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ABSTRACT 

 

With the advancesin Web-based oriented technologies, experts are able to capture user activities on the Web. Users’ 

Web browsing behavior is used for user identification. Identifying users during their activities is extremely 

important in electronic commerce (e-Commerce)as it has the potential to prevent illegal transactions or activities 

particularly for users who enter the system through the use of unknown methods.In addition, customer behavioral 

pattern identification provides a wide spectrum of applications such as personalized Web pages, product 

recommendations and present advertisements. In this research, a framework for users’ behavioral profiling 

formation is presented and customer behavioral patternsare used for customer identification in the e-Commerce 

environment. Based on activity control, policies such as user restriction or blockingcan be applied.The neural 

network classification and the measure of similarity among behavioral patterns are two approaches applied in this 

research. The results of multi-layer perceptron with a back propagation learning algorithm indicate that there is 

less error and up to 15.12% more accuracy on average.The results imply that the accuracy of the neural network 

approach in customer pattern behavior recognition increases when the number of customers grows.In contrast, the 

accuracy of the similarity of pattern method decreases. 

 
Keywords:Customer identification, Behavioral pattern, Profile, e-Commerce. 

1.0 INTRODUCTION 

 
Information technology has provided an enormous volume of business data for experts during the last decade. 

Security or in other words, confidentiality, integrity and accurate availability of data are extremely important in the 

e-Commerce environment[1].Users play an important role in this domain. Different methods of user identification 

have attracted expert attention in recent years. Information about users is collected through Web systems and 

surveys, and information about Web users’ activitiesissurreptitiously collected forcertainpurposes. Users’ 

profilescontainconsiderable data about their demographics and activities. The Web system, e-Commerce systems in 

particular, collects user data during online registration in order to personalize information or to offer product 

recommendation [2]. User name, gender, e-mail, telephone, address, job, education and even hobbies comprise the 

information that is usually collected for marketing. User activities and transactions can be recorded and categorized 

as business information. This information can be  about the users’ popular brand sites, the frequency of user visits, 

the averageamount of money spent per E-purchase and the services or products that customers buy the most[3]. The 

user profile can contain information that comes from the results of data mining, statistical analysis or other 

processes[4]. The cookies, login and keys are even used for user identification by experts [5]. 

 

In this research, we recorded each user’sactivities in a profileto identifythe user. The user profilescontained 

information about user activities that werecollectedfrom an anonymous Web session. Then, the user pattern behavior 

wasmatched with the existing user patterns. The match score identifiedwhether the user wasan authorized user. 

Biometric user identification, such as finger or iris identification is more accurate in comparing user behavioral 

identification, because there is a high match score between user and fingerprint or iris. Therefore, identification 
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based on user behavior can be applied together with other methodsto increase the reliability of user identification or 

for predicting illegal activity in the e-Commerce environment[6]. For instance, a sudden change in activity, such as 

heavy network trafficking or large amounts of money being transferred or more frequent transfersof money can 

indicate illegal activities in the system byanonymous users who enter the system through the use of unknown 

methods.The Federal Financial Institutions Examination advisesthe use of multi-channel authentication 

methodology to increase the reliability of user identification. User behavioral pattern identification is one of the 

methods that can be used in thismulti-approach to user identification[7]. 

 

Customerbehavioral patternsencompassimportant items; for example, 40% of users visit yahoo.com as part of their 

daily activities, 80% of user activities on the Web take more than one hour, users usually visit 5 to 10 pages during 

their Web activities. Most Web browsing starts with checking one’sYahoo and Gmail email [4]. These 

repetitivemanner can buildusers’ behavioral patterns, and the recurring nature of a customer’s manner on the 

Internet can be used for customer identification. Customer activities make customer behavioral patterns, and the 

amount of repeat behavior by customers shows the strength of the behavioral pattern[8].Users’ 

profilesencompasstheir behavioral patterns and these patternscontain behavioral itemswhich include measurements 

based on previous customer activities. These profilescanbe used for identification ataparticular time in the future.  

 

The remainder of this paper is organized as follows. Section 2 describes the previous research in this domain. 

Section 3 demonstrates the approaches that have been applied to customer identification in e-Commerce. Section 4 

describes the data that were used in this research. An evaluation of the proposed methods is presented in section 5, 

and the implications and conclusion of this research arediscussed in sections 6 and 7, respectively. 

2.0 RELATED WORKS 

The Internet has become an integral part of human life and has brought significant advantages for people and firms. 

Many businesses cannot operate well without using this technology. However, security is still the main concern for 

users and enterprises. User identification based on behavior is an important issue that has attracted the attention of 

scholars in recent years[9, 10]. Recommendation of products and services, and advertisements are the other 

applications of this approach. The user behavioral model has beendeveloped based on dynamic and static 

information onthe interaction of userswith the system. The explicit and implicit approaches are the two main 

approachesforcollectinga user’s behavioral data to form a user’sbehavioral pattern. Psychometric instruments, 

questionnaires and Web registration forms on the Internet are the main toolsused in explicit user data gathering 

through which users enter their information into the system consciously[11]. Yang (2010) applied the implicit 

approach and extracted the characteristics of users’ behavior by tracking users’ Web navigation during their 

interaction with the system[4]. This information include the user’s purchasing history such as the user’smost 

frequented e-Commercewebsite, most purchased product category, rating of product, price or average money spent 

for purchasing, time or session life, start time, finish time, search items, first site and the number of pages that the 

customer usually visited, user network traffic, mouse click and keyword strokes[12].  

 

2.1. Customer purchase behavior 

The nature of human behavior on the Web is repetitive. This is the characteristic that experts use for creating a user 

profile and for identification. Yang and Su[13] investigated the recurring nature of user behavior with respect to web 

system activities and considered repeated behavior as the strength of the behavioral pattern. The behavioral 

characteristics with the measure of their strength were stored in a user profile. A user profilewas created based on 

the history of customer activitiesin the e-Commerce environment and the profile wasthen used for customer 

identification. Previous investigations showed that user identification based on behavioral patterns can be applied to 

small and medium sized websites when enough distinctive information about the e-Customers is available. Chen, 

Kuo, Wu and Tang [14] proposed Sequential Pattern Mining (SPM) as a useful method to identify customers’ 

purchasing patterns over time. A novel algorithm was presented by Ha, Bae and Park [15] based on the Recency, 

Frequency and Monetary (RFM) concept to define the sequential pattern of customers’ purchasing. Their pattern 
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segmentation method generates information based on customer purchasing behavior for decision-making by 

management. 

2.2.  Applications of customer pattern behavior 

User centric and site centric are two methods that are appliedin gathering customers’ behavioral data. e-Commerce 

sitescan capture information about the behavioral manner of customers and consequently, sites can adopt certain 

methods of profiling to calculate the strength of a user’s behavioral pattern[16]. Identifying users or customers who 

are not explicitly signed in has some advantages for the system. For example, based on behahavioral patterns, 

particular recommendations or Web personalization can be given[17].  The most important advantage of this 

approach is fraud detection. Abnormal activities that do not usually match with the other behavioral patterns can be 

a symbol of fraud. The system sendsan alarm to the administrator once it sensesa large amount of money 

transactions or network trafficking. The system then tries to identify usersundertaking these kinds of activity or even 

blocks them pendingfurther investigation[18].  

 

User centric data gathering is another approach for creating a customer profile.Affiliated websites such as Windows 

Live or Microsoft Passport share users’ information among associated websites. Different affiliated sites help to 

coordinate products or service recommendations[19]. Downloadable client-side software has the potential of 

tracking client-side activity to build user profiles, and consequently,carry out user identification. Fig. 1 shows the 

overall view of customer identification process in this research. 

 

 

 
 

Fig.1.Overall view of customer identification process 

 

 
Accurate and comprehensive profiles of customers’ Web activitiesarethe key issue in customer identification based 

on behavioral patterns. The personalization of Web content, recommendations based on user profile and fraud 

detection are important usages of this method. A behavioral profile contains variables that are used by association or 

conjunctive rules [20]. Some experts have investigated user profiles as a group of rules. They focus on rule 

validation based on the relationship between users’ activities. These profiles can be applied across a group of 

customers who have similar interests. The time that the customers spend on a page thathas been assigned to a 

particular product or brand depicts their interest.  

 

The use of profilesin fraud detection has increased theattention ofexperts who endeavor to improve the efficiency of 

these methods for real time fraud detection.This is because, it is not possible to analyze all profile records 

immediately in order to identify fraud in behavior patterns. Profiles have been used for intrusion or fraud detection 

in the study of networks and telecommunications. There are two approaches to fraud or intrusion detection based on 

customer profile –the anomaly detection technique and signature based detection. In anomaly detection, the profile 

for each entity is compared with other recent events to produce a profile, which is compared with the typical 

behavior of the customer to detect abnormal activities. Sudden changes in a user’sWeb manner can be a symbol of 

fraud. To determine changes in a user’s behavior, the traffic of user activities is compared with the individual 

profile. In the signature based technique, the users’ recent traffic is compared with aberrant attack profiles that have 

been stored in a signature database[21]. 
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3.0 PROPOSED METHOD 

The recurring nature of human behavior is an important characteristic that helps us to identify users on a website. 

Customers enter the web system at different times. A user’s activities determine his/her behavioral patterns, and the 

amount of repeated behavior by a customer shows the strength of that behavior pattern. The system captures the 

behavior. Therefore, we have several behavioral patterns for acustomer. We need the pattern of the user (strongest 

pattern for each customer) to compare with the patterns that we have in our database. The strongest behavioral 

pattern of  an active user is considered his or her behavioral pattern, which is compared with the patterns in our 

database. In this research, two approaches were applied for identifying customers based on their behavioral patterns. 

First, the similaritiesbetween user behavior and the patterns that are in our database were investigated. Similarity 

was calculated based on the distance that existedbetween the main items in terms of their behavioral patterns. 

Secondly, neural network classification was carried out based on the behavioral patterns that were collected before 

time,t. Patterns with a high similarity based on the learning process were in the class that belonged to a customer. 

Seventy percent of user behavioral patterns were used inthe learning process and thirty percent of the patterns were 

used inthe testing process[22]. The difference betweenthe testing results and the real data shows the accuracy of the 

method. 

 

3.1. Customer pattern strength 

Customer activities are captured from the moment that the customer logs in to the system and the session is created. 

User pattern strength plays an important role in the accuracy of this method. In other words, the similarity inthe 

behavioral patterns of a customer leads to the high accuracy of this method. In the next step, the behavioralsimilarity 

of a certain customer is calculated to identify the customer. Supposedk is the number of customers and p contains 

the patterns of customers behavior, then 

 

 

Customers:{𝒄𝟏, 𝒄𝟐,… , 𝒄𝒌}  (1) 

 

P:{𝒑𝟏, 𝒑𝟐,… ,𝒑𝒎}  (2) 

 

𝒔𝒊 is the number of sessions for 𝒄𝒊 (3) 

 

𝒔𝒊𝒑is the number of sessions for 𝒄𝒊 that contain the behavioral pattern of 𝒑𝒊 (4) 

 

 

The similar behaviors of a customer or the support of a pattern among all the patterns of the customer’s patternsare 

defined as the strength of the customer behavioral pattern. Patterns before time t are considered for customer 

identification based on their manner.  

 

 

Sessions for customer 1 before time t: {𝒆𝟏
𝟏, 𝒆𝟏
𝟐,… , 𝒆𝟏

𝒎 } (5) 

 

Sessions for customer 2 before time t: {𝒆𝟐
𝟏, 𝒆𝟐
𝟐,… , 𝒆𝟐

𝒏 } (6) 

 

Sessions for customers before time t: {𝒆𝟏
𝟏, 𝒆𝟏
𝟐,… , 𝒆𝟏

𝒎,𝒆𝟐
𝟏, 𝒆𝟐
𝟐,… , 𝒆𝟐

𝒏,… , 𝒆𝒛
𝟏, 𝒆𝒛
𝟐,… , 𝒆𝒛

𝒚 } (7) 

 

 

The strongest pattern for each customer is considered the candidate pattern for the next step. In other words, the 

output of this pattern selection is a strong pattern, which belongs to a particular customer. The customer strength of a 

behavioral pattern is: 
𝒔𝒊

𝒔𝒊𝒑
 (8) 
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Selected patternsthathavestrong patterns are considered for building customer profiling. Yang and Padmanabhan 

[23] suggestedthat a combination of the strongest patterns for creating customer profiling leads to more accuracy in 

customer identification,because, a pattern should be strong enough to identify at least one customer out of a number 

of others. 

3.2. Behavioral pattern similarity 

In this step, the customer behavioral profiles that werepreviously created are used to identify the owner of a pattern 

in future customer activities. Once a customer logs into the system, a session is created. The candidate patterns for 

customer identification are the patterns that aregenerated based on all user sessions before time t. The strength of 

new or anonymous customer patternsis calculated based on his/her behavioral patterns for the future (equation 1 to 

8). To identify the anonymous customer, his/her behavioral pattern is compared with the patterns that have been 

provided in the previous steps. Similarity between the patterns of an anonymous customer with the previous patterns 

is calculated by the distance between the two profiles. 

 

Supposed a customer has a𝑷+ top Pattern and we want to find a similar pattern. The structure of the patterns is the 

same. However, the measures of attributes are different. 
 

 

 
Fig.2.Patterns distances[24] 

 
 
The matrix below shows the m patterns and n attributes forcustomers;𝒙𝒊𝒋shows the measure of attribute j in the 

patterni. 

 

𝑫 =
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.
.
𝒑𝒎  
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 (9) 

 

 
To simplify the calculation and transform dimensional measures to non-dimensional ones, the measures are 

normalized as below: 
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𝒓𝒊,𝒋 =
𝒙𝒊,𝒋

   𝒙𝒊,𝒋 
𝟐𝒎

𝒊=𝟏

 (0˂i≤m and 0˂j≤n) (10) 

 
Some characteristics play a more important role in customer identification. For instance, [25] investigated the 

differences between male and female motivation and utilization of time spent online. The results of their research 

showed that females generally use the Internet more for communication than males. Women also use online video 

calls, text messaging,and social media more than men. In other research,Hwang [26] discussed the effect of 

perceived enjoyment and social norms onthe intention to adopt e-Commerce systems based on gender classification. 

The outcomes of his study revealed that the effect of enjoyment is stronger in the men's group and the effect of 

social norms such as media, friends and family are stronger in the women's group in terms of e-Commerce adoption. 

Colley and Maltby [27] investigated the effect of the Internet on the lives of females and males. Their research 

revealed that women use the Internet to find new friends, renew old friendships, shop and book tickets, access 

information, meet parents, and study online while men use the Internet to find jobs and play games. Park and Chang 

[28]who studied customer behavior in order to personalize products, revealed that customer behaviorsare different in 

terms of purchases, basket insertion, field of interest and clicks. They analyzed the features of product and customer 

behavior and suggested a recommendation system based on the relationship between them. Akman and Mishra [29] 

also studied the Internet behavior of 200 employees from private and public sector organizations. The results of their 

survey indicated that there is a difference between genders in terms of daily time spent on the Internet for chatting, 

emailing, downloading, entertainment and accessing information. The results also showed the relationship between 

age and time spent daily, on downloading, entertainment, and time spent on information access.Users agedunder 40 

years old spent three hours more than users over 40 years old. Aproximately 94% of younger (aged under 40) and 

93% of older (aged over 40) respondents reported spending less than one hour using electronic services. They also 

mentioned that female employees usedthe Internet more than males. 

 

The aforementioned literature indicates that some behavioral characteristics can be applied in classification of 

customer behavior based on gender, age, time spent on e-Commerce websites, and products in their basket etc. The 

behaviors that play a greater role in customer identification, such as the time that the customers spend on the e-

Commerce website, start and end time, and the products that are usually in their baskets can have more weight. 𝒘𝒊 is 
the weight that is considered for every attribute. 

 

 

𝑽 =

 
 
 
 
 
 
𝒗𝟏,𝟏  
𝒗𝟐,𝟏
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.
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  (11) 

 
 

We can calculate the measure of closeness of the patterns to an ideal pattern to determine the similarity between 

them. 
 

𝑺𝒊
+ =    𝒗𝒊,𝒋 − 𝒗𝒋

+ 
𝟐

𝒏

𝒋=𝟏
 (i=1,2,3,..,m and j=1,2,3,..,n) (12) 
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The above method is frequently used by experts in different areas of science. The Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) is one of the methods used in Multi Criteria Decision Making (MCDM) to 

assess, evaluate and rankalternatives. In TOPSIS, the distance between a particular alternative with positive and 

negative alternatives is calculated and the ranking of alternatives is based on their closeness and farness [30]. In this 

research, the distance between a particular customer’s behavioral pattern and other patternsis used to determinethe 

similarity of the patterns. 

 

In the above method, old and recent customer behavior has equal weight, whereas, in fact, the behavior of customers 

change over time[31, 32]. To fill this gap in the proposed method, we assigneda higher weight value to recent 

customer behavioral patterns and less weight value to old customer behavioral patterns[33]. The exponentially 

Weighted Moving Average (EWMA) is a common method that can be used for this purpose. In EWMA, the 

weighting for older customer behavior decreases exponentially, but never reaches zero[34]. 
 

 
𝑭𝒕+𝟏= α.𝑨𝒕+ α. (1-α). 𝑨𝒕−𝟏+𝜶. (𝟏 − 𝛂)𝟐.𝑨𝒕−𝟐+… 

= α.𝑨𝒕+ (1-α) (α. 𝑨𝒕−𝟏+𝜶. (𝟏 − 𝛂) .𝑨𝒕−𝟐+…) 

=α.𝑨𝒕+(1-α) 𝑭𝒕  

 
(Where α  changes between 0 and 1). Finally we get𝑭𝒕= α.𝑨𝒕+(1-α) 𝑭𝒕−𝟏 (13) 

 

 
𝑭𝒕 shows that EWMA at time t and 𝑨𝒕 is the most recent pattern. 𝑭𝒕−𝟏 shows the immediate preceding. α =0 means 

that we ignore the most recent behavior pattern and α =1 means we do not consider the old behavioral manner. α 

with a measure close to 1 means that recent behavior patterns are more important and measures close to 0 mean the 

old behavioral pattern is important for us. 

 

As can be seen, recent purchasingbehavior (equation 13), frequency of customer behavior in purchasing (equation 7 

and 8) and monetaryhave been considered in this method. Recency, Frequency and Monetary (RFM) are the 

characteristics of this model.  

 

3.3. Neural network classification approach  

Classification and prediction are two main applications of neural networks. A connected group of artificial neurons 

that use a computational or mathematical method for data processing according to the connection approach to 

calculation is defined as an artificial neural network. Scholars in different domains try to adopt a research model 

based upon external and internal information with ANN to acquire better results in terms of accuracy and less error. 

ANN encompasses neurons, units, nodes and cells. Neurons relate to each other with an associated weight. The 

training algorithm determines the weights directly from the data, which are considered for training without any 

assumptions about the statistical distribution of the data [35]. A Multilayer Perceptron (MLP) with error back 

propagation learning algorithms is one of the most applied kinds of ANN. The MLP contains the three following 

main parts: 

 

Input layer: this layer includes the variables that contain traits of the input data and releases them to the hidden 

layers. 

 

Hidden layer: this layer merges the weights with inputs. Each neural node in the hidden layer gets data from 

neurons, which are in the layer after the input layer. The values change through applied weights and adjust the 

output value by an activation function. 

 

Output layer: this layer determines the output nodes of the variables. 
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The error back propagation learning algorithm optimizes the connected weights in the MLP structure. Error back 

propagation uses the basic principle of the gradient or steepest decent method to reduce the error. The iterative 

training process starts when training samples are presented to the network and leads to adjusting weights between 

two neurons that are in adjacent layers [36]. In the end, comparing the calculated result with the real data (target) 

determines the accuracy of the ANN model. From a classification point of view, when the weights and output 

classes are normalized (between 0 and 1), the MLP achieves the performance of the maximum a posteriori receiver. 

The MLP is believed to be capable of the approximation arbitrary function. In the study of nonlinear dynamic and 

other function mapping problems, the MLP is widely utilized [37]. The backpropagation algorithm is normally used 

for training in MLP. This means that the desired response to the system must be known. The backpropagation rule 

distributes the errors through the network and allows adaptation of the hidden processing elements (PEs). In the 

MLP, any element of a given layer feeds all the elements of the next layer. Massive interconnectivity and nonlinear 

PEs are two important characteristics of MLP. Error correction learning in PEs at iteration n is based on the equation 

below: 

 

𝒆𝒊(n)=𝒅𝒊(n) -𝒚𝒊(n) (14) 

where, 

𝒆𝒊(n) is an instantaneous error 

𝒅𝒊(n) is the desired response for a given input pattern 

 

Based on the theory of gradient descent learning each weight in the network can be adapted by correcting the present 

value of the weight with a term that is proportional to the present input and error at that weight. 

 

𝒘𝒊,𝒋(n+1)= 𝒘𝒊,𝒋(n) + η 𝛅𝒊(n)𝒙𝒊(n)  (15) 

 
In the backpropagation algorithm, the legal error 𝛅𝒊(n) can be computed from 𝒆𝒊(n) at the output PE or as a wighted 

sum of errors at the internal PEs (η is step size). This procedure is called the backpropagation algorithm. 

 

The sensitivity of a cost functional is computed by the backpropagation function with respect to each weight in the 

network. The beauty of this procedure is that it can be implemented with local information and only requires a few 

multiplications per weight which is very efficient. This is due to the gradient descent procedure, which uses local 

information that can be caught in local minima.  Momentum learning is an improvement to the straight gradient 

descent in the sense that a memory term (the past increment to the weight) is used to speed up and stabilize 

convergence. In momentum learning, the equation to update the weights becomes 

 

𝒘𝒊,𝒋(n+1)= 𝒘𝒊,𝒋(n) + η 𝛅𝒊(n)𝒙𝒊(n)+ α (𝒘𝒊,𝒋(n)- 𝒘𝒊,𝒋(n+1)) (16) 

 

where α is the momentum and should be between 0.1 and 0.9. 

 

Two approaches are applied in training. A pattern can be presented and the weights adapted based on the pattern or 

we can present all the patterns in an input file (epoch), accumulate the weight updates and then update the weights 

with the average weight update (batch learning). 

To start backpropagation, an initial value should be determined for each weight (it can be a small random value) and 

proceeds until some stopping criterion is met (to cap number iterations, to threshold the output mean square or to use 

cross validation). Cross validation stops the training at the point of best generalization and is more popular. In any 

iteration training procedure, the progress in learning is fundamental. The mean square error shows the learning 

curve. When the learning curve is flat, the step size should be increased to speed up learning. On the other hand, 

when the learning curve oscillates up and down, the step size should be decreased. When the error goes steadily up, 

it shows that learning is unstable. In this situation, the network should be reset. To decrease the training times and 

for better performance, the training data were normalized and tangent hyperbolic (tanh) nonlinearity was used 

instead of the logistic function[36]. 
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4.0 RESULTS AND DISCUSSION 

4.1. Data 

User centric data collection helps in the understanding of user online behavior by capturing customers' activities on 

e-Commerce websites. However, the site centric data collection approach is unable tocapture customer activities on 

external sites. We need to capture the entire history of customer activities for each customer. The data set for this 

research was provided by a commercial data vendor. However, due to certain drawbacks such as insufficient number 

of records, incomplete records and the incompatible structure of the data set withour research the research group 

made the decision to simulate the customers' behavior based on the trends of previous data. Simulation led to a 

sufficient number of records and items toform customer behavioral patterns and consequently increased the 

reliability of the results. The incomplete records in the vendor’s dataset were omitted and all complete records in the 

vendor’s dataset were used in the experiment.Customer profile updates were based on customer activities without 

looking at the sessions before time t. The pattern in time twas incorporated into the old profiles to generate the 

updated user profiles at time t1[38]. After data screening, one hundred users with a minimum of one hundered 

sessions were considered the final data set for testing the methods[4, 23]. The start time of customer activity, session 

life time, end time, purchased product category, amount, price, number of pages visited, number of mouse clicks and 

keyboard strokes were considered in creating customers’ behavioral patterns based on the aforementioned literature. 

The research method was applied tothe entire data set and also for a data set with a different number of records to 

study the effect of the method on customer identification. In the matching pattern approach, the patterns of customer 

behavior in the current session were compared with the other customer patterns in the data set. The customer data 

comprisedof two parts;1)data manner before time t, and2) data manner in the current session. The research method 

was applied to match these two manners.In the classification approach, based on the training process, the system 

determinedwhich class or user the pattern belonged to. A brief description of the data set is presented in Table 1.  

 

 

 

Table 1. Dataset description 

Minimum sessions for each user 100 

Number of classes 100 

Trining dataset 30% of all records 

Testing dataset 70% of all records 

Number of users 2,5,10,50,75,100 

Session slites 1,10,20,30,..,100 

4.2. Results 

A review of the literature revealed that the manner of users in different environments has particular characteristics 

[39]. For instance, in the educational environment, some students use the Internet at a particular time of day in a 

particular manner that can be recognized based on the time that they start to study, duration of their study, and the 

subject in which they are most interested. Similarly, these characteristics exist in the e-Commerce environment. 

Different weights were considered for different behavioral characteristics and the effects of these weights on the 

accuracy of customer identification were explored. Start time, end time, the duration time of their activities on the e-

Commerce website, the product categories that they usually boughtwere the characteristics that we considered for 

identifying customers based on the above method and the accuracy was calculated. Table 2 shows the accuracy of 

both methods clearly. 

 

In this research,the minimum and maximum of sessions for a customer were 1 and 100, respectively. The customers 

were divided into different groups and the accuracy number of the methods was tested. Table 2 depicts the accuracy 

of pattern similarity and the MLP classification with a different number of customers and sessions. The first row in 

each cell shows the accuracy of MLP and the second row reflectsthe accuracy of pattern similarity. As shown in 

Table 2, the accuracy of MLP significantly dominates the pattern similarity method when the size of sessions gets 

larger and the number of customers increases. 
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As was mentioned before, the manner of customers in this environment encompasses start time of customer activity, 

session life time, end time, purchased product category, amount, price, number of pages visited, number of mouse 

clicks and keyboard strokes. As shown in Table 3, the MLP classification method has significantly  greater accuracy 

compared to the pattern similarity method. Fig. 3 presents the trend of accuracy in the MLP and similarity methods. 

It is found that the trend of accuracy improves in the MLP classification once the number of sessions and customers 

increase. In contrast, the accuracy  of customer identification decreases in the pattern similarity method when the 

number of sessions and customers increases. 

 

 

Table 2.Accuracy of methods (similarity of patterns and MLP classification) 

Number 

of user 

Number of sessions 

1 10 20 30 40 50 60 70 80 90 100 

2 
92.56 

86.06 

93.39 

90.32 

94.48 

89.52 

94.15 

85.77 

96.47 

82.17 

94.83 

79.76 

94.68 

75.33 

95.74 

71.45 

94.97 

69.86 

94.32 

67.45 

95.97 

65.33 

5 
91.72 

89.34 

91.61 

89.78 

91.88 

87.99 

92.81 

83.29 

94.65 

81.63 

92.72 

78.91 

92.38 

73.67 

93.91 

70.58 

94.65 

69.01 

94.12 

66.98 

95.31 

64.97 

10 
90.91 

86.64 

88.83 

85.45 

88.97 

85.48 

90.68 

81.39 

90.71 

80.18 

90.94 

77.29 

91.03 

72.57 

91.03 

69.57 

92.56 

68.48 

93.21 

66.02 

92.55 

64.21 

20 
88.54 

75.65 

86.31 

83.67 

87.14 

83.91 

87.57 

80.77 

83.22 

79.49 

89.34 

75.73 

87.56 

71.43 

90.22 

68.39 

90.11 

67.99 

90.05 

65.89 

90.18 

63.96 

50 
86.19 

70.16 

82.42 

81.59 

84.63 

80.23 

85.53 

78.37 

87.65 

78.39 

87.51 

74.36 

87.67 

69.29 

89.21 

67.78 

88.21 

67.01 

89.21 

64.87 

89.11 

63.21 

75 
83.46 

64.96 

81.06 

79.53 

86.80 

78.11 

85.03 

77.23 

85.56 

75.36 

86.33 

73.46 

86.84 

68.37 

88.12 

65.49 

87.64 

66.87 

88.23 

64.12 

88.52 

62.78 

100 
79.67 

62.11 

79.56 

78.69 

84.02 

76.36 

83.64 

75.31 

82.62 

74.22 

84.18 

72.66 

86.23 

67.11 

87.84 

64.39 

85.27 

65.57 

87.32 

63.89 

87.32 

62.03 

In each cell, the first number is the accuracy ofthe neural network (MLP) classification methodand the 

second number isthe pattern similarity method. 

 

 

 

 
Fig.3.The trend of accuracy in both methods 
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Table 3 shows the improvement inaccuracy in the MLP and pattern similarity methods. This improvement varies 

between 0.83 and 30.64 which is significant. The difference between the accuracy of the two methods is not high 

when the number of customers and sessions is small. However, the advantage that the neural network classification 

has over the pattern similarity method is that it improves significantly as the size of sessions and customers grows 

(right side of Table 3). 
 

 

Table 3.Accuracy improvement by MLP 
Number 

of user 

Number of sessions 

1 10 20 30 40 50 60 70 80 90 100 

2 6.5 3.07 4.96 8.38 14.3 15.07 19.35 24.29 25.11 26.87 30.64 

5 2.38 1.83 3.89 9.52 13.02 13.81 18.71 23.33 25.64 27.14 30.34 

10 4.27 3.38 3.49 9.29 10.53 13.65 18.46 21.46 24.08 27.19 28.34 

20 12.89 2.64 3.23 6.8 3.73 13.61 16.13 21.83 22.12 24.16 26.22 

50 16.03 0.83 4.4 7.16 9.26 13.15 18.38 21.43 21.2 24.34 25.9 

75 18.5 1.53 8.69 7.8 10.2 12.87 18.47 22.63 20.77 24.11 25.74 

100 17.56 0.87 7.66 8.33 8.4 11.52 19.12 23.45 19.7 23.43 25.29 

 

4.3. Implications 

e-Commerce websites collect and store customer behavior data to improve their systems in order to gain more 

benefit from their customers. This study focuses on customer behavior in e-Commerce for customer identification, 

and finally, controlling their access. Firstly, this study presented a simple and efficient method for user behavioral 

pattern formation in ane-Commerce environment. Customer behavioral pattern includes users’ activity on the Web 

and users’ profile includes user behavioral patterns. Customer behavior encompasses items,such as session life time, 

end time, purchase product category, amount, price, number of pages visited, number of mouse clicks and keyboard 

strokes. Secondly, this research presenteda method and framework for user behavior profiling and user 

identification. In addition to the mathematical method, Recency (equation 13), Frequency(equation 8) and Monetary 

(RFM) are the most important characteristics of the method presented. Thirdly, in this study the accuracy of user 

identification wasexplored based on the different weights of items in customers’ behavioral patterns.This research 

endeavors to identify customers based on the pattern similarity and MLP classification approaches. The presented 

method has the potential for application in fraud detection, product recommendation, Web customization and 

advertisements based on customer behavior.  

 

5.0 CONCLUSION AND FUTURE WORKS 

The advantages of Web-based technology are significant in the lives of people today.e-Commerce companies strive 

to identify the behavior of their customers in order to gaingreater business advantages. e-Commerce websites collect 

and store customer behavior data both explicitlyand implicitly to improve their systems and gain more benefit from 

their customers. Users in different environments, such as the educational, health care and commercialenvironments 

have different behaviors, and the characteristics of these spaces are different[40]. Users in the e-Learning 

environment are students and teachers, in e-Health care comprise patients and doctors and in e-Commerceare 

customers and sellers. In the e-Learning environment,the course, subject, and number of units, etc. are the main 

itemsof student behaviorwhile fore-Commerce, product category, price, amount and period of purchasing are 

important aspects of customer behavior. The repetitive nature of human behavior is an important characteristic that 

helps us to identify customers in e-Commerce.  

This research focused on customer behavior and identification based on customeractivities. Two approaches were 

applied to identify customers in the e-Commerce environment. Our experiements show that pattern similarity and 

neural network classification approaches can be effective and efficient. As mentioned before, customer identification 

based on behavioral patterns has considerable potential in fraud detection, advertising and product recommendation. 



An Artificial Neural Network Classification Approach For Improving Accuracy Of Customer Identification In E-Commerce.  pp 171-185 

 
 
 

182 

Malaysian Journal of Computer Science.  Vol. 27(3), 2014 

 

We used the recurring nature of human behavior to calculate customer pattern strength (Frequency, equation 8). 

Human behavioral patterns change over time; Exponentially Weighing Moving Average (EWMA) was applied to 

assign more weight values to recent and less weight values to old customer behavioral patterns (Recency, equation 

13).The results revealed that although the neural network approach is time consuming, its accuracy with a different 

number of sessions is higher than the pattern similarity method. 

The present study faces a number of limitations. The first limitation refers to situations where there are not many 

repeat visitors. On sites where occasional users dominate, and the majority of users do not login, it might be more 

beneficial to assign users to various groups based on their behaviour instead of attempting to uniquely identify them. 

The second limitation relates to time frames in the user identification process. The sessions we observed after time 

twere from the same anonymous user. There needs to be methods (IP address or cookies) to connect consecutive 

sessions. In cases where this assumption does not hold, identification can only be done during fairly short periods of 

Web activity, which can be quite difficult. The third limitation concerns the difficulty in situationswhere the user 

logs in using someone else’s identity, in such intances we cannot directly test the effectiveness of the method on 

user detection. 

In response to the thriving development in e-Commerce, many retailers have developed e-Commerce systems on the 

Internet to gain a greater competitive advantage. Despite the high development in this domain, some areas such as 

the application of customer behavior in the recommendation system, the customization of Web pages based on 

customer interests and previous behavior, fraud detection and customer identification have been neglected. Men and 

women have different behaviorsin the e-Commerce environment. Their interests are different, they buy different 

products on the Web, and the duration of their activities on the Web is different. This can provide a clue for future 

research to increase the accuracy of customer identification based on gender recognition as thefirst step and 

customer identification as the second step. Using GPS as well as customer identification has been mentioned in 

other research as a method to improve the accuracy of customer identification. This can also be a subject for future 

study.  
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