B. Huang, V. Balakrishnan, R.G. Raj, "Improving the relevancy of document search using the multi-term
adjacency keyword-order model." Malaysian Journal of Computer Science, Vol. 25, No. 1, 2012, pp. 1-10.

[29] MagicDraw http://www.nomagic.com/products/magicdraw.html , last visited February 2016.
[30] MS Visio https://products.office.com/en-us/visio/, last visited February 2016.
[31] Eclipse Modeling Framework (EMF) [Online] Available: http://www.eclipse.org/modeling/emf/.

