
Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

196
Malaysian Journal of Computer Science. Vol. 29(3), 2016

LOAD BALANCING IN GRID COMPUTING USING ANT COLONY ALGORITHM AND MAX-MIN
TECHNIQUE

Rose Karimpour1, Mohammad Reza Khayyambashi2, Naser Movahhedinia3

1, 2, 3 Department of Computer Architecture, Faculty of Computer Engineering
University of Isfahan

Isfahan, Iran

Email: R.K@eng.ui.ac.ir1, M.R.Khayyambashi@eng.ui.ac.ir2, Naserm@eng.ui.ac.ir3

ABSTRACT
Stagnation is one of the complicated issues in Grid computing systems, which is caused by random arrival of
tasks and heterogeneous resources. Stagnation occurs when a large number of submitted tasks are assigned to a
specific resource and make it overflow. To prevent this scenario, a load balancing algorithm based on Ant
Colony algorithm and Max-min technique is proposed in this paper. In the proposed algorithm, the resource
manager of the system finds the best resource for a submitted task according to a matrix that indicates the
characteristics of all resources as pheromone values. By choosing the best resource for the submitted task, a
local pheromone update is applied to the selected one to reduce the tendency of being selected by onward new
tasks. After this assigned task is executed properly, a global pheromone update is performed to renew the status
of all resources for the next submitted tasks. To avoid stagnation, a comparison between a predefined threshold
and the pheromone value of each resource is performed to keep the number of assigned tasks below this
threshold. Due to harmonizing the resources’ characteristics and tasks, the proposed algorithm is able to
reduce the response time of the submitted tasks while it is simple to be implemented.
Keywords: Grid computing, Ant colony algorithm, Stagnation, Load balancing.
1.0. INTRODUCTION
Distributed computing is used for running computing applications on several computers which are connected via
a network. The motivation of building this system is sharing of resources [1].
The best ways to construct a distributed system are cloud and grid computing. A cluster system includes several
computers that are connected by a local network. Due to the fixed area of the cluster system, a computing
application would be limited and flexible. To overcome this problem, grid computing is increasingly applied in
which diverse resources in different regions are connected via a comprehensive network like the internet [2].
To utilize all available resources and minimize the execution time of the input tasks, a resource management
with an effective scheduling algorithm is required to distribute the input load equally between the resources of
the grid computing system. This algorithm should act in a way that the difference between the simplest resource
and the complex one becomes minimal. Because of the dynamic inclusion and exclusion of resources in the grid
environment, the scheduling algorithm must consider these circumstances and adapt to the dynamic changes of
the system [3].
In general a scheduling technique consists of three phases [4]:

- Gathering information: In this phase, the resource manager gathers the information about the status of
the computing resources and recognizes whether there is an unbalanced load on the environment.

- Decision making: The resource manager focuses on an optimal distribution by choosing the waiting
tasks in resources’ queues and decides to move them to the idle ones.

- Data migration: Tasks are moved from an overloaded resource to an underloaded one.

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

197
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Load balancing algorithms can be divided into many categories from different points of view. These algorithms
can be divided into static and dynamic algorithms in which the time of making a decision is considered. In static
scheduling, all information about the tasks and resources is available. In contrast, in dynamic scheduling the
information about the status of the resources is obtained during the execution time [5]. From another point of
view, these algorithms can be divided to centralized and decentralized algorithms. In a centralized algorithm,
one central scheduler is responsible for making balancing decision. Some of the algorithms categorized in this
field are as follows [6]:

- Minimum Execution Time (MET): The execution time of the submitted task is estimated in each
resource. The resource with the least execution time is selected regardless of its availability.

- Minimum Completion Time (MCT): The completion time of the submitted task is estimated in each
resource. This time includes the execution time and the time needed to wait in the resource’s queue.
Each task is allocated to each resource with the least completion time.

- Min-Min: The completion time of each unmapped task in each resource is estimated and the minimum
task/resource time is assigned. After mapping this task, it would be removed from the unmapped
queue.

- Max-Min: This approach is similar to Min-Min approach except the maximum completion time of
task/resource is selected.

- Opportunistic Load Balancing: Each task is allocated to the resource with the least current load. The
main idea of this approach is to occupy all resources as much as possible.

Max-min algorithm dedicates large tasks as priority ones in comparison with small tasks which provides the
opportunity of executing more small tasks during large ones simultaneously regarding to determining the make-
span by the duration of large task. But this approach would bring a noticeable problem in case of entering tasks
with diverse completion time and execution one. In this scenario, the distributed environment would experience
performance declination with excessive waiting time for small tasks [7].
In [8] a new approach based on Max-min algorithm is presented that covers the above mentioned scenario by
executing big tasks with slower resources that minimizes waiting times of the smaller tasks by allocating them
to fastest resources concurrently which facilitates the execution of smaller tasks during large tasks execution.
But this approach presents a scenario with the assumption of resources without current loads which is not
suitable for real scenarios.
Nowadays, the ant colony technique is a good candidate to solve the optimization problems. This technique is a
subset of artificial intelligence techniques based on the behavior of independent agents. In these communities,
each agent has a simple structure, but their environmental behavior are complicated. These agents communicate
with each other directly (signals, symptoms) or indirectly (via impacting on the environment) and solve a
problem together. These agents communicate with the environment via their sensors and have influences on it.
Ant colony algorithm is a good candidate for solving load balancing in the Grid computing systems because it is
conformed to solve static and dynamic optimization problems [9].
In this paper, a new approach based on Ant colony algorithm and Max-min is presented in which a matrix is
used to keep the information about the status of all resources/tasks. By submitting a new task to the system, a
column presenting the completion time of this task on each resource is added to the matrix as pheromone value
with regard to considering the current loads of available resources. By using the Max-Min technique, a task with
largest execution time is allocated to a resource with minimum completion time. By sending this task to the
selected resource, a local pheromone update function is performed to make this resource less desirable for the
next submitted tasks. After the task is executed on the resource, a global pheromone update is applied to all
resources/tasks in the matrix to update the status of them. This iteration would be executed again by entering a
new task to the system.
The remainder of this paper is organized as follows: Section 2 is dedicated to related works. In this section,
previous load balancing approaches based on ant colony algorithm and Max-min technique are mentioned. In
section 3, the proposed algorithm is described in detail and section 4 focuses on the setup of the simulation

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

198
Malaysian Journal of Computer Science. Vol. 29(3), 2016

results followed by comparing the proposed approach with previous algorithms in section 5 and 6. Finally
section 7 is dedicated to conclusion.
2.0. RELATED WORK
With regard to grid computing that plays impressive role in executing complicated tasks which need resources
with sufficient requirements, load balancing is considered as one of the dominant issues in this field, which
assists increase in performance in distributed system, encouraging many researchers to release new ideas for
task scheduling. However, most of the existing approaches do not consider real scenarios and evaluate their
approaches with predetermined assumption that prevent applying these proposals to real distributed systems. In
this section, some of the related approaches are expanded regarding to their disadvantages.
In [10], a scheduling algorithm based on ACO for assigning tasks in Grid computing is proposed. This approach
called BACO tries to optimize the completion time of executing tasks in Taiwan UniGrid by selecting the best
resources according to local and global pheromone update techniques. Local pheromone update is done after a
task is assigned to a resource and updates the status of the resource. This update decreases the attraction for
selecting this resource for another submitted task. Global pheromone update is done after this task is executed in
the resource and makes this resource a choice for executing the next incoming task. But this approach balances
the system without considering the size of the incoming tasks. Also it is only applied to Taiwan UniGrid
environment with limited number of resources and imported tasks and is not tested in a wider environment.
Another approach using ant colony technique for dynamic load balancing is proposed in [11]. This approach
tries to minimize the completion time of the submitted tasks based on local and global pheromone update.
When a task is submitted to the system, the execution time of this task in each resource is estimated. The
estimation time is set as the initial pheromone value for each resource. The one that has the least value is
selected to execute the submitted task. However, this approach is tested for tasks with small size (1000 to 5000
MI).
In [12], an idea based on ant colony for load balancing in Grid computing system is proposed. In this approach,
the pheromone update process is conducted by applying encouragement and punishment. If a resource executes
the assigned task successfully, more pheromone is allocated to that resource by an encouragement function and
raises its chance to be selected for the next submitted tasks. If a resource cannot process a task completely, the
punishment function assigns a lower pheromone value to this resource. However, a comparison has not been
made between this idea and other approaches.
The Max-Min Ant system (MMAS) which is proposed in [13], is one of the most successful algorithms in ant
colony algorithm. The main advantage of this approach is the pheromone trail threshold, which keeps all of
them between a predefined lower and upper bound. This threshold is designed to avoid the stagnation problem.
This approach has the favorable property of robustness, which means when a failure occurs in the system, the
algorithm can handle it and continue to perform. But tuning the predefined parameters so that the algorithm
performs well is difficult.
In [14] a new task scheduling strategy is proposed which is called RASA which exerts the combination of Max-
min and Min-min. Max-min is used to neglect extra delays for large tasks by executing them with small ones
simultaneously and Min-min is applied to execute small tasks prior to large ones. But this approach is not
expanded for real scenarios in Grid environment.
A Qos load balancing algorithm is presented in [15] in which a formula with the combination of various
parameters and predetermined factors is applied to a particular environment call Grid-JQA which is experienced
the disadvantage of not presenting mathematical solution for practical situations.
UllahMunir presents a new load balancing algorithm named Qossufferage in [16] by considering Grid
bandwidth and task bandwidth requirement. Although this approach leads to more reasonable make-span in

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

199
Malaysian Journal of Computer Science. Vol. 29(3), 2016

comparison with distinct Max-min and Min-min, the proposed algorithm does not consider CPU rates needed to
execute tasks as a noticeable factor.
In [17] a static broadcast algorithm (SBA) is presented where the status of a resource is changed by the arrival
or migration of a task, this resource sends a broadcast message to all of the available resources to inform them
about its new status. In this approach, each resource has a table including the status of all available resources
and helps it to find the best one. But the drawback of this approach is the time needed for executing its code for
the Grid environment.
Other approaches that are used for comparing with the proposed algorithm are Random ones [18]. In these
approaches, when a task is submitted to the system, it is assigned to a resource in a random manner. These
scheduling algorithms distribute loads unequal between the resources without considering impressive factors
which influence on the performance of load balancing algorithms.
In [8] a new approach based on Max-min algorithm is presented which covers the problem of Max-min
approach in case of entering tasks with diverse completion and execution time. The Proposed approach solve
this problem by executing large tasks by slower resources which minimizes short tasks’ waiting time and
allocating them to fastest resources concurrently which facilitates the execution of more small tasks during large
one execution. But this approach presents a scenario with the assumption of resources without current loads
which is not suitable for real scenarios.
3.0. PROPOSED ALGORITHM
In this paper a new algorithm based on ant colony algorithm and Max-min is presented. The purpose of this
algorithm is to minimize the computational time of tasks that are submitted to the Grid environment. This
environment consists of a server that contains information about the Grid’s resources and a resource broker that
is assumed to schedule the submitted tasks and selects the best resources to execute them. To simplify the choice
of these resources, this broker uses a matrix that comprises the pheromone value of each resource/task. This
value demonstrates the status of the resource/task and is obtained by the characteristics of imported tasks, the
amount of current resource’s load and its relative position to the broker.
The proposed algorithm consists of the following phases:

1. A task is submitted to the system by user. This request also includes the task’s size and the number of
CPU cycles it needs. This request is sent to the resource broker.

2. The resource broker determines the requirement for the new submitted task. This broker demands the
information of each resource from the information server.

3. According to the information obtained from the information server, the broker calculates the initial
pheromone value of each resource for each task. This value is determined by the required time for
transmitting the task from the broker to each resource and the estimated time for executing this task on
each of them. The transmission time is computed by dividing the size of the task (taskSize) by the
available bandwidth between the broker and the corresponding resource (RB). The completion time for
the task in that resource depends on the numbers of CPU cycles needed for the task (TASKC), the
speed of the processor of that resource in Million Instruction per Second (resourceMIPS) and the
current load on it. This initial value is formulated as Eq. 1.








)1(*

1
,

resourceresource
TASK

R
task

taskresource

loadMIPS
C

B
SizealuePheromoneV

(1)

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

200
Malaysian Journal of Computer Science. Vol. 29(3), 2016

The pheromone values of each task in each resource are calculated according to Eq. 1 and are used to
construct a matrix as follows:

  



tasks

luePhromoneValuePhromoneValuePhromoneVa

luePhromoneValuePhromoneValuePhromoneVa

resource

resource
aluePheromoneV

mnmm

n

m 











.....
..............

.....

21

112111

4. According to this matrix, the task with maximum execution time is assigned to a resource with
minimum completion time.

5. After this assignment, the local pheromone update function is applied to the selected resource. This is
designed to reduce the tendency to choose the selected resource for new tasks. This function is done by
the following equation (Eq. 2) where ξ ∈ (0,1) is the pheromone decay rate and 0 is the initial value
for the pheromone:

0,,)(*)1()1(  taluePheromoneVtaluePheromoneV taskresourcetaskresource
(2)

6. When the submitted task is assigned to the resource and is completely executed on it, the whole
Pheromone Value for each resource is recalculated. This global pheromone update is performed by Eq.
3 where  is the convergence speed of the algorithm to the best solution:

taskresourceBest
taskresourcetaskresource PVtPVtPV ,,, *)(*)1()1( 

(3)

According to this equation, for updating the pheromone value of a resource, if the executed task in
iteration (t) is used the corresponding resource to reach to the best resource,

Best
taskresourceBest

LPV 1
,  where BestL is the length of the path that the executed task traverses

from the broker to reach out to the best resource. Otherwise this value will be zero. After the
pheromone values of all resources are updated, they are verified to be in predefined bound (

MaxtaskresourceMin PVPVPV  ,). If the Mintaskresource PVPV , , it is set to MinPV and if it is bigger
than MaxPV , it is set to this value. These upper and lower threshold are chosen experimentally by the
designer. This threshold causes to decrease the tendency to choose a specific resource that is often the
best one and avoid stagnation on it.

7. By submitting a new task, this algorithm would be performed from the step 1.

To clarify major steps which provide an appropriate load balancing algorithm in Grid environment, the pseudo
code of the proposed approach is mentioned in Table 1.

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

201
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Table 1: The pseudo code of the proposed algorithm
For all submitted tasks(Taski)
 For all resources
 Calculate ij taskresourcealuePheromoneV ,
 Add ij taskresourcealuePheromoneV , to aluePheromoneV (j,i)
While aluePheromoneV is not empty
 Find Taski with maximum execution time
 Designate Taski to resourcej with the least aluePheromoneV (j,i)
 local pheromone update for resourcej
After executing Taski to resourcej
 Global pheromone update
4.0. PARAMETERS DITERMINATION
This section determines the parameters of the proposed algorithm. These parameters must be framed in such a
way that the completion time is placed in its best position. For determining these parameters, the characteristics
of tasks and resources should be the same as Table 2.

Table 2: The characteristics of the Grid environment
Number of resources 100

Number of processing elements in each resource 1-5
Processing elements speed 10 to 50 MIPS

Bandwidth 1000 to 5000
Length of tasks 0-50000 MI

For simulation, it is assumed that the grid environment includes several resources connected through different
communication links with various speeds. The bandwidth used between grid resources is assumed to be 1000 to
5000 Byte per second.

The length of the tasks used in this simulation is introduced as Millions of Instructions (MI). The submitted
tasks can be data intensive and computationally intensive. In this paper, the tasks are computationally intensive,
which is more likely in the real world and the loss of resource computational power is more expensive than loss
of memory.
As the topology of the Grid environment and the tasks entered to the system is changing in each simulation, for
determining the completion time of the submitted tasks the average completion time of 30 runs of the proposed
algorithm is considered. In this simulation, the number of submitted tasks is assumed to be 1000 and the number
of resources is 100.
In Figure 1, the effect of  factor on the performance of the proposed algorithm is shown. According to this
experiment, 0.1 is the best  for achieving the best completion time.

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

202
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Fig. 1: The effect of  factor on performance.

According to Eq. 3, which is performed to all resources for global update,  is the trail persistence of the
algorithm to the best solution which concludes)1( as evaporation rate. This mechanism helps to restrict
the resource selections by gradually neglecting the bad choices.
For small Grid environment, the more is determined, the more extensive resources would be searched by the
algorithm to find an appropriate one. When the algorithm encounters a large number of resources in Grid, this
factor would restrict the search space by omitting inappropriate resources. Thus, the value of this factor is
limited in large environment to increase the performance of the Grid more practically.
This factor is examined in various values in Figure 2 to determine the best one for enhancing the performance of
the proposed algorithm regarding to Table 2 which depicts the characteristics of the Grid environment which is
considered as a large environment.

Fig. 2: The effect of factor on performance.

The overview of predetermined factors which assist the proposed algorithm to present the best performance in
Grid environment is illustrated in Table 3 [13].

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

203
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Table 3: The parameters of the proposed algorithm
Parameters Value  0.1

0
BestLn*

1
n= The number of resources

BestL =the length of the path that the executed task traverses from the broker to reach out to the
best resource.

 0.5

5.0. SIMULATION RESULTS
This section is dedicated to the comparison of the proposed algorithm with other prior load balancing
approaches with considering 100 resources and 1000 imported tasks and their characteristics based on Table 2.
As the topology of the Grid environment and the tasks entered to the system is changing in each simulation, for
determining the completion time of the submitted tasks, the average completion time of 30 runs of the proposed
algorithm is considered with dedicating 65% of tasks with large size (40000 to 50000) and the rest of them with
small tasks to determine the performance of the proposed algorithm.
As the proposed algorithm is derived from three main approaches (Max-min, improved Max-min [8] and
RASA), they have the same time complexity O(nm2) in which n is the number of available resources and m is
considered as the number of imported tasks. Despite of the same complexity, the presented algorithm is
experienced better completion time with more reliable load balancing algorithm with the ability of executing
small tasks and large ones concurrently. This new characteristic helps small tasks not wait for large ones
execution and assists them with the ability of concurrency.
The completion time of each approach is illustrated in Fig. 3 with regard to the Grid environment characteristics
in Table 2.
As Random approaches dedicate imported tasks to resources without any specific algorithm and not considering
impressive factors on enhancing the Grid performance, they experience the most completion time in comparison
with other mentioned approaches.
Max-Min algorithm as one of the most common load balancing algorithm, have the disability of declining make-
span in scenarios, in which the number of large tasks are much more than small ones that leads them to wait
extra time for large tasks execution. This scenario which has been implemented in this paper, depicts the
disadvantage of this algorithm emphasizing on not belonging the concurrent execution to speed up small tasks.
Regarding SBA, this approach needs extra time spending to search for appropriate resources in each resource
table that contains all the resource characteristics without particular strategies to omit undesirable resources,
causing this approach to face with remarkable completion time.
Improved Max-min approach [8] similar to the proposed algorithm has higher completion time as this approach
does not consider current loads of the resources as a significant factor to assign new tasks which makes this
algorithm not be realistic.

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

204
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Considering Fig. 3, the proposed algorithm has about 19% improvement in decreasing the required completion
time to balance the Grid environment compared with Improved Max-min, which is placed in second degree in
the predetermined conditions.

Fig. 3: Comparing the completion time of different algorithms

6.0. VARIOUS JOB CHARACTERISTICS EFFECT ON THE PERFORMANCE OF THE PROPOSED
ALGORITHM
In the two proposed scenarios, the characteristics are determined based on Table 2 and 3 by varying the number
of jobs entered to the Grid environment and their length respectively.

Fig. 4: The Effect of Increasing Number of jobs on response time

Fig. 4. Compares the make-span of six load balancing algorithm when the number of jobs is increased. As can
be illustrated in the figure, all algorithm response approximately linear growth to the number of jobs increment
except the proposed algorithm with slight slope. This result is due to the specific characteristic of the proposed
algorithm in which the ants carry the ID of the entered jobs rather than the whole jobs to find the appropriate

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

205
Malaysian Journal of Computer Science. Vol. 29(3), 2016

resource which reduces the amount of bandwidth needed and make the algorithm to perform faster in large
number of jobs. When the desired node is found, the whole job transfers was performed.
In the second scenario, the length of entered jobs is increased to 50000 MI each step by dedicating 65% of jobs
with 10000 to 50000 and the rest of them with small sizes. As mentioned before, by having the concurrency
characteristics of the proposed algorithm, growing in the length of jobs does not affect its performance
consciously. This scenario is depicted in Fig.5.

Fig. 5. The Effect of Increasing the length of jobs on response time

7.0. CONCLUSION
In this paper, a scheduling approach based on ant colony algorithm and the Max-Min technique is proposed to
solve the stagnation problem in grid computing. For the proposed algorithm, a pheromone value matrix is used
to select the best resource/task. The initial pheromone value of each resource/task is assigned based on the time
needed to transfer this task from the resource broker to the corresponding resource and the estimation time for
executing it on this resource. The local pheromone update function is performed to the selected resource to
make it less desirable for others during its execution. After the assigned task is executed, a global pheromone
update is applied to the matrix to update the status of all resources for the next submitted tasks. This update
makes all the pheromone values below a limited bound to prevent stagnation. This algorithm is simple due to the
existence of information of resources and tasks in the information server. The experimental results show that by
implementing the proposed algorithm in the Grid environment, the completion time of submitted tasks has about
19% improvement compared to the previous algorithms.
REFERENCES
[1] R. Baldoni, M. Bertier, M. Raynal, and S. Tucci-Piergiovanni, Parallel Computing Technologies, vol.

4671. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1–14.
[2] S. M. Hashemi and A. K. Bardsiri, “Cloud Computing Vs. Grid Computing,” ARPN J. Syst. Softw., vol.

2, no. 5, pp. 188–194, 2012.
[3] J. Nabrzyski, J. M. Schopf, and J. Węglarz, Eds., Grid Resource Management, vol. 64. Boston, MA:

Springer US, 2004.

Load Balancing in Grid Computing Using Ant Colony Algorithm and Max-min Technique. pp 196-206

206
Malaysian Journal of Computer Science. Vol. 29(3), 2016

[4] P. Srivastava, S. Gupta, and D. S. Yadav, “Improving Performance in Load Balancing Problem on the
Grid Computing System,” Int. J. Comput. Appl., vol. 16, no. 1, pp. 6–10, 2011.

[5] U. K. Kumar, “A Dynamic Load Balancing Algorithm in Computational Grid Using Fair Scheduling,”
Int. J. Comput. Sci. Issues, vol. 8, no. 5, pp. 123–129, 2011.

[6] M. Hemamalini, “Review on Grid Task Scheduling in Distributed Heterogeneous Environment,” Int. J.
Comput. Appl., vol. 40, no. 2, pp. 24–30, 2012.

[7] A. Qazi, R. G. Raj, M. Tahir, M. Waheed, S. U. R. Khan, and A. Abraham, “A Preliminary Investigation
of User Perception and Behavioral Intention for Different Review Types: Customers and Designers
Perspective,” The Scientific World Journal, vol. 2014, Article ID 872929, 8 pages, 2014.
doi:10.1155/2014/872929.

[8] O. M. Elzeki, M. Z. Reshad and M. A. Elsoud, “Improved Max-Min Algorithm in Cloud Computing, ”
International Journal of Computer Applications,vol. 50, no. 12, pp. 1-6, 2012.

[9] S. A. Thakare, “Comparison of Swarn Inteligence Technique,” Int. J. Comput. Sci. Bus. INFORMATICS,
vol. 1, no. 1, pp. 1–11, 2013.

[10] R. Chang, J. Chang, and P. Lin, “Balanced job assignment based on ant algorithm for computing grids,”
in Proceedings of the 2nd IEEE Asia-Pacific Service Computing Conference, 2007, pp. 291–295.

[11] S. Lorpunmanee, M. Sap, A. Abdullah, and C. Chompoo-inwai, “An ant colony optimization for
dynamic job scheduling in grid environment,” Int. J. Comput. Inf. Sci. Eng., vol. 1, no. 4, pp. 207–214,
2007.

[12] H. Yan, X. Shen, X. Li, and M. Wu, “"An improved ant algorithm for job scheduling in grid computing,”
in Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005, pp.
2957–2961.

[13] T. Stutzle and H. Hoos, “MAX-MIN ant system,” Futur. Gener. Comput. Syst., vol. 16, pp. 889–914,
2000.

[14] S. Parsa and R. Entezari-Maleki, “RASA: A New Grid Task Scheduling Algorithm,” International
Journal of Digital Content Technology and its Applications,vol. 3, pp. 91-99, 2009.

[15] L. Mohammad Khanli, and M. Analoui,”Grid_JQA: A QoS Guided Scheduling Algorithm for Grid
Computing,” The Sixth International Symposium on Parallel and Distributed Computing (ISPDC’07),
IEEE, 2007.

[16] E. UllahMunir, J. Li, and Sh. Shi,”QoSSufferage Heuristic for Independent Task Scheduling in Grid,”
Information Technology Journal, vol. 6, no. 8, pp. 1166-1170, 2007.

[17] S. A. Ludwig and A. Moallem, “Swarm Intelligence Approaches for grid Load Balancing.” Journal of
Grid Computing, vol. 9, no. 3, pp. 279-301, 2011.

[18] A. Rekaby and M. Abo Rizka, “A Comparative Study in dynamic job Scheduling Approaches in Grid
Environment,” International Journal of Grid Computing & Applications (IJGCA), vol.4, no.3, pp. 1-10,
2013.

