
A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

132

Malaysian Journal of Computer Science. Vol. 28(2), 2015

A FLOWCHART-BAS ED MULTI-AGENT S YSTEM FOR ASSISTING NOVICE PROGRAMMERS

WITH PROBLEM SOLVING ACTIVITIES

Danial Hooshyar
1
, Rodina Binti Ahmad

2
, Ram Gopal Raj

3
, Mohd Hairul Nizam Md Nasir

4
, Moslem Yousefi

5
,

Shi-Jinn Horng
6
, and Jože Rugelj

7

1, 2, 3, 4
Faculty of Computer Science and Informat ion Technology, University of Malaya, Kuala Lumpur, Malaysia

5
Center of Systems and Machines Intelligence, College of Engineering, Universiti Tenaga Nasional, Kajang,

Malaysia
6
Department of Computer Science and Informat ion Engineering, National Taiwan University of Science and

Technology, Taiwan
7
Faculty of Education, University of Ljubljana, Ljubljana, Slovenia

E-mail:
1
Danial.hooshyar@gmail.com,

2
rodina@um.edu.my,

3
ramdr@um.edu.my,

4
hairu lnizam@um.edu.my,

5
moslem_yousefi@yahoo.com,

6
horngsj@yahoo.com.tw,

7
joze.rugelj@pef.uni‐lj.si

Abstract

In the early stages of learning computer programming, Computer Science (CS) minors share a misconception of

what programming is. In order to address this problem, FMAS, a flowchart-based multi-agent system is developed

to familiarize students who have no prior knowledge of programming, with the initial stages in learning

programming. The aim is to improve students’ problem solving skills and to introduce them to the basic

programming algorithms prior to surface structure, using an automatic text-to-flowchart conversion approach.

Therefore, students can focus less on language and syntax and more on designing solutions through flowchart

development. The way text-to-flowchart conversion as a visualization-based approach is employed in FMAS to

engage students in flowchart development for subsequent programming stages is discussed in this paper. Finally, an

experimental study is devised to assess the success of FMAS, and positive feedback is achieved. Therefore, using

FMAS in practice is supported, as the results indicate considerable gains for the experimental group over the

control group. The results also show that an automatic text-to-flowchart conversion approach applied in FMAS

successfully motivated nearly all participants in problem solving activities. Consequently, the results suggest

additional, future development of our proposed approach in the form of an Intelligent Tutoring System (ITS) to make

the early stages of learning programming more encouraging for students.

Keywords: Flowchart; Novice programmers; Text-to-flowchart Conversion; Problem solving; Visualization

1.0 INTRODUCTION AND LITERATURE REVIEW

Introductory programming learning causes difficult ies to many students world wide. Since there are several

programming courses in fields like engineering and computer science, students in these fields should be able to do

programming [1]. High dropout and failure rates in initial programming courses are reported in literature [2]. For

instance, as Carter and Jenkins indicated, in final year projects students mostly avoid programming because they are

not able to program or do not believe they can [3]. The reason for these difficu lties is the lack of problem solving

skills, solution designing, and the use of programming languages that are often artificial [4-7]. However, students‟

background in science, motivation, class size, and programming language syntax are additionally highlighted as

reasons for this difficulty. Commonly, the bas ic programming constructs are understood by the majority of students;

but they are still unable to employ them for creating programs to solve problems. Due to the aforementioned

reasons, to coordinate and compose instruction for a program is a major issue for many students [8-9].

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

133

Malaysian Journal of Computer Science. Vol. 28(2), 2015

We believe programming languages are merely a way of expressing solutions while more focus should be directed

toward problem solving abilities, since learning to solve problems algorithmically contributes to learning how to

program. As programming skills cannot be completely transferred from instructors to students, programming should

also be actively practiced by novice programmers to gain knowledge [10-11]. However, countless students are

unable to develop solutions for simple problems and encounter difficult ies in the preliminary learning stages. This

might cause loss of interest and giving up, which lead to dropout and failure.

Numerous tools, approaches, and environments have been proposed and developed over the past decades to

overcome learning d ifficu lties faced by students [12, 13]. Some offer familiar environments to teach basic

programming constructs, for instance micro worlds (e.g., Alice [14, 15] and Karel Robot [16]), which are applicable

to movement control and other behaviors of familiar entit ies. Among the tools proposed, Ruru [17], BlueJ [18, 19]

and X-Compiler [20] enable students to promote their programming skills in simpler and less complicated

environments than professional ones. Using graphical representations, many animat ion educational tools have been

proposed, for instance SICAS [21], JAWAA [22], Jeliot 2000 [23], Raptor [24], and Choregraphe [25], to enable

students to better understand programs. In addition, several tools have been developed to apply Artific ial

Intelligence (AI) techniques, such as DISCOVER [26] and Lisp Tutor [27] to support individualized learning. With

these tools, students attain error and misconception findings as well as corrections in their programs through

program simulat ion.

Even though it is believed that guiding students to identify and correct erro rs and misconceptions by simulating their

own programs is valuable, students who are weaker cannot benefit from this because they are incapable of

developing initial solution propositions to be simulated. It is worth mentioning that rather than focusing on problem

solving skills, which are more essential for weaker students, such tools emphasize on programming language

features more. In the hope of addressing the above issues, we developed the Flowchart-based Multi-agent System

(FMAS) that benefit from an automatic text-to-flowchart conversion approach. It enables creating initial solutions

for simple problems and improves problem solving skills. Some AI techniques are applied to FMAS development to

convert the statement of a given programming problem (here in English) to a relevant flowchart. These techniques

are: Natural Language Processing (NLP), Knowledge-based System, Knowledge Expansion, a Web Crawler (web

monitoring service), and Multi-agent System. FMAS also contains a system chat and online chat (i.e. for a worst-

case scenario), erro r system, instant feedback, synchronization of the text and its relevant sub -flowchart, and a

visualizat ion-based approach to support weaker students to create basic algorithms.

The rationale behind developing FMAS is to assist students in visualizing the relation between the problem

statement (here in English text) and its pertinent flowchart while becoming engaged in the process of flowchart

development which can be subsequently improved. Using FMAS, the students are guided through a dialogue system

chat. FMAS encourages students by providing hints, synchronization, errors and extra information on the concept.

This interaction urges step-by-step solution construction. As aforementioned, the target audience of this research

involves CS minors who have no prior knowledge of programming. A novel flowchart -based mult i-agent system

that benefits from an automatic text-to-flowchart conversion approach to enhance CS minors‟ problem solving skills

is the main contribution of this work. The proposed novel mult i-agent system can be utilized in many academic

applications, including problem solving, drawing diagrams, etc., as well as making the teaching of programming

subjects more appealing for instructors.

The remain ing parts of this paper are dedicated to the following sections: 2) mental model and visualization,

explaining how flowcharts can provide novice programmers with clear mental models of algorithms; 3) FMAS

architecture, elaborating main components and different scenarios of the proposed system; 4) evaluation, results and

discussion which is dedicated to the devised experimental study, the results attained for both experimental and

control group, and analyses of the results to see whether or not the use of FMAS in practice is supported and 5)

conclusions and future work.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

134

Malaysian Journal of Computer Science. Vol. 28(2), 2015

2.0 MENTAL MODEL AND VIS UALIZATION

Mental models are very important in the comprehension of programming and other technical computing subjects. A

student‟s success in preliminary programming courses is so much dependent and affected by developing the

representations of process flow and mental models [28]. The importance of these models in developing

understanding is also emphasized by Winslow [29]. In many cases, without having a mental model of the solution to

a problem, students attempt to code the solution. In many cases, they are not provided with a cognitive or visual

model in the learning context. In order to convey programming concepts, the majority of instructors emphasize on

pseudo codes that offer somewhat good explanations for instruction in English. However, such pseudo code

explanations cannot address program execution flow between the flowchart and program components. The lack of a

mental model of execution can lead to considerable difficult ies in understanding the relation among individual

programming components. With the aim of v isualizing the structure of programming, flowcharts have been used to

overcome the inconvenience in translating a problem specification to its corresponding program code solution.

Flowcharts offer novice programmers clear mental models of algorithms without the need for prior training. As

Westphal et al. [30] stated, “Even with having a pseudo code, it is so hard for novices to communicate the flow of a

program unless using flowcharts or diagrams .” For modeling large and complicated problems, flowcharts are not

well-suited but are more appropriate for simple programs and conveying basic concepts to novice programmers. It

can be said UML activ ity diagrams are more adequate modern visualizations than flowcharts , and are better for

novice programmers to use. However, there is no privilege in terms of functionality or visualization for UML

activity diagrams over flowcharts in the context of simple novice programs. Bassat Levy et al. [31] indicated that the

effectiveness of flowcharts can be extended by using visualization-based tools and environments to assist novices

with problem solving and program development. These environments provide novices with a concrete model of

execution that is required by most to understand algorithms and programming. Preventing novice programmers from

engaging in programming problem statements may lead to serious difficulties once faced with new programming

exercises. More importantly, it is necessary for users to observe the relation between the textual forms of exercises

given and relevant flowcharts. This provides users with the capability to relate a programming problem statement to

a flowchart design more effectively, aiding with the transition from problem text specification to a relevant

flowchart. A web -based environment that visualizes the solution development for a programming problem by

converting the given problem s tatement to a relevant flowchart while engaging users in flowchart development,

provides novices with an accurate mental model of execution. Consequently, an automatic text-to-flowchart

conversion approach enables users to directly observe how a textual programming problem maps onto a flowchart.

3.0 THE ARCHITECTURE OF THE PROPOS ED S YS TEM

Teaching computer programming to CS minors is supported by using FMAS, whose architecture is shown in Fig. 1.

Highlighting the essential princip les of various algorithms on a higher level of abstraction as well as problem

solving ability through designing activities are the main aims of this system. FMAS has two different scenarios: a

keyword is found and a keyword is NOT found. The former employs six agents along with five sub-agents to

convert the programming problem statement into a corresponding flowchart while engaging novices in flowchart

development. The latter uses four agents accompanied by two sub-agents in order to convert the text form of the

programming problem to its relevant flowchart. In total, there are eight agents and seven sub-agents: the NLP,

keyword finder, dict ionary, flowchart, error detector, crawler, process orientation and admin agents; and synonym

and substitution sub-agents, guidance and toolbar sub-agents, system chat sub-agent, and flowchart and online chat

sub-agents. The role of each agent in the first scenario where a keyword is found is described and elaborated below.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

135

Malaysian Journal of Computer Science. Vol. 28(2), 2015

Fig 1. FMAS architecture

3.1 The First System Scenario

GUI (a software component) is the interface that a user will employ to interact with other agents. The flowchart and

process orientation agents communicate with GUI. The content from the flowchart agent and process orientation

agent includes the drawn flowchart or sub-flowchart along with instant feedback and messages will be passed to the

user by GUI. This software component will take the problem given in text form and convey it to the next agent

called the NLP agent.

3.1.1 NLP Agent

The NLP agent performs semantic and syntactic analysis of a programming problem entered in English text. It

normally does sentence segmentation, part-of-speech tagging and parsing. After parsing a sentence, the agent carries

out noise removal, including prepositions, conjunctions, etc., and only the main words will be handed to the key

finder agent.

Example 1: Write a program to calculate the factorial of a given number.

After parsing we have: write/VB a/DT program/NN to/TO calculate/VB factorial/NN of/IN given/VBN number/NN

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

136

Malaysian Journal of Computer Science. Vol. 28(2), 2015

As seen above, an online parser, Stanford Parser [32], processes the entered text, and the system automatically

removes the noise in the parsed sentence. This means that prepositions, conjunctions, and so on, will be removed

and only the main words will be chosen. Therefore, the output for example 1 after noise removal is:

Calculate/VB factorial/NN given/VBN number/NN

3.1.2 Key Finder Agent

This agent cross-checks the main words extracted from the entered sentence with keywords stored in database 1

(D1). If a word matches a keyword, the keyword will be referred to the flowchart agent for further processing. If no

keyword is found, the main words will be sent to the dictionary agent for further checking. If no substitution or

synonym is found, the second system scenario starts working.

3.1.3 Dictionary Agent

This agent checks words for synonyms and substitutions through database 2 (D2). If any keyword is found from its

two sub-agents, it will be returned to the key finder agent again for further action. This agent comprises two sub -

agents described below:

 Synonym Sub-agent

This sub-agent cross-checks words with its repository and if any synonym is found, it will be passed to the

dictionary agent.

Example 2: Write a program to find the largest among three numbers.

If the key finder agent cannot find any keyword match for its question, it refers to the dictionary agent which, using

a synonym sub-agent, will find synonyms such as biggest, maximum, and max for the main word „largest.‟

 Substitution Sub-agent

This sub-agent cross-checks the words with its repository and if it finds any substitution, it will pass it to the

dictionary agent.

3.1.4 Flowchart Agent

This agent receives the keyword found from D1 and uses a draw-able representation module to provide the GUI

software component with a workspace for users to complete the sub-flowchart, a system chat for step-by-step

guidance, and the flowchart template. System assessment provides both a means to guide student learning and

feedback for the learner about the learning process. The flowchart agent includes three sub-agents as follows:

 Guidance Sub-agent

This sub-agent offers users a workspace, a flowchart template with sub-flowcharts located in the right places,

various flowchart notations for dragging and dropping to complete the flowchart template, instant feedback in the

system chat, extracting the correct text and content of each shape in the flowchart from D1 and placing it in the

shape dropped by users, and showing the full flowchart to be compared and traced by users. The workspace

generated for example 1, d ifferent shapes to complete the flowchart, instant system error and feedback along with

the system chat are shown in Fig 2. It should be noted that this sub-agent does not allow the wrong shape or notation

to be dropped in the flowchart template and gives users an instant error and feedback. Upon dropping the correct

shape in the template, suitable and relevant content or text will be extracted from D1 and placed in the shape

dropped to facilitate fu ll user guidance.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

137

Malaysian Journal of Computer Science. Vol. 28(2), 2015

Fig 2. Workspace provided by the guidance sub-agent

Once users complete the flowchart, the system asks whether they wish to have a full flowchart extracted from the

Internet [33], as shown in Fig 3. This option enables viewing the correct flowchart next to that developed by the

users, who can then compare and trace flowcharts. In addition, correct arrows are visible in the flowchart from the

Internet.

Fig 3. Workspace provided by the guidance sub-agent along with full flowchart from the Internet

 Toolbar Sub-agent

This sub-agent provides users with the workspace, flowchart template, and various flowchart notations for dragging

and dropping to complete the flowchart template, and brief feedback next to each shape after flowchart completion.

The workspace generated for example 1, different shapes to complete the flowchart, system error upon flowchart

complet ion along with the system chat are illustrated in Fig 4. This sub-agent only provides the workspace and

flowchart shapes for users, who will receive brief feedback on their task only after complet ing the drag and drop and

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

138

Malaysian Journal of Computer Science. Vol. 28(2), 2015

not instantly. In addition, users can enter text through each shape dropped in the flowchart template, meaning that

the system does not fully guide them.

Fig 4. Workspace provided by the toolbar sub-agent

Feedback upon flowchart complet ion is presented in Fig 5 along with an automatically generated question by the

system chat which asks whether the user wishes step-by-step guidance from the system through the guidance sub-

agent. Another classical way of making users think after a failure is to limit the amount of feedback.

Fig 5. Toolbar sub-agent workspace with brief feedback

 System Chat Agent

This agent provides users with immediate feedback, erro rs and recommendations while they are completing the

flowchart (Figs 2 and 3).

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

139

Malaysian Journal of Computer Science. Vol. 28(2), 2015

3.1.5 Error Detection Agent

If any error occurs throughout flowchart execution using the toolbar and guidance sub-agents, it will be detected and

stored by the error detection agent. Afterwards, it will be conveyed to the crawler agent who will find additional,

relevant information and definitions to automatically improve the database for subsequent users without human

intervention.

3.1.6 Crawler Agent

The crawler agent receives an unrecognized keyword from the error detection keyword, and crawls relevant

websites (e.g. [33]) to find a related defin ition and context for improving the D1 database. Once this agent extracts

additional information, it will be automatically added to the D1 database. If the next user enters the same question

before proceeding to flowchart complet ion, the system will present this added information in definit ion form at the

top of the page. Fig 6 illustrates the function of these two agents in example 1.

Fig 6. Workspace of the guidance sub-agent with extra information added by the crawler agent

3.2 The Second System Scenario

The role of each agent in the second scenario for „a keyword is NOT found,‟ is presented.

3.2.1 NLP Agent

The GUI software component and NLP agent are the same as described in Sect ion 3.1.

Example 3: Write a program that asks the user to type an integer, and write _you win_ if the value is between 56

and 78.

After parsing, there is: write/VB a/DT program/NN that/WDT asks/VBZ the/DT user/NN to/TO type/VB an/DT

integer/NN and/CC write/VB _/VBG you/PRP win/VB _/NNS if/IN the/DT value/NN is/VBZ between/IN 56/CD

and/CC 78/CD

As seen above, the text entered is processed by an online parser and the system automatically does minor noise

removal in the parsed sentence. It is worth noting that the noise removal stage in the second scenario of FMAS

differs from the first scenario. Therefore, the output for example 3 after no ise removal is:

Asks/VBZ user/NN type/VB integer/NN write/VB _/VBG you/PRP win/VB _/NNS if/IN value/NN is/VBZ between/IN

56/CD 78/CD

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

140

Malaysian Journal of Computer Science. Vol. 28(2), 2015

3.2.2 Key Finder Agent

This agent cross-checks the main words extracted from the sentence entered by the NLP agent with keywords stored

in D1and D2. If no match is detected, the main words ext racted from the programming problem statement will be

sent to the process orientation agent.

3.2.3 Process Orientation Agent

In case no keyword is found, this agent obtains the main words from the NLP agent, refers each related word to its

corresponding flowchart notation (for example, if there is „?‟ or “If” in the problem statement, a diamond will be

drawn, in which the flowchart sub-agent will place relevant words) and then sends them to the flowchart sub-agent

for drawing. The process orientation agent includes two sub-agents as follows:

 Flowchart Sub-agent

This sub-agent refers each main word and keyword to its corresponding shape and develops a sub-flowchart. It also

provides the GUI software component with a workspace for users to complete the sub -flowchart, an online system

chat to guide users step-wise and a flowchart template. For example 3, the process orientation agent automatically

generates relevant sub-flowcharts using the flowchart sub-agent presented in Fig 7. When users keep the mouse

cursor on the programming problem statement, the relevant sub-flowchart will be highlighted to show the

relationship between the text and its corresponding flowchart.

Fig 7. Workspace of the process orientation agent

 Online Chat Sub-agent

It is not unusual for students to get stuck on certain programming assignment stages. In such situations, it is

important to get timely help from an instructor to be able to continue working on the assignment. Otherwise,

students may give up or not have sufficient time remain ing. Therefore, an online chat sub-agent provides novices

with an online chat with the system‟s admin for further flowchart development. As shown in Fig. 7, an online chat is

improvised at the bottom right side of the page to help users obtain more guidance from the system admin. If

databases 1 and 2 are input properly and have sufficient basic exercises aimed at CS minors, users will not be

referred to this stage. Therefore, the online chat with the admin is only used in worst -case scenarios.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

141

Malaysian Journal of Computer Science. Vol. 28(2), 2015

3.2.4 Admin Agent

The admin agent requests the system admin to define and draw the relevant flowchart of each unknown

programming problem stored in database 3, which will all be automatically added to D1 to improve the system‟s

database.

4.0 EVALUATION AND PARTICIPANTS

In total, 50 first-year undergraduate students from the University of Malaya, with no prior knowledge of computer

programming, participated in the current study. The study duration comprised two, two-hour sessions every week

conducted over two weeks. To improve the problem solving skills of participants while reducing the syntactical

burden inherent to programming languages was the initial hypothesis. After a traditional instruction presentation in

the first session, the participants were supposed to solve three programming problems. Afterwards, the participants

were introduced to FMAS with a 30 minute lecture in the second session and were then asked to use the system to

solve the desired exercises. In the third and fourth sessions, they were given simple and basic programming

problems with increasing complexity. The participants were asked to solve 2 simple programming problems in order

to get introduced to using FMAS and a few programming concepts. Examples of special cases were provided for

clarification. Evaluation was conducted in an informal setting by ten evaluators every two hours. Different

evaluation approaches such as problem solving monitoring, questionnaires, observation, and interviews, were used

to evaluate the proposed system.

4.1 Instruments and Data Collection

The learning materials presented to students consist of some theoretical knowledge in basic computer programming,

algorithm and solution design, and flowchart development. These learning materials were taught during two separate

lecture and practical sessions. The participants were divided into two groups. Two key factors considered in FMAS

evaluation were usability and effect iveness. The usability of FMAS was regarded as similar to any other software

applications. Jacob Nielsen [34] indicated that software application usability is employed to assess how easy it is to

use user interfaces. Thus, we categorized the feedback gained from the evaluation into five areas : ease of use, error

handling, enjoyment, reliab ility, and website-related questions. With regard to FMAS effectiveness and whether it is

educationally beneficial to novice programmers, we evaluated the efficacy of FMAS, which is the most important

factor. In this study, three subjective data gathering techniques were applied, namely questionnaires, observation,

and interviews, besides an objective data gathering technique, i.e. problem solving monitoring, to determine the

effect of FMAS on improving novice programmers‟ problem solving skills. As for the objective data gathering

technique, the two methods applied were monitoring the task completion time and number of solved problems in

each session [35, 36].

5.0 RES ULTS AND DISCUSS ION

This research aims to generate feedback regarding FMAS usability, efficacy, and problem solving ability. The

questionnaire data gathered from the study, mean, standard deviation, variance as well as response description and

frequency are presented in Table 1 and Fig 8. In order to combine the results of the questionnaires using different

scales, the data is presented in percentage. The questionnaire was div ided into usability and efficacy groups.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

142

Malaysian Journal of Computer Science. Vol. 28(2), 2015

Table 1: Questionnaire Results

No Study

Aim

Evaluation Criteria Mean Std.

Deviation

Variance

1 Usability This programming tool is enjoyable to use 3.9800 .55291 .306

2 Usability This programming tool is easy to use and understand (I can learn how

to use the tool within 5 minutes)

4.3600 .85141 .725

3 Usability The tool performs its function in a correct and efficient manner 4.3800 .63535 .404

4 Usability The tool is speedy and responsive 4.1000 .50508 .255

5 Usability The use of color is beneficial (The design of this tool is attractive) 4.1400 .72871 .531

6 Usability Launching the tool is easy 4.2800 .64015 .410

7 Usability The user interface design is appropriate for an inexperienced user 4.1200 .84853 .720

8 Usability The animation helped me devel op a solution and understand how a

program works

4.3600 .74942 .562

9 Usability I enjoyed solving the programming problem using this tool 4.6400 .48487 .235

10 Usability System chat and instant feedback are helpful 4.4400 .70450 .496

11 Usability The error messages are helpful to provide guidance to correct my

mistake

4.1400 .63920 .409

12 Usability The programming problems given are at the right difficul ty level for

me

4.0200 .86873 .755

13 Efficacy The automatic text-to-flowchart approach is helpful when I have no

idea about the solution

4.2600 .98582 .972

14 Efficacy The flowchart visualization helped me when developing a solution 4.5400 .50346 .253

15 Efficacy I had few problems learning how to use the tool to develop my

solution

3.0200 .79514 .632

16 Efficacy The flowchart is useful for designing computer programs and sharing

ideas

4.6000 .49487 .245

17 Efficacy I understand the relationship between the flowchart and

programming problem statement after using the tool

4.5400 .64555 .417

18 Efficacy The tool made the programming concept easier to understand 4.2600 .69429 .482

19 Efficacy I would recommend the tool to others who want to learn

programming

4.5400 .50346 .253

20 Efficacy The tool enabled me to see a design solution 4.4400 .73290 .537

21 Efficacy The flowchart enabled me to understand the solution being developed 4.6000 .49487 .245

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

143

Malaysian Journal of Computer Science. Vol. 28(2), 2015

22 Efficacy I feel I have learnt some skills by using the tool and solving the

problems

4.1600 .68094 .464

23 Efficacy The tool has posi tively influenced my interest in programming 3.9800 .95810 .918

24 Efficacy The tool helped me understand how to design a solution in

programming

4.3000 .61445 .378

25 Efficacy The tool helped me develop and improve my solution designing and

problem-solving skills

4.3000 .76265 .582

26 Efficacy The tool increased my understanding of computer programming 4.2800 .57286 .328

27 Efficacy The tool as a whole and i ts features helped me overcome conceptual

di fficulties in programming

4.3600 .69282 .480

28 Efficacy The tool enables me to focus and improve my problem solving skills 4.4400 .64397 .415

Fig 8. Questionnaire data gathered from 50 part icipants

The reliability of the result should be studied upon collecting the evaluation results. Various methods have so far

been applied to measure reliability, and Cronbach's Alpha is used in this research. This method is normally used to

measure internal consistency and the range is between 0 and 1. As long as α is close to 1, it is said to be reliab le [37]

but overall, this range should be higher than 0.7 to prove reliability. The Cronbach's alpha measure for the usability

and efficacy of the questions shown in Table 2 is greater than 0.7, which indicates the high reliability level of the

questionnaire and implies sufficient internal consistencies have been judged for a reliable measure.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

144

Malaysian Journal of Computer Science. Vol. 28(2), 2015

Table 2: Reliability Stat istics

Factor Cronbach's Alpha

Usabili ty .947

Efficacy .972

In general, the data collected indicates the research positivity. The main results from the samples as a whole and

individually for each factor are shown in Fig. 9, where bars represent the average score assigned to each item.

Fig 9. Results of students‟ opinion about FMAS

The diagram above signifies that participants liked learning programming using FMAS and it helped them enjoy

problem solving and solution designing activities with ease of use. Other factors, such as web and online problem

solving tasks, overall efficacy, flowchart, animat ion, and error handling were deemed highly positive by users. Most

students reported high satisfaction with FMAS. Table 3 provides additional details on the mean and standard

deviation concerning various factors. Regarding the efficacy of FMAS in improving problem-solving skills, which is

considered the main goal of this research, the results indicate that the overall system efficacy in problem solving and

solution designing activities is 4.6000. This signifies the success of FMAS in attain ing the main aim of the research.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

145

Malaysian Journal of Computer Science. Vol. 28(2), 2015

Table 3: Mean (M) and Standard deviation (SD) for items about students‟ opinion of FMAS

Items Usability Efficacy M SD

Enjoyment (Questions 1, 9) * 3.9800 0.782

Ease of use (Questions 2, 5, 7) * 4.3600 0.765

Reliability (Questions 3, 4, 12) * 4.6400 0.870

Website and Online Problem Solving Tasks (Question 6) * 4.0200 0.910

Overall efficacy (Questions 13, 14, 18, 19, 20, 22-28) * 4.6000 1.028

Flowchart (Questions 16, 21) * 4.6400 1.037

Animation (Questions 8, 15) * 3.7600 0.980

Error handling (Questions 10, 11) * 4.3000 1.030

5.1 Analysis of Usability

The enjoyment and simplicity of FMAS were liked by participants and are considered among the most significant

evaluation aspects. Regarding system enjoyment, the participants were evaluated according to responses to

Questions 1 and 9. Question 9 emphasized problem solving enjoyment using FMAS and the majority of participants

considered it one of the system‟s strengths. Question 1 merely focused on the enjoyment factor and the high

response rate to this question indicates that participants found FMAS enjoyable and interesting. Therefore, a positive

overall result was obtained from these questions. Questions 2, 5, 7 and 15 assessed the ease of use and simplicity of

the system. In the evaluation conducted, the participants‟ responses showed the highest study average, indicating

that FMAS is easy to use. Observations and interviews with the evaluators regarding these factors show that they

liked the simplicity of FMAS; however, some stated that the interface should be improved in certain sections. For

example, three evaluators asked for save and undo options. Participants‟ responses to questions 3 and 4 showed the

system‟s reliability. The feedback received to these questions was satisfactory. Nonetheless, perfect software of

100% with Likert evaluation is nearly impossible. Some minor problems were found and mitigated during FMAS

development. Thus, the score is deemed a good indicator of reliability with minor room for impro vement. Views on

website and online problem solving tasks were obtained from question 6. The h igh response rate shows a good

performance level in this area. The participants‟ responses to question 11 were also positive, as expected, meaning

the system is strong enough to handle errors.

5.2 Analysis of Efficacy

Questions 10, 12, 18-20, and 22-28 direct ly addressed the efficacy of FMAS as a teaching aid. Overall, the feedback

gained regarding system efficacy illustrates that FMAS is regarded as useful and helpful in particu lar. System chat

and instant feedback generated by the system as well as animat ion were evaluated using questions 8 and 10.

Surprisingly, the responses to these questions had some of the highest rates, signifying that color is considered a

significant aid to participants‟ understanding. Feedback from the interview concerning this question indicates that

differentiation between various flowchart components was the main reason for this finding. Addit ionally, apply ing

various colors eases spotting the key functionality of an algorithm modeled in FMAS. The rest of the questions

regarding system efficacy were aimed at exploring the system‟s effectiveness and efficacy in p roblem solving and

solution designing activities. Questions 13 and 17 showed the importance of the novel, proposed text-to-flowchart

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

146

Malaysian Journal of Computer Science. Vol. 28(2), 2015

approach, and their results showed that FMAS considerably encourages and enables students to engage in problem

solving activities. During observation and interviews , the participants were asked about the new approach applied in

the system. They gave positive feedback, indicating the effectiveness of this approach, specifically while students

are off-campus and are required to do exercises when they have no idea regarding the solutions. They all declared

that having guidance through solution development by means of flowchart d rawing is the best for CS minors. FMAS

shows clear relations between the programming problem statement and its relevant components in a flowchart by

synchronized highlights and side-by-side views. For this feature, question 17 was designed for the participants.

Feedback gained from the questionnaire and observations shows that after using FMAS, the participants felt they

had some sort of understanding of the solution being developed. As a result, this feature was emphasized more

prominently in subsequent evaluations and resulted in a much stronger response. The power of the flowchart as a

teaching aid for participants is displayed through questions 14, 16, and 21, where the usefulness of flowcharts in

FMAS was examined. More than 90% positive responses demonstrated the effectiveness and suitability of

flowcharts for CS minors.

5.3 Analysis of Problems Solving

In this section, problem solving activities along with their efficacy are assess ed. As indicated in the previous

sections, in order to monitor participants‟ problem solving activities, the improvement in the 10 pre -selected

participants‟ complet ion times (Tab le 4) and the number of p roblems solved in each session by 32 pre-selected

participants (Fig 10) were monitored and assessed. Ten participants were pre-selected based on their level of

knowledge for monitoring the improvement in completion time; while 32 participants were pre -selected based on

their attendance in each session for monitoring the numbers of prob lems solved in each session.

Fig 10. Average number of problems completed per session

Once learning difficu lties were tackled, completion time decreased although problem complexity increased.

Regarding the number of problems solved per session, by using the system, the majority of participants were at least

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

147

Malaysian Journal of Computer Science. Vol. 28(2), 2015

able to solve one or two of the given programming problems. This shows the effectiveness of FMAS in problem

solving activities. A few participants were unable to solve problems before using FMAS, but afterwards, their

problem solving abilit ies enhanced and they solved at least one problem per session. In general, the feedback and

results collected from problem solving monitoring indicate that the participants found FMAS v ery effective and

enjoyable. It should also be mentioned that some participants responded with a low positive. The time limitation

caused some of the participants to spend less time familiarizing with FMAS. Other factors affecting the evaluation

results were age and gender, which should be investigated further.

Despite the fact that the problems grew in complexity from one to the next (Problem 1: Max and Min; Problem 2:

Factorial; Problem 3: Area and Perimeter of Square), the time completion rate results sh own in Table 4 demonstrate

a decline in completion time with each successive problem. During problem solving monitoring, four participants

were not able to complete problems a2 and a3. However, by using FMAS, not only could they tackle this issue, the

time decrement in completion time for problems b2 and b3 was a real surprise. This shows that FMAS and the

problem solving activities had a very positive impact on most participants‟ problem solving skills.

Table 4: Time complet ion rates of 10 participants in two different sessions

Participant No Problem

a1

Problem

a2

Problem

a3

Problem

b1

Problem b2 Problem b3

1 2:45 min 2:20 min 3:00 min 2:40 min 2:10 min 3:00 min

2 3:10 min 3:00 min 1:55 min 2:10 min 2:45 min

3 1:50 min 2:30 min 2:40 min 1:55 min 2:50 min 2:30 min

4 2:00 min 2:20 min 2:50 min 2:00 min 1:50 min 2:00 min

5 4:00 min 2:30 min 2:40 min 2:30 min

6 1:30 min 2:40 min 3:00 min 1:10 min 1:30 min 1:40 min

7 2:10 min 1:50 min 2:00 min 2:00 min 2:10 min 2:10 min

8 2:40 min 2:50 min 2:30 min 1:40 min 1:55 min 2:15 min

9 2:00 min 3:10 min 1:20 min 1:55 min 1:55 min

10 2:30 min 2:00 min 2:30 min 2:00 min 2:00 min 2:20 min

Max 4:00 min 3:10 min 3:00 min 2:40 min 2:50 min 3:00 min

Min 1:50 min 1:50 min 2:00 min 1:10 min 1:30 min 1:40 min

Avg. Time 2:27 min 2:32 min 2:38 min 1:55 min 2:07 min 2:18 min

No 10 9 7 10 10 10

According to the results of various evaluation techniques conducted, FMAS, which benefits from an automatic text -

to-flowchart approach, is a mot ivating and effective way of teaching introductory programming to novice

programmers. Although a tool may be considered effective, it will not be adopted as long as the overhead of doing

so is high. This study focused on discovering if FMAS could yield some improvements to the problem s olving skills

of novice programmers in the basics of imperative programming. Furthermore, more than 90% of participants

agreed that during the interview and questionnaire, FMAS would make it easier for inexperienced users to learn

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

148

Malaysian Journal of Computer Science. Vol. 28(2), 2015

programming. A part icularly interesting finding was that FMAS appeared to be suitable for nearly all participants.

By examining the evidence collected from the evaluation, it became clear that FMAS along with its features and

strategy of user involvement in flowchart development are very well-suited for the CS minors participating in this

study. It is also clear that by using FMAS and solving the exercises, the students became more interested in

programming concepts whilst developing problem solving skills. This is evidenced by the ir decreasing complet ion

time and feedback to the questionnaire. The study provided further evidence of the FMAS efficacy. From the

questionnaire, observations, and interviews , it is apparent that the evaluators also gained a general understanding of

solution development. This knowledge was acquired primarily through the evaluators‟ active engagement with

FMAS via problem solving tasks, demonstrating the efficacy of FMAS in problem solving. This was due to the

intuitiveness of the flowcharts, as the majority of evaluators agreed that they were enabled to understand the

solutions being developed. Rather surprisingly, many of the participants considered the flowchart use of color

beneficial. The efficacy of the web launching features was also evident in this study. The developed website was

additionally seen as effective and very appropriate for hosting online activity packs and problems. A number of

participants faced some difficu lties in expression entry; however, this subsided after completing the second problem.

Such errors are more typographical than logical. In summing up the error handling features, while many users found

FMAS‟s error messages helpful, some mentioned that it could be further simplified. The efficacy of the flowcharts

became apparent in the study findings. Feedback from the students indicated that the animation features were useful,

insightful and helpful to developing program solutions. The synchronization of the programming problem statement

and its relevant sub-flowchart was easily visible to users, which enabled them to understand the real connection

between the flowchart and texture of the programming problem as well as structure semantics. Despite the study

having been conducted outside the campus network, the results show that the web launching features of FMAS to be

very effective, as 20 students accessed the tool simultaneously in approximately one minute. The efficacy results

indicate that the participants strongly believed they were learn ing something from the whole experience. Th ey also

strongly believed that FMAS is a good tool for learning programming, and they would recommend it to friends and

would like to use it in their school. According to the results, the automatic text -to-flowchart conversion approach is

viewed as a very useful aid to comprehending and problem solving, especially by those performing well in problem

solving tasks. Similarly, animation was deemed as an aid to understanding but also a very motivating and rewarding

activity. Regard ing problem solving improvement in both completion time and the number of problems solved, the

participants of this study provided very positive feedback on average. Nearly all participants faced one or two

learning difficu lties and after using FMAS not only did the number of problems solved per session increase, but the

time completion rate declined steadily as well. It is evident that the participants‟ problem solving skills enhanced by

engaging with FMAS. Still, a lack of adequate introduction to FMAS led to some confusion for the p articipants,

which was resolved with further explanation. To sum up, the enjoyment levels experienced by the participants

coupled with improvements in their problem solving ability demonstrates that FMAS is an effective and motivating

tool for introducing programming.

6.0 CONCLUS ION AND FUTURE WORK

A number of students encounter various difficult ies in the preliminary learning stages and are unable to develop

solutions for simple programming problems. This might result in giving up and losing interest, which can lead to

dropping out and higher failure rates. FMAS is a flowchart-based multi-agent system meant to support problem-

solving skills in the form of flowchart development for basic and simple programming problems aimed at CS

minors. With FMAS, students are involved in developing flowcharts using an automatic text -to-flowchart

conversion approach that contributes to improving their problem solving skills. The system provides s tepwise

guidance, offering additional informat ion regarding the entered programming problem and obtaining feedback for

actions. The proposed approach applied in FMAS is an advance and improvement over many existing visual

programming environments. An E-learn ing environment that visualizes the solution construction for a programming

problem by automatically converting the given problem statement to its relevant flowchart while engaging users in

flowchart development, will p rovide novices with an accurate mental model o f execution. Thus, the main aim of this

study was to support the problem solving ability through designing activities. We believe that FMAS is very

successful because the criteria were designed carefully. The system benefits from a mature repository of basic and

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

149

Malaysian Journal of Computer Science. Vol. 28(2), 2015

fundamental programming problems aimed at CS minors along with a novel approach of automatic text-to-flowchart

conversion, which enables FMAS to get novices involved in flowchart development. There are not many developed

visualizat ion tools intended for students with no prior knowledge of programming. Besides our syst em, a few others

have been developed, such as SICAS [21] and RAPTOR [24]. They are similar to FMAS in a sense that they

provide students with an environment for flowchart construction and visualization. However, the novel approach

applied in FMAS distinguishes it from other related works. CS minors who do not know anything about

programming are sometimes unable to use the aforementioned tools as they require some sort of user knowledge

regarding the entered programming problems. FMAS resolves this inconvenience using a web-based environment to

get users involved in flowchart development of the entered programming problem by offering three options. Even

worst-case scenarios are improvised in FMAS in o rder to fu lly assist users, also in terms of problems that are not

stored in the main system repository. Additionally, FMAS automat ically improves its repository using an extra

database to store the unknown entered programming problems along with web crawlers to enhance its main

database. Finally, an experimental study was devised to assess the success of FMAS, showing very positive

feedback. Therefore, the use of FMAS in practice is supported , as the results indicate considerable gains for the

experimental group over the control group. A very awarding finding was that an automatic text-to-flowchart

conversion approach applied in FMAS successfully motivated almost all part icipants in problem solving activit ies.

Consequently, the results suggest further development of our proposed approach in the form of an Intelligent

Tutoring System (ITS) in future to make the early stages of learning programming more encouraging for students.

ACKNOWLEDGMENTS

This work has been financially funded by the University of Malaya with project number o f RG327 -15AFR.

REFERENCES

[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B. Kolikant, C. Laxer, L. Thomas, I. Utting,

and T. Wilusz, , “A multinational, mult i-institutional study of assessment of programming skills of first-year CS

students”, in Proc. of 6th Annu. Conf. on Innovation and Technology in Computer Science Education, 2001, pp :

125-180.

[2] Soloway, Elliot, and James C. Spohrer, eds. Studying the novice programmer. Psychology Press, 2013.

[3] J. Carter and T. Jenkins, “Gender and programming: What's going on?”, in Proc. o f 4th Annu. Conf. on

Innovation and Technology in Computer Science Education, 1999, pp : 1-4.

[4] R. Moser, “A fantasy adventure game as a learning environment: why learning to program is so difficu lt and

what can be done about it”, ACM SIGCSE Bullet in, vol. 29, 1997, pp: 114-116.

[5] N. Pillay, “Developing intelligent programming tutors for novice programmers”, ACM SIGCSE Bulletin, vol.

35, 2003, pp: 78-82.

[6] N. Pillay and V. Jugoo, “An Investigation into Student characteristics Affecting Novice Programming

Performance”, ACM SIGCSE Bulletin, vol. 37, 2005, pp:107-110.

[7] Hooshyar, D., Ahmad, R. B., Shamshirband, S., Yousefi, M., & Horng, S. J. A flowchart-based programming

environment for improving problem solving skills of Cs minors in computer programming. The Asian

International Journal of Life Sciences, vol. 24(2), 2015, pp: 629–646.

[8] Dillon, Edward, Monica Anderson, and Marcus Brown. “Comparing mental models of novice programmers

when using visual and command line environments.” Proceedings of the 50th Annual Southe ast Regional

Conference. ACM, 2012.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

150

Malaysian Journal of Computer Science. Vol. 28(2), 2015

[9] T. Collett, “Augmented reality visualisation for player,” Ph.D. thesis, Department of Computer and Elecrical

Engineering, University of Auckland, Auckland, NZ, 2007.

[10] I. Boada, J. Soler, F. Prados, and J. Poch, “A teaching/learning support tool for introductory programming

courses”, in Proc. of 5th Int. Conf. on Informat ion Technology Based Higher Education and Training, 2004, pp :

604-609.

[11] M. Ben-Ari, “Constructivism in computer science education”, Journal of Computers in Mathematics & Science

Teaching, vol. 20, 2001, pp: 45-73.

[12] Hooshyar, D., T. Maíen and M. Masih. Flowchart-based programming environments aimed at novices.

International Journal of Innovative Ideas , vol. 13(1), 2013, pp: 52-62.

[13] Hooshyar, D., Ahmad, R. B., & Nasir, M. H. N. M. A Framework for Automat ic Text-to-Flowchart

Conversion: A Novel Teaching Aid for Novice Programmers. International Conference on Computer, Control,

Informatics and Its Applications (IC3INA), Bandung, Indonesia 21–23 October 2014. IEEE, pp: 7–12.

[14] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for introductory programming concepts”, Journal of

Computing in Small Colleges, vol. 15, 2000, pp: 107-116.

[15] C. Kelleher, D. Cosgrove, D. Culyba, C. Forlines, J. Pratt, and R. Pausch, “Alice2: Programming without

Syntax Errors”, User Interface Software and Technology, 2002.

[16] D. Buck and D. J. Stucki, “JKarelRobot: a case study in supporting levels of cognitive development in the

computer science curricu lum”, ACM SIGCSE Bullet in, vol. 33, 2001, pp: 16-20.

[17] Diprose, James P., Bruce A. MacDonald, and John G. Hosking. “Ruru: A spatial and interactive visual

programming language for novice robot programming.” Visual Languages and Human -Centric Computing

(VL/HCC), IEEE Symposium on. IEEE, 2011.

[18] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The BlueJ system and its pedagogy”, Journal of

Computer Science Education, vol. 12, 2003, pp: 249-268.

[19] K. Van Haaster and D. Hagan, “Teaching and learning with BlueJ: an Evaluation of a Pedagogical Tool”, in

Proc. of the Informat ion Science and Information Technology Education Joint Conf., 2004, pp : 455- 470.

[20] G. Evangelidis, V. Dagdilelis, M. Satratzemi, and V. Efopoulos, “XCompiler: Yet Another Integrated Novice

Programming Environment”, in Proc. of 2nd IEEE Int. Conf. on Advanced Learning Technologies, 2001, pp:

166-169.

[21] A. Gomes and A. J. Mendes, “Suporte à aprendizagem da programação com o ambiente SICAS”, in Proc. of V

Congresso Ibero- Americano de Informática Educativa, 2000.

[22] S. H. Rodger, “Using hands -on visualizations to teach computer science from beginning courses to advanced

courses”, in Proc. o f the 2nd Program Visualization Workshop, 2002, pp : 103-112.

[23] R. B. Levy, M. Ben-Ari, and P. A. Uronen, “The Jeliot 2000 program animat ion system”, Computers &

Education, vol. 40, 2003, pp: 15-21.

[24] M. C. Carlisle, T. W ilson, J. Humphries, and S. Hadfield, “RAPTOR: A Visual Programming Environment for

Teaching Algorithmic Problem Solv ing”, in Proc. of 36th SIGCSE Technical Symposium on Compu ter Science

Education, 2005, pp: 176-180.

[25] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier. “Choregraphe: a Graphical Tool for Humanoid Robot

Programming”. In Proc. IEEE International Symposium, 2009, pp: 46-51.

A Flo wchart-bas ed Multi-Agent System for Assisting Novice P rogrammers with Problem Solving Activi ties . pp 132-151

151

Malaysian Journal of Computer Science. Vol. 28(2), 2015

[26] H. A. Ramadhan, F. Deek, and K. Sh ihab, “Incorporating software visua lizat ion in the design of intelligent

diagnosis systems for user programming”, Artificial Intelligence Review, vol. 16, 2001, pp: 61-84.

[27] J. Anderson and B. Reiser, “The LISP Tutor”, Byte, vol. 10, 1985, pp: 159-175.

[28] RamalinghamV, LaBelle D, Weidenbeck S, “Self-Efficacy and Mental Models in Learning to Program”,

SIGCSE Bullet in Volume 36 Issue 3, ACM Press, NewYork – NY –US, 2004, pp: 171-175.

[29] Winslow L., Programming Pedagogy –“A Psychological Overview”, SIGCSE Bulletin – Volume 28 Issue 3,

ACM Press, New Yo rk USA, 1996, pp: 17-22.

[30] Westphal B, Harris F and Fadali M, “Graphical Programming: A Vehicle for Teaching Computer Problem

Solving”, 33rd ASEE/IEEE Frontiers in Education Conference, IEEE, Boulder Colorado, 2003, pp : 19 -23

[31] Ben-Bassat Levy R, Ben Ari M and Uronen P, “An Extended Experiment with Jeliot 2000”, In Proceedings of

the First International Program Visualization Workshop, University of Joensuu Press, Porvoo Finland, 2001, pp:

131-140

[32] Stanford online parser, http://nlp.stanford.edu:8080/parser/, April 10, 2014.

[33] Edraw Visualization Solutions, http://www.edrawsoft.com/flowchart-examples.php, June 12, 2014.

[34] NIELSEN, J., Usability 101: Introduction to Usability, Nielsen Norman Group, Freemont CA - USA,[Accessed

06/05/2014] http://www.useit.com/alertbox/20030825.html.

[35] Warnlulasooriya, R., Palazzo, D. & Pritchard, D., Journal of Experimental Analysis of Behaviour, 88,1,Society

for the Experimental Analysis of Behaviour, Bloomington - IA - USA, 2007, pp: 103-113.

[36] Hearrington., Learn ing Efficiency and Efficacy in a Mult i-User Virtual Environment, Nat ional Educational

Computing Conference, Eugene - OR - USA, International Society for Technology in Education, 2009.

[37] Cronbach, L. J., Coefficient alpha and the internal structure of tests. Psychometrika. Vol. 16, 1951, pp: 297-334.

http://nlp.stanford.edu:8080/parser/
http://www.edrawsoft.com/flowchart-examples.php
http://www.useit.com/alertbox/20030825.html

