
Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

152 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

FINE-GRANULAR MODEL DIFF SOLUTION FOR MODEL-BASED SOFTWARE 

CONFIGURATION MANAGEMENT 

 

Waqar Mehmood
1
, Nadir Shah

2
, Zahoo- ud-din

3
, Ehsan Ullah Munir

4 

 
1, 2, 3, 4 

COMSATS Institute of Information Technology, Wah Campus, Pakistan  

 

Email: 
1
drwaqar@ciitwah.edu.pk, 

2
nadirshah82@gmail.com, 

3
zahooruddin79@gmail.com, 

4
ehsanmunnir@gmail.com 

 

Tel: 92-51-9314382, Fax: 92-514-546850 

 

ABSTRACT 

 
Software Configuration Management (SCM) aims to provide a controlling mechanism for the evolution of software 

artifacts created during software development process. Controlling the evolution requires many activities to 

perform, such as, construction and creation of versions, computation of mappings and differences between versions, 

combining of two or more versions and so on. Traditional SCM systems are file-based SCM systems.   File-based 

SCM systems are not adequate for performing software configuration management activities because they consider 

software artifacts as a set of text files while today software development is model-driven and models are the main 

artifacts produced in the early phases of software life cycle.  New challenges of model mappings, differencing, 

merging (combining two or more versions), and conflict detection (identifying conflicting changes by multiple users) 

arise while applying file-based solution to models. The goal of this work is to develop a configuration management 

solution for model representation, mappings and differences which overcomes the challenges faced by traditional 

SCM systems while model being the central artifact. Our solution is two-folded. First part deals with model 

representation. While traditional SCM systems represent models as textual files at fine-granular level, we represent 

models as graph structure at fine-granular level. In second part we are dealing with the issue of model diff, i.e., 

calculating the mappings and differences between two versions of a model. Since our model diff solution is based on 

our fine-granular model representation therefore we overcome not only the problem of textual representation of 

model but produce efficient results for model diff in terms of accuracy, execution time, tool independency and other 

evaluation parameters. We performed a controlled experiment using open source eclipse modeling framework and 

compare our approach with an open source tool EMF Compare. The results proved the efficiency of our approach.  

 
Keywords: model comparison, model difference, fine-granular model representation, model diff, model driven 

engineering 

 
 

1.0 INTRODUCTION 

 

To develop large software projects (in which more than one person participate), it essentially needs the efficient 

management of software artifacts created during software development. In the absence of efficient management, the 

software products that the industry has to produce can be delivered much later than scheduled, may cost more than 

anticipated and would have been poorly designed and documented [22]. Software Configuration Management 

(SCM) aims to provide an efficient control mechanism for such problems. It deals with controlling the evolution of 

software systems [24]. Controlling evolution requires many activities, such as, construction and creation of versions 

of the software artifacts, performing diff activity (i.e. the identification of mappings and differences between 

versions), conflict detection (i.e. identifying conflicting changes), and merge activity (i.e. combining two or more 

versions into single one) [23]. 

 

Model-driven  engineering  (MDE)  is a  modern  software  development technique that aims to reduce the  

complexity  of the software  development by assigning models a central  role in the software development process 

[21].  With the advent of MDE, models become as a first-class artifact during the software development lifecycle. To 

ensure quality of models in MDE, models must be designed, analyzed, and maintained, subject to a version control 

mechanism. MDE emerges as a new paradigm that creates many challenges for the traditional configuration 

management systems. For instance, traditional VCS systems, such as Subversion [1] and Concurrent Versioning 

System (CVS) [2],  have been used in the later phases of software development life cycle (e.g. during the 

implementation phase where the main  artifact is the source code that is in the form of text  files). However, such 

systems are not well suited for performing configuration management tasks on the models due to several reasons.  



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

153 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

For instance, in MDE, software documents are not only text files, but also consist of diagrams such as different types 

of UML diagrams. These diagrams are often stored as XMI formats, such as a class diagram might be represented by 

a few lines of text in the file. The order of these sections of text is irrelevant in a file and the CASE tools can store 

the sections representing classes or other diagram elements in arbitrary order. To a large extent, the order of text 

lines and their layout information is immaterial for model diff and merge operations on models [5-7]. Model diff 

deals with comparing the two versions of a model to detect the mappings and differences between them, while 

model merge deals with combining two or more versions of a model into a single one. Since traditional SCM 

systems are text-based systems and are not designed to operate adequately on models. Therefore, in this paper we 

first proposed a graph structure data model that handles the model structures adequately. Afterwards, we proposed a 

model diff solution that is built on top of the proposed graph structure data model and address the problem of 

computing the mappings and differences between the models. We implement our approach with an open source 

EMF [3] framework using Java as the source language. To benchmark our approach, we perform various tests and 

compared our approach with an open source tool EMF Compare [4].  We consider different quality parameters to 

compare our proposed approach with existing approaches. The experimental results prove the effectiveness of our 

approach. 

 

The remainder of this paper is organized as follows. Section 2 explains the problem statement and background work.  

Section 3 focuses on the proposed model diff solution that deals with comparing the two versions of a model to 

identify mappings and differences between them. Section 4 presents our experiment design, results, and performance 

evaluation. Section 5 presents conclusion and future work. 

 

2.0  PROBLEM STATEMENT AND BACKGROUND WORK  

 

We classify existing SCM systems into two main categories a) file-based SCM systems, and b) model-based SCM 

systems. 

 
2.1 File-based SCM Systems 

 
Traditional SCM such as Subversion [1] and CVS [2] are file-based SCM systems. These systems consider software 

artifacts as a set of text files and have been designed to manage changes in textual artifacts, such as, source code in a 

file system. Consequently, they operate on the abstraction of file system and represent change in a line-oriented way. 

The underlying assumption of these systems in case of modification of a document is that one or few adjacent lines 

of the text are inserted, deleted or modified. Dirk Ohst et al. [5-7] identify several reasons under which these systems 

failed to work for document management in the early phases of software development life cycle. For instance, in 

MDE, software documents are not only text files, but also consist of diagrams such as, different types of UML 

diagrams. These diagrams are often stored as XMI formats, such as a class diagram might be represented by a few 

lines of text in the file. The order of these sections of text is irrelevant in a file and the CASE tools can store the 

sections representing classes or other diagram elements in arbitrary order. Moreover, the position where a class 

symbol appears in the diagram is explicitly stored in layout data. To a large extent, the order of text lines and their 

layout is immaterial for diff and merge operations on models. Therefore, applying diff and merge operations at the 

level of plain text would hardly produce meaningful results. Another limitation of existing solutions is the lack in 

identification of shift operation in diagram modification. For instance, the shifting of a method from one class to 

another class corresponds to the shifting of a block of text between a file. These systems interpret this shift as a 

deletion of the method or block of text from one location and insertion at the second location. Visualization of 

detected differences between models is another problem which the traditional SCM systems are unable to handle. 

These dissimilarities clearly indicate that file-based and model-based SCM cannot be handled in the same way.  

 

2.2 RELATED WORK ON MODEL-BASED SCM SYSTEMS  

 

Many solutions to model-based SCM exist in literature. In this section we will describe the existing solutions. 

Alanen and Porres in [10] discuss the difference and union of models in the context of a version control system. 

Three meta-model-independent algorithms are given that calculate the difference between two models, merge, and 

calculate the union of two models. However, these algorithms crucially rely on the existence of a universally unique 

identifier for each model element. The output produced by the approach is in form of a sequence of edit operation 

while in our approach the results are brought back into a model which is more comprehensible for understanding. 

The approach also does not detect shifting of elements between models and detect shift operation as delete-add 

operation. Ohst et al. [6] address the problem of how to detect and visualize differences between versions of UML 

documents, such as, class or object diagrams. The approach assumes that each model element has a unique identifier 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

154 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

which is used for model comparison. For showing the differences between two documents the unified document is 

used which contains the common and specific parts of both base documents; the specific parts are highlighted. EMF 

Compare [4] is an open source tool used EMF technology project to compare models in EMF. It is realized by a 

package of Eclipse plugins that overwrite Eclipse's standard comparing behavior. EMF Compare uses a generic 

algorithm for model comparison. The comparison is performed in two-phases: In the first phase the match engine 

tries to find similar elements and creates a match model. Based on this model the difference engine is used to 

generate detailed information about the differences of certain model elements. A difference model is the result of the 

second phase. Both match and difference model are EMF models and therefore can be treated like any other model. 

As compared to our approach the diff and match model produced by EMFCompare cannot be converted to graphical 

representation as done in our approach. Furthermore, EMF Compare also suffers from the sensitivity issue of layout 

or order changes discussed in Section 2.1. A detailed empirical comparison of our approach with EMF Compare is 

already given in Section 4 which shows the performance efficiency of our approach. Xing et al. [11] presented an 

automated UML-aware structural-differencing algorithm, UMLDiff . UMLDiff is an algorithm for automatically 

detecting structural changes between the designs of subsequent versions of object-oriented software. It takes as input 

two class models of a java software system, reverse engineered from two corresponding code versions. The approach 

uses a language-based matching criterion and identifies corresponding entities based on their name and structure 

similarity. If two objects have same name, they are identified as equal, if not, their structural similarity is considered, 

computed from the similarity of names and other criteria specific of the considered entity type. Kelter et al. [12] 

presented a generic algorithm SiDiff which uses an internal data model comparable with a simplified UML meta-

model. A diagram is extracted from an XMI file and is represented as a tree consisting of a composition structure. In 

this approach. the model elements are characterized by the elements they consists of, the difference algorithm starts 

with a bottom-up traversal at the leaves of the composition tree. The approach uses a signature-based matching 

criterion. The Pounamu approaches presented in [13] describes a generic approach for diff and merge via a set of 

plug-in components. Plug-ins is developed for the meta-CASE tool Pounamu which support version control, visual 

differencing and merging. The approach uses operation-based method for difference computation which results in 

the dependency of the tool in which diagrams are edited, contrary to our approach which uses State-based approach. 

The approach uses a universal ID (uid)-based matching criteria. Also the approach lacks detection of the shifts 

operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lin et al. [18] presents an approach which is based on domain specific modeling. The approach presents a meta-

model-independent algorithm for model differentiation in the context of domain specific modeling (DSM). The 

approach addresses the problem of computing the differences between domain-specific models by exploring the 

issues of: what are the essential characteristics of domain-specific models, and how are they defined, what 

information within domain-specific models needs to be compared, and what information is needed to support meta-

model-independent model comparison, etc. Lamine et al. [19] discusses the issue of uncertain version control open 

collaborative editing of tree-structured documents.  They uses a probabilistic XML model as a basic component of 

Fig. 1: Comparison with existing Approaches 

 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

155 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

our version control framework. Each version of a shared document is represented by an XML tree and the whole 

document, together with its different versions, is modeled as a probabilistic XML document. They showed that 

standard version control operations can be implemented directly as operations on the probabilistic XML model; 

efficiency with respect to deterministic version control systems is demonstrated on real-world datasets. In contrast to 

text-based versioning systems, the need for model-based versioning systems as graph structures is also realized by 

Taentzer, et al. [20]. They present an approach that takes model structures and their changes over time into account. 

Considering model structures as graphs, we define a fundamental approach where model revisions are considered as 

graph modifications consisting of delete and insert actions. The fundamental concepts were illustrated by versioning 

scenarios for simplified state charts. Furthermore, they showed an implementation of this fundamental approach to 

model versioning based on the Eclipse Modeling Framework as technical space. In [8] Girschick presented an 

approach for difference detection and visualization of UML class diagrams. The modification applied to a class 

diagram can be described using basic transformation operations such as add, delete, rename etc. In contrast to our 

approach, the stated approach is also an operation-based approach for model comparison thus dependent on the 

editor tool. The approach uses a uid-based matching criteria while in our approach we use a hybrid criteria. The 

approach lacks detection of the shifts operation as well. Based on the above discussion a comparison chart for our 

approach and rest of the approaches is given in Fig. 1.  

 

3.0    PROPOSED MODEL DIFF SOLUTION 
 
In this section, we address the issues pertaining to model diff. Model diff deals with comparing two versions of a 

model to compute the differences and mappings between two versions.   It  is an  important and  challenging  task  in 

the MDE  and  is required  in many  model  management activities,  such as model-based  version control,  model 

consistency, model merging, and  transformation testing [14].  We address  the  problem  of computing  the  

mappings  and  differences between the models by exploring  the  issues of:  

 
i. how to  represent  models at a fine-grained  level,  

ii. how to compute  deltas, namely the state-based or operation-based  approaches, and  

iii. designing algorithms that can be used to discover the mappings and differences between  the models. 

 
 

 
 
 
3.1 GRAPH STRUCTURE REPRESENTATION  

 
In software development life cycle two main types of software documents are text files and graphical models. Text 

files may contain source code, documentation, software requirement specification (SRS) document, test reports and 

so on, whereas graphical models can be UML models. A model can be represented in three different ways [28], i) 

Fig. 2. Graph structure data model 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

156 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

the graphical representation i.e. the diagram itself, ii) the persistence representation, e.g. XMI, and iii) intermediate 

representation, e.g. syntax tree or graph structure. To avoid the problems mentioned in Section 2.1, we represent 

models at fine-granular level as graph structures. A graph structure data model defines the elements, attributes, and 

relationships between the elements at the fine-grained level [9]. The selection of an appropriate data model has a 

strong impact on the capabilities of the diff and merge tool.  For instance, a simple data model could perform a 

simple and efficient diff and merge operations for versions of a model.  In our proposed approach, at a fine-grained 

level, we represent models in an intermediate representation, as graph structures (e.g. as shown in Fig. 2). The 

proposed structure represents graph with typed elements that can be decorated with attributes. The basic elements of 

the meta model are: Nodes, Edges, Links, Operations, Attributes, Parameters, and DataTypes. Besides other 

advantages, one more important benefit of the meta model is that it is generic and can be used to represent various 

types of UML models, at the fine-grained level. This is an important issue, as most of the UML diagrams except that 

of the sequence diagram is represented by a graph [6].   
 

 

3.2 DELTA COMPUTATION 

 

When comparing two versions of a model, a model mapping defines those model entities that represent a single 

conceptual entity, while the unmatched entities represent the model differences. The difference between the two 

versions of a model is known as delta.   Regarding delta computation, there are two ways to compute the delta: (i) 

State-based approach and (ii) Operation-based approach.  In the state-based approach, two states, such as a base 

version and its successor are compared to compute the differences. Deltas are reconstructed using a “differencing” 

algorithm that compares the different state representations. In an operation-based approach, changes are described by 

using the original sequence of the editor operations that caused the changes.  Operation-based approach records a 

sequence of change operations (say op1 ,. . . ,opn ) while these operations  occur.  When these operations are applied 

to one version v1, it yields another version v2. A big advantage of the state-based approach over an operation-based 

approach is a total separation of modeling tools and the version control systems (VCS). Due to this reason we too 

adapt a state-based procedure in our proposed approach, as it provides generality and independency of the tools. 

 

3.3  MODEL DIFF COMPARISON ALGORITHMS 

 

Algorithm  1.0 shows the proposed diff algorithm for comparing  models for MapSet and ChangeSet. The model 

diff comparison algorithm takes two versions of a model as input and produces output in two sets MapSet{} and 

ChangeSet{}.  MapSet{}  that contains all of the pairs of model elements  that are similar in both  versions, having 

the same identifier. The ChangeSet{} that contains  such  entities,  whose contents  (e.g. the attributes of)  are 

modified in the  second  version.   The algorithm takes node-signature and edge-signature of elements for 

comparison. The Node-signature consist of node IDs, attributes, and operations; whereas, for the structural 

properties of the nodes, the algorithm compares the edge-signature of the nodes. The comparison algorithm works 

as follows: First, the header nodes of both versions of the graph structures are accessed (lines 1 − 2).  Thereafter, 

all of the flag variables used in the algorithm are set to false (line 3).  Afterwards, the nodes of the graph structures 

are compared.   For this, each node in the vlink of the first version of the graph structure V1_GS, the nodes in the 

vlink of second version graph structure V2_GS are traversed to find similar nodes in V2_GS (line 4 − 46).  The 

node IDs in both of the versions are compared in line 6. If a match of similar ID for node „n‟ of V1_GS and node 

„m‟ of V2_GS exists, then the nodes attributes is compared.  To compare a node‟s attributes traverse all of the 

attributes of node „n‟ and node „m‟ and compare with each other. If an attribute of „n‟ does not match any of the 

attribute of „m‟, then the corresponding  unmatched attribute of „n‟ will be marked  as the deleted  attribute and set 

the flagA1 value to  true  (lines  7 − 13).   Similarly, compare node m‟s attributes with node n‟s attributes to check 

new attributes. For  this,  traverse  all of the attributes of node „m‟ of V2_GS  and  node „n‟  of V1_GS,  and  

compare  the  attributes of „n‟  and  „m‟.  If an  attribute of  „m‟ does not  match  to  any  attribute of  „n‟,  then  the 

corresponding  unmatched attribute of „ m‟ will be marked  as an added  attribute and set the flagA2 value to true  

(lines 14 − 20). Similarly, the algorithm compares the operations of the nodes of both versions (lines 21-34).   

 

 

Algorithm 1.0 compareNodes() 

Require:  Graphstructures of Model  Version 1  (V1_ GS)  and  Model  version 2 (V2_ GS) 

1:  input: V1_GS header  node; 

2:  input: V2_GS header  node; 

3:  flagA1=flagA2=flagO1=flagO2=flagE=flagD ← false 

4:    node ‘ n’ in V1_GS vlink traverse  V1_GS do 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

157 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

5:           node ‘ m’  in V2_GS vlink traverse  V2_GS do 

6:                 if n.id ≡ m.id then 

7:                          n.attributes do 

8:                               compare  n.attributes with m.attributes 

9:                               if any attribute of ‘n’ and ‘ m’  do not match  then 

10:                                      mark n.attribute as deleted  attribute 

11:                                      flagA1←true 

12:                               end if 

13:                        end for 

14:                          m.attributes do 

15:                               compare  m.attributes with n.attributes 

16:                              if any attribute of ‘m’ and ‘ n’  do not match  then 

17:                                      mark m.attribute as added  attribute 

18:                                      flagA2←true 

19:                               end if 

20:                        end for 

21:                         n.operations do 

22:                             compare  n.operations with m.operations 

23:                            if any operation  of ‘n’ and ‘ m’  do not match  then 

24:                                      mark n.operation as deleted  operation 

25:                                      flagO1←true 

26:                               end if 

27:                        end for 

28:                         m.operations do 

29:                              compare  m.operations with n.operations 

30:                            if any operation  of ‘m’ and ‘ n’  do not match  then 

31:                                      mark m.operation as added  operation 

32:                                      flagO2←true 

33:                               end if 

34:                        end for 

35:                         m.edges do 

36:                               compare  m.edge with n.edge 

37:                               if m.edgeType  ≡ n.edgeType  and m.edge = n.edge then 

38:                                    set edge changed  to m.edge from n.edge 

39:                               end if 

40:                               if any edge of ‘m’ and ‘ n’  do not match  then 

41:                                      set m.edge as added  edge 

42:                                      flagE←true 

43:                               end if                      

44:                        end for 

45:                        if m.eSuperType = n.eSuperType then 

46:                               if n.eSuperType ≡ null then 

47:                                      set m.eSuperType as added  super type 

48:                               end if 

49:                               if m.eSuperType ≡ null then 

50:                                      set n.eSuperType as deleted  super type 

51:                               end if 

52:                               if m.eSuperType changed  then 

53:                                  set m.eSuperType modIfied from n.eSuperType 

54:                               end if 

55:                        end if 

56:                        if   flagA1 ≡ true  or flagA2 ≡ true  or flagO1 ≡       true  or flagO2 ≡ t r u e   o r  flagE ≡ true  

then 

57:                               add ‘ m’  to ChangeSet{} 

58:                        end if 

59:   if   flagA1 ≡ true  and  flagA2 ≡ true  and  flagO1 ≡ true  and flagO2 ≡ true  and flagE ≡ true  then 

60:                               add ‘ m’  to MapSet{} 

61:                        end if 

62:                        flagD←true 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

158 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

63:                 end if 

64:         end for 

65:         call checkDeleteNode&Edges() 

66:  end for 

67:  call checkNewNode&Edges() 

68:  call checkShiftNodes() 

 

 

 

Algorithm 1.1 checkDeleteNodes&Edges() 

 

1:  if flagD ≡ false then 

2:         add ‘n’ to DeleteSet{} 

3:          n.edges do 

4:                 set n.edge as delete edge 

5:         end for 

6:          V1_GS nodes do 

7:                traverse  V1_GS’s nodes whose edgeType  equal to node n 

8:                 set corresponding  edge as deleted  edge 

9:         end for 

10:         if n.eSuperType = null then 

11:                 set n.eSuperType as deleted  super type 

12:         end if 

13:  end if 

 

 

Thereafter, the algorithm compares the edge-signature of the nodes. The Edge- signature consists of the edge ID and 

connected nodes of the edge.  To compare the node‟s edge-signature, we traverse all of  the edges of node „m‟ of 

V2_GS  and node „n‟ of V1_GS,  and  compare  the  edges of „n‟  and  „m‟. Thereafter, to check the modified edge 

the edgeType of „m‟ and „n‟ will be compared. If the edgeType is the same but the edge IDs are different, then the 

edge will be identified as the modified edge.  However,  if any  edge of „m‟  does not  match  to  any  of the edge of 

„n‟, then  we mark the corresponding  edge of „m‟ as the new edge, and set flagE to true  (lines35 − 44).    

 

 

Algorithm 1.2 checkNewNodes&Edges() 

 

1:  flagN←false 

2:   node ‘m’ in V2_GS vlink traverse  V2_GS do 

3:          node ‘n’ in V1_GS vlink traverse  V1_GS do 

4:                 if m.id ≡ n.id then 

5:                        flagN←true 

6:                 end if 

7:         end for 

8:         if flagN ≡ false then 

9:                 add ‘m’ to NewSet{} 

10:                  m.edges do 

11:                        mark m.edge as new edge 

12:                 end for 

13:         end if 

14:         if m.eSuperType = null then 

15:                 set m.eSuperType as added  super type 

16:         end if 

17:  end for 

 

 

 

 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

159 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

To check the inheritance relationship between the nodes, we compare the nodes eSuperType property. If node 

m.eSuperType is not equal to node n.eSuperType, then we check for three cases, first if node n.eSuperType is null  

then  its  means  that a  super  type  is added  to  node  m,  second  if node m.eSuperType is null then  its  means  that 

a super  type  is deleted  to node m, and  in third  case a super  type is modified from n.eSuperType  to 

m.eSuperType (lines 45 − 55). Afterwards  the values of the flag variables flagA1, flagA2, flagO1, flagO2, and 

flagE will be checked, if any of the flag variable value is true then node „m‟ will be added to ChangeSet{}, and if all 

the flag variable values are true then node „m‟ will be added to MapSet{} (lines 56−61). Algorithm 1.1 

checkDeleteNodes&Edges() checks deleted nodes and their edge-signature. The algorithm first check if a node is 

deleted in the second version and then process the deleted edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Library system model version 1 (V1) 

Fig. 4. Library system model version 2 (V2) 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

160 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

 

 

 

First the value of flag variable flagD is checked, if it is false then it means node n of V1_GS is deleted and will be 

added to DeleteSet{} (lines 1-2). Then all edges of node „n‟ will be marked as delete edges (line 3-5). Then to 

identify those edges whose edgeType are the deleted nodes we traverse all nodes in V1_GS whose edgeType equal 

to deleted node „n‟ and set the corresponding edge as deleted edge (lines 6-9). Then the super type of the deleted 

node will be checked, if the deleted node is a sub type of another node then the value n.eSuperType will be set as 

deleted super type (lines 10-13). 

 

Algorithm 1.2 checkNewNodes&Edges() checks new nodes and their edge-signature in second version. First the 

value of variable flagN will be set to false (line 1). In order to identify new nodes in the second version of the model, 

each node „m‟ in the vlink of the V2_GS, and node n in the vlink of V2_GS are traversed (lines 2-17). The nodes ids 

in both versions are compared, if a match of similar ids exist then we set flagN to true (lines 3-7). If no match exist, 

i.e., flagN is false then node m is added to NewSet{} and all its edges are marked as new edges (lines 8-13). Then 

the super type of the new node will be checked, if new node super type is not null then it will be set to new super 

type (lines 14-16). The whole process will be repeated until all nodes of the second version's graph structure will be 

traversed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.0 PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS 
 

4.1 Eclipse Modeling Framework 
 

We implement our diff approach using the Eclipse Modeling Framework (EMF) [3, 17]. EMF is an open source 

project which provides modeling framework and code generation facility for building tools and other applications 

based on a structured data model. EMF is one of the most successful approaches to MDE. EMF provides good 

support for code generation, metadata querying, model serialization, and model editor. From a model specification 

described in XMI, EMF provides tools and runtime support to produce a set of Java classes for the model, along 

with a set of adapter classes that enable viewing and command-based editing of the model, and a basic editor. EMF 

is split into three large components: core, edit and codegen. Core contains the ECoremeta model, persistence, 

serialization, a model tracer (change notification and recording) and a validation framework. Edit includes a default 

model viewer and helps in building rich user interfaces (view, editor) for models. Codegen supplies a code generator 

Fig. 5. Diff result of model version l (V1) and version 2 (V2) 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

161 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

for ECore based models and several importers (for example from Rational Rose). In the context of this paper we are 

not interested in the code generation facility of EMF, while the core and edit components are used for model 

development, metadata querying and serialization purposes.  

4.2 Empirical Performance Evaluation  
 
To benchmark our approach, we performed different test, and compared our approach with the open source tool 

EMF Compare [4]. The EMF Compare uses the Eclipse Modeling Framework (EMF) technology project to compare 

models.  It is realized by a package of Eclipse plugins that overwrite the Eclipse‟s standard comparing behavior.   

We select the EMF Compare for comparison  with  our  approach because it  is the  only available  open source tool,  

and  secondly,  our  approach also uses the EMF  technology.  

 

 
 
 
The main assessment criteria of our evaluation are the quality of the calculated results and the required execution 

time. We performed a controlled experiment on a library system class model to benchmark the diff algorithm. As a 

running example we use two versions of a library system model given in Fig. 3 & 4.  The class model of Library 

system consists of several classes to model the static structure of the system by showing the system's classes, their 

attributes, and the relationships between the classes. In version V1 we have the following classes, Library, Book, 

Author, and Administrator. Library class has containment association to Book, Author and Administrator classes. 

The names of the associations are books, authors, and admin by, respectively. Each Book, Author, and 

Administrator class has one attribute name. In version V2 we have the following classes, Library, Book, 

Administrator, and Reservation. Library class has containment relationships to Book, and Administrator classes and 

has attribute location. Book class has attribute isbn. Administrator class has association relationship to Reservation 

class and has attribute id. Reservation class has been added and Author class has been deleted in second version. The 

model diff result is shown in Fig. 5.  We use the following annotations to clarify the diff  results. Mapped Node  

<<MN>> is used to represent the map nodes in both versions. Changed Node <<CN>> is used to represent the nodes 

which are changed in second version.  New Node   <<NN>> is used to represent the nodes which are added in 

second version.  Deleted Node <<DN>> is used to represent the nodes which are deleted in second version.  Shifted 

Node <<SN>> is used to represent the nodes which are shifted in second version.  Whereas,  <<RM>>, <<RN>> , 

<<RC>> , <<RD>> , <<RS>> are used to represent the mapped, new, changed, deleted and shifted references in 

both versions.  

 

We took six test scenarios. The test scenarios differed in the size of the elements of the models.  The execution time 

reported is the average of hundred test runs. The tests were performed on a standard PC Intel Core Duo CPU P9400 

with 4 GB memory. There were three main differences that we observed between our approach and the EMF 

Compare as follows. First, the EMF Compare computes the reordering in the layout of the models as a difference 

between the models.  Reordering of the elements in a model is a layout change rather than the change in the model‟s 

semantics.   This is same issue as we mention in Section 2.1. That is to say that the order of the sections of the text in 

the XMI file is irrelevant for model diff.  Therefore, computing reordering as a difference is not desired. Not only 

this would reduce the accuracy of the approach, but also would reduce the efficiency of the approach as this would 

require some extra execution time. In the experiments performed, we observed that nearly in every case, the EMF 

Compare identified some reordering differences.  For instance, the result of the reordering differences identified by 

the EMF Compare is given in Fig. 8 for experiment. Fig. 7 shows the comparison chart for reordering and unmarked 

Fig. 6. Comparison results 

 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

162 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

differences of the  experiments.  For all cases, except case 1, the EMF Compare identified the reordering difference 

that in fact is a layout change rather than a change in the model‟s semantics.  In the experiment for the largest input, 

the total number of reordering differences was ten. Whereas, in our approach, we do not consider the reordering of 

elements as a difference. Therefore, in all of the cases we have no reordering difference computation. Consequently, 

we conclude that an increase in the number of differences of the order of XMI‟s elements reduces the accuracy and 

efficiency of the EMF Compare tool. However, in such cases our approach remains unaffected. 

 
 

 

 

Second, by closely analyzing the output of the EMF Compare it was observed that our approach identified the 

differences on a more fine-grained level than the EMF Compare. This  is because for the  elements  addition  and  

deletion the EMF Compare mention  changes  only  at  the  level of  nodes. If a class/node  is added  or  deleted  in  a  

new  version  then  the EMF Compare  only identifies  the  addition  and  deletion  of the  class and  does  not  

mention  the changes  of other  features,  such  as  references  or  attributes of the  class  at fine-grained  level.  For 

instance,  for the results  of unmarked differences by the EMF Compare given in Fig. 7, it was observed  that for all 

of the cases in which there  are  classes added  or deleted, the EMF Compare did not  marked  the  differences at 

fine-grained  level for added  or deleted  classes. Moreover, as we increase the size of the problem, the unmarked 

differences are also increased. For instance, for the largest input model the total number of unmarked differences are 

24. 

Finally, the difference between the execution time shows the efficiency of our approach in terms of speed, as 

compared to the EMF Compare.  Fig. 8 shows the comparison chart for execution time of the experiments. During 

experiments we observed that the efficiency of our approach in term of speed, as compared to the EMF Compare.  

For  instance,  for the  largest  input  model the execution  time  taken  by  EMF Compare was 780ms; whereas,  our  

approach took  490ms.  These  experiments show the  fast  execution  of our approach as compared  with EMF 

Compare and also the scalability  of our approach  as the  time  difference between  Case 5 and  Case 6 for the  

largest  input  model was 4ms in our approach and 13ms for EMF Compare. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  EMF Compare reordering and unmarked differences 

Fig. 8: Comparison chart for execution time in 

millisecond 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

163 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

 

 

4.2 OTHER EVALUATION PARAMETERS  
  

Beside performance evaluation given in Section 4.1 here we further evaluate our approach by the parameters given 

mentioned by Fortsch and Westfechtel [15]. For model difference, it includes the requirements of accuracy, high 

conceptual level, domain independence, tool independence, history independence, efficiency, and user-friendly 

representation. Below we examine how well these criteria were met by our approach.  

i. Accuracy: This requirement deals with the accuracy of the result, i.e., the diff tool (or model diff) calculate 

the difference between two versions v1 and v2 as precisely as possible. 

Achievement: The main problem with text-based approaches for models is the sensitivity issue related to the 

layout and order of text line which sternly affect the accuracy of text-based approaches. Since our approach is 

not text-based rather we used a graph structure the sensitivity to layout and order of text doesn't remain an 

issue at all. This increases the performance of the algorithm in form of accuracy of result. We also performed 

empirical tests to show the accuracy of our approach. 

ii. High Conceptual Level: The diff tool calculates differences on a high level of abstraction, i.e., it has to 

operate on logical rather than physical level. 

Achievement: This quality is also achieved since the differences are calculated based on the type of model 

element. For instance, in case of class diagram, the differences between the classes, their attributes, operations 

and relationships are calculated. 

iii. Domain Independence: The diff tool should be applicable to a large set of diagram types. 

Achievement: Apart from other advantages, such as overcoming sensitivity problem, accuracy etc, one 

important benefit of the data model used in our approach is that it provide generality, i.e., it can be used to 

represent different types of domain specific level diagrams at fine-grained level.  

iv. Tool Independence: The diff tool should be independent of the tools which were used to create the diagram 

versions to be processed. 

Achievement: Approaches to model diff are state-based and operation-based. In operation-based approach, 

changes are described by using the original sequence of editor operations that caused the changes. In contrast, 

in a state-based approach only the state representations of different versions are compared. Differences or 

deltas are reconstructed using a difference algorithm that compares the different state representations. The 

major drawback of operation-based approach is that it is tool-dependent, while we apply a state-based 

approach to compare the two versions, thus our approach is tool independent. 

v. History Independence: The result produced by the diff tool should depend only on the final states of the 

diagram versions, but on the history of edit operations used to create these versions. 

Achievement: History independence is based on tool independency. Since our approach is not based on tool 

or recording the history of edit operations rather than on the final states of diagram versions, therefore our 

approach is history independence. 

vi. Efficiency: The diff tool should calculate the result as fast as possible, requiring as little space as possible. 

Achievement: For calculation of efficiency of our approach we performed empirical tests. We compare our 

approach with open source tool EMFCompare. The tests results showed that our approach produced both 

accurate and fast results. The space complexity for the diff process is 2n, since both states need to be present.  

vii. User-friendly Representation: The tool should represent its output in a user friendly way. 

Achievement: The output of diff is brought back to models. Thus, the developer can see the differences 

between the model elements in a user friendly way. 

 
 

5.0 CONCLUSION 
 

In this paper we presented a generic graph structure representation for models based on which we developed our 

model diff algorithms. We first classified SCM systems in two broad categories, i.e., File-based SCM systems and 

Model-based SCM systems. File-based SCM systems are traditional text-based systems such as, Subversion, CVS, 

which consider software artifacts as a set of text files. File-based SCM systems gained high acceptance in software 

development when dealing with source code or other textual software artifacts, but failed severely in handling 

software artifacts with diagrammatical representation. In the era of MDE a paradigm shift in software development 

occur from code-centric to model-centric activities. In MDE models having diagrammatical representation, such as 

UML, becomes the central artifact in the software development process. All software development activities ranging 



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

164 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

from analysis to the maintenance of software system heavily depends on graphical models. Traditional file-based 

SCM systems are unable to handle this paradigm shift in order to perform SCM activities at the appropriate level of 

abstraction. The goal of this work was to address this paradigm shift. By our generic graph structure representation 

we were able to avoid the problems of textual representation of models, such as, layout change, reshuffling issue, 

etc.  Contrary to existing approaches our approach did not require changes in algorithm by changes the models. The 

approach used a state-based technique to compute delta thus it is tool-independent. The approach allowed the 

developers to be flexible in selecting  model editor  tool for developing models and  also as our  approach was 

history-independence we were  not  requiring  the  history  of edit-operations of the tool for performing  diff or 

merge.  Finally, we showed the performance of our approach w.r.t. open source tool EMF Compare. The results of 

the tests we performed showed that our approach produced more accurate and fast results than EMF Compare. We 

set the future direction of our work as follows.  In model diff activities an appropriate visualization of differences 

between two versions is important for understanding the differences therefore we need some technique to visualize 

the differences in user friendly manner. Furthermore in future we will work on rest of the version control activities 

such as model merge, conflict detection and version control policy.  

 

 
REFERENCES 

 

[1]  Michael  Pilato, "Version  Control  With  Subversion,"  O‟Reilly & Associates, Inc., Sebastopol, CA, USA, 

2004, ISBN: 0596004486.   

[2]  CVS project, cvs web site, http://www.nongnu.org/cvs.  

[3]  Eclipse  Modeling  Framework (EMF),  http://www.eclipse.org/modeling/emf/.    

[4]  Eclipse foundation, "emf compare," 2008, 

http://www.eclipse.org/modeling/emft/?project=compare#compare.   

[5]  D.Ohst, "A fine-grained version and configuration model in analysis and design," In ICSM’02, Proceedings 

of the International Conference on Software Maintenance, Washington, DC, USA, 2002, IEEE Computer 

Society, pp 521,  ISBN 0-7695-1819-2.  

[6]  Dirk Ohst, Michael Welle, Udo Kelter, "Differences between versions of uml diagrams," In ESEC/FSE-11, 

Proceedings of the 9th European software engineering conference held jointly with 11th ACM SIGSOFT 

international symposium on Foundations of software engineering, , New York, NY, USA, 2003, ACM, pages 

227–236, ISBN 1-58113-743-5, doi:http://doi.acm.org/10.1145/940071.940102.  

[7]  U.Ohst, D., M.Welle, Kelter, "Merging uml documents,"  Technical report, University Siegen, 2004.  

[8]  M.Girschick, "Difference detection and visualization in uml class diagrams,"  In Technical University of 

Darmstadt, Technical Report TUD- CS-2006-5, pp 37–51, 2006.  

[9]  Sabrina Fortsch, Bernhard Westfechtel, "Differencing and merging of software diagrams-state of the art and 

challenges, " In ICSOFT(SE), pp 90–99, 2007.  

[10]  Marcus Alanen, Ivan Porres, "Difference and union of models," In Proceedings of the UML Conference, 

Springer-Verlag LNCS 2863, San Francisco, California, pages 2–17, Oct.2003.  

[11]  Eleni Xing, Zhenchang, Stroulia, "Umldiff:An algorithm for object-oriented design differencing,"  In Proc, 

IEEE/ACM International Con-ference on Automated Software Engineering(ASE’05), Nov.2005, Long Beach, 

California, USA, ACM, pp 54–65.  

[12]  Udo Kelter, Jrgen Wehren, Jrg Niere, "A generic difference algorithm for uml models," In Peter 

Liggesmeyer, Klaus Pohl, Michael Goedicke, editors, Software Engineering, volume 64 of LNI, pp 105–116, 

GI, 2005, ISBN 3-88579-393-8.      



Fine-Granular Model Diff Solution For Model-Based Software Configuration Management.  pp 152-165 

 

165 

Malaysian Journal of Computer Science.  Vol. 28(2), 2015 

[13] Akhil Mehra, John Grundy, John  Hosking, "A generic approach to supporting diagram differencing and 

merging for collaborative design," In ASE’05,Proceedings of the 20th IEEE/ACM international Conference 

on Automated software engineering, New York, NY, USA, 2005, ACM, pp 204–213, ISBN 1-59593-993-4, 

doi:http://doi.acm.org/10.1145/1101908.1101940.  

[14] L. B. Huang, V. Balakrishnan, R.G. Raj, "Improving the relevancy of document search using the multi-term 

adjacency keyword-order model." Malaysian Journal of Computer Science, Vol. 25, No. 1, 2012, pp. 1-10.  

[15] Sabrina Foertsch and Bernhard Westfechtel. “Differencing and merging of software diagrams - state of the art 

and challenges.” In ICSOFT (SE),  Proceedings of the Second International Conference on Software and 

Data Technologies, Volume SE, Barcelona, Spain, July 22-25, 2007, pp 90-99.  

[16] W.L.Yeow, R. Mahmud, R.G. Raj,  “An application of case-based reasoning with machine learning for forensic 

autopsy”, Expert Systems with Applications, Vol 41, No. 7, 2014, pp. 3497-3505, ISSN 0957- 4174, 

http://dx.doi.org/10.1016/j.eswa.2013.10.054. (http://www.sciencedirect.com/science/article/pii/S0957 417413008713).  

[17]  Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, David Launay, "Neo4EMF, A Scalable 

Persistence Layer for EMF Models," In Modelling Foundations and Applications, Lecture Notes in Computer 

Science, Springer International Publishing, 2014, Vol. 8569, pp 230-241.  

[18] Westfechtel, Bernhard. "A formal approach to three-way merging of EMF models." In Proceedings of the 1st 

International Workshop on Model Comparison in Practice, ACM, 2010, pp. 31-41 

[19] M. Lamine Ba, Talel Abdessalem, and Pierre Senellart. 2013. “Uncertain version control in open 

collaborative editing of tree-structured documents”. In Proceedings of the 2013 ACM symposium on 

Document engineering (DocEng '13). ACM, New York, NY, USA, pp. 27-36. DOI=10.1145/2494266.2494277 

http://doi.acm.org/10.1145/2494266.2494277 

[20] Taentzer, Gabriele, Claudia Ermel, Philip Langer, and Manuel Wimmer. "A fundamental approach to model 

versioning based on graph modifications: from theory to implementation." Software & Systems 

Modeling February 2014, Vol. 13 No. 1, , pp 239-272  

[21]  Völter, Markus, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen. “Model-driven software 

development: technology, engineering, management”. John Wiley & Sons, 2013. 

[22] Edward H. Berso_, Vilas D. Henderson, and Stan G. Siegel. Software configuration management. Software 

configuration management: a tutorial. IEEE Computer, Vol. 12 No. 1, January 1979, pp. 6-14. [23]  Reidar 

Conradi and Bernhard Westfechtel, “Version models for software configuration management”. ACM Comput. 

Surv. Vol. 30 No. 2,  June 1998, pp. 232-282.  

[24] Jacky Estublier, “Software configuration management: a roadmap”, Proceedings of the Conference on The 

Future of Software Engineering, June 04-11, 2000, Limerick, Ireland, pp.279-289.  

 

 

http://dl.acm.org/citation.cfm?id=336576&CFID=678791925&CFTOKEN=86614089
http://dl.acm.org/citation.cfm?id=336576&CFID=678791925&CFTOKEN=86614089

	page4
	page20

