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ABSTRACT 

In recent years, mobile devices are ubiquitous. They are employed for purposes beyond merely making phone 

calls. Among the mobile operating systems, Android is the most popular due to its availability as an open source 

operating system. Due to the proliferation of Android malwares, it is crucial to study the best classifiers that can 

detect these malwares effectively and accurately through selecting the most suitable network traffic features as 

well as comprehensive comparison with related works. This study evaluates five machine learning classifiers, 

namely Naïve Bayes, k-nearest neighbour, decision tree, multi-layer perceptron, and support vector machine. 

The evaluation was validated using malware data samples from the Android Malware Genome Project. The 

data sample is a collection of malwares gathered between August 2010 and October 2011 by the University of 

North Carolina. Among various network traffic characteristics, three network features were selected: 

connection duration, TCP size and number of GET/POST parameters. From the experiment, it is found that k-

nearest neighbour provides the optimum results in terms of performance among the classifiers. The 

experimental results also indicate a true positive rate as high as 99.94% and false positive of 0.06% for the k-

nearest neighbour classifier. 

Keywords: Mobile botnet, machine learning classifiers, anomaly-based detection, intrusion detection systems 

 

1.0  INTRODUCTION 

Mobile devices have become an inseparable component of most people’s lives, replacing personal computers in 

terms of the Internet usage by allowing users to check emails, access online banking services, tweet, or use 

Facebook on such devices. Furthermore, the rapidly growing rich mobile applications [1] with overwhelming 

user experience, such as maps and GPS functions, make mobile devices more appealing to users. As part of 

utilizing mobile devices, certain sensitive data such as contact lists, passwords and credit card numbers are 

stored on these mobile devices. Based upon this scenario, hackers have turned their attention to mobile devices 

where it is possible to obtain an abundance of their preferred data, whereby security issues are taken less 

seriously on such devices.  

Furthermore, an infected mobile device, known as a bot, can become a component of a large network of infected 

mobile devices, which is referred to as a botnet.  A botnet is controlled by a hacker, who is called a Botmaster. 

As an example, RootSmart collects a wide range of information and sends it to Botmasters [2]. Basically when 

the device is infected, the bot (malware) contacts and informs the Botmaster that the device has successfully 

been infected. The connection between a bot and its Botmaster can be done in three ways. First, a chat server 

may be specified to make the connection in such a way that the bot and a Botmaster log in to the chat server and 

communicate like two persons. Second, a web server known as command and control (C&C) server works as a 

link between the bot and the Botmaster. The bot employs HTTP traffic to get to the web server. It merges with 
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the HTTP traffic to make detection more difficult. This communication mode is the most prevalent and is the 

focus of this paper.  The third is the P2P mode where the botmaster contacts one or a few selected bots which in 

turn will contact other bots. A botnet can be utilized for spamming, sending premium short message service 

(SMS) on a large scale and distributed denial of service (DDoS) attacks, and stealing users’ data. For instance, 

DroidDream [2] gains root permission and installs another application that prevents the malware’s removal. It 

has a silent pattern whereby it activates quietly, at night, when the user is asleep [2]. 

Among the various mobile operating systems, Android has experienced more attacks since it is an open source 

operating system [3]. In addition, users are supposed to download and install an application from the Android 

market, but some applications were installed from unofficial Android markets, like SlideME market [4]. 

Surprisingly, the official Android Market does not firmly control its applications. As an example, according to 

security researchers, in April 2013, some malware started operating inside Google Play for at least 10 months, 

infecting 35 different applications [5]. The lookout mobile security corporation reported that the infected 

applications had been downloaded between 2 and 9 million times [5]. Therefore, developing an effective 

intrusion detection system (IDS) remains a challenge but is imperative to billions of mobile users. 

Although Android malware detection has been meticulously studied, little attention has been directed to the 

network traffic generated by malwares. In this paper, we evaluate machine learning classifiers on network traffic 

to detect malicious activities on mobile devices. An advantage of machine learning classifiers is that the 

computational burden is relatively small, thus the results of this study may potentially help to develop an 

intrusion detection system (IDS) for analyzing real-time network traffic. In addition, the use of machine learning 

classifiers is proven to enhance detection accuracy [6]. 

In this paper, 5 types of machine learning classifiers were used on the data sample, i.e. Naïve Bayes (NB), k-

nearest neighbour (KNN), decision tree (DT), multi-layer perceptron (MLP), and support vector machine 

(SVM). The results were collected based on performance, with regards to detection rate and false positive rate 

and speed in terms of the time taken to build a detection model - since this study is on mobile devices with 

limited resources.  

The rest of the paper is organised as follows. Section 2 reviews a number of related works. Section 3 outlines 

the methodology including the various processes, methods, descriptions of different components and machine 

learning classifiers employed. Section 4 tabulates the experimental results and presents a discussion which 

addresses the effectiveness, performance and receiver operating characteristic (ROC) curve analysis. Finally, 

Section 5 concludes the paper. 

 

2.0  RELATED WORKS 

Machine learning is a branch of artificial intelligence dealing with teaching machines how to make decisions. It 

has been used for years to develop intelligent systems. For instance, machine learning was used by 

Shamshirband et al. [7] for rescue purposes. Similarly, Feizollah et al. [8] used combination of machine learning 

to detect DDOS attack. Machine learning is provided with a labelled dataset, and a model is produced as output, 

which can be applied to new data. The classifiers learn from several labelled inputs to build a model - analogous 

to the way a child learns to identify a dog from examples of dogs, after which he/she is able to distinguish a dog 

from all kinds of animals. Therefore, due to their learning capability, machine learning classifiers were selected 

for this study. 

Two methods applied in malware detection are misuse-based and anomaly-based. The misuse-based methods 

are also known as signature-based methods, and they are mainly used by antivirus software that relies on 

detecting malware based on unique signatures. Although it is very precise, it is of no value against unknown 

threats and it requires constant signature updates [9]. Yajin and Xuxian [10] demonstrated that traditional anti-

virus software are able to detect malware up to 79.6%. Droid Analytics [11] is an Android malware detection 

system, which automatically collects, extracts and analyses the signature of the Android application file. It 

extracts methods and classes from the application’s Java code and employs them as signatures. Subsequently, 

the generated signatures are used to detect malicious applications. Nonetheless, the aforementioned method is 

useful only for known malwares, whereas with the advent of new threats, the same process must be performed 

and the generated signature has to be added to the database. Anomaly-based methods, on the other hand, depend 

on classifiers to train a system to differentiate between normal and malware behaviour, which can be used to 
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detect anomalies so as to discover unknown malwares. Sahs and Khan [12] extracted a number of features and 

applied support vector machine (SVM) to them to make the system learn the pattern of malicious applications 

against normal ones. The results were highly accurate, with 93% of accuracy. DroidMat is another example of 

machine learning in malware detection [13]. Wu et al. [13] used K-means to inspect an application, obtaining 

87.39% detection accuracy as opposed to the misuse-based methods mentioned earlier with only 79.6%. Hence, 

the anomaly-based detection techniques were chosen for the purpose of this study because they are capable of 

detecting anomalies based on what they learn. 

There are two types of malware analysis: static analysis and dynamic analysis. Static analysis is the examination 

of an Android installation file known as APK to detect suspicious applications. For instance, a study was 

conducted in which the requested and required permissions were inspected to detect Android malware [14]. 

However, the problem with static analysis is that some malwares such as DroidKungFuUpdate stealthily 

download malicious codes [10]. Thus, the malicious code is undetectable via static analysis [10]. On the other 

hand, dynamic analysis tries to identify malwares based on their behaviour. For one, Crowdroid [15] collects the 

device’s kernel system calls and sends them to a remote server for processing. By using system call as one of the 

features, malware can be detected based on similar behaviours and patterns. For that reason, the present study 

concentrates on using dynamic analysis with emphasis on malware network behaviour. 

Dynamic analysis is the analysis of an application’s behaviour. Two of the most important behaviours used in 

the dynamic analysis are system calls and network traffic. When an application is running, in order to perform 

tasks, it should request for some operations from an operating system, such as read, write, or open. Therefore, if 

an application was calling too many functions, it would sound suspicious. Crowdroid [15] focused on collecting 

system calls and processing them to detect an anomaly. Since the Android operating system has the Linux 

kernel [15], collecting system calls is a complicated task as described in [15]. In most cases, the device must be 

rooted, which is disabling part of the operating system’s security architecture, consequently leaving the device 

more vulnerable against threats. On the other hand, collecting network traffic is done by an application such as 

tPacketCapture Pro [16] on the device. Su et al. [17] used network traffic with machine learning classifiers to 

detect malware in Android. With decision tree and random forest, they were able to detect 91.60% and 96.70% 

of the malicious traffic, respectively.  

 

3.0  METHODOLOGY 

This paper aims to study the best classifier for detecting Android malware using machine learning classifiers in 

order to confront the malwares rapid growth. Fig 1 illustrates the details of the study workflow. There are three 

main processes: data collection (i.e. the normal and infected traffic), feature selection and extraction, and 

machine learning classifiers. In the data collection process, normal and infected traffic are collected separately. 

In the next process, the selected network characteristics are extracted for inspection by the classifier. Normal 

and infected data are then combined, randomized and labelled. In the final process, the prepared dataset is fed to 

5 classifiers and the results are compared with two of the related works. 
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Fig 1. Process Flow 

 

3.1 Data Collection 

The MalGenome [10] data sample was utilized for the current work, which includes 1260 infected Android 

samples in 49 different families. A malware family is basically a collection of malware presenting similar 

behaviour. Among these samples, the most widespread ones, or 10% of all data samples, were selected for this 

study. It is worth mentioning that 93% of the MalGenome samples are botnets inclusive of the ones selected in 

this study. 

Data samples are merely installation files that are not usable for research works. They have to be converted to a 

dataset that is series of data collected from analysing the data samples. Thus, Anubis [18], CopperDroid [19] 

and SandDroid [20], which are dynamic analysis platforms for Android, were utilized to collect network traffic 

generated by each sample. Table 1 represents the families chosen for this experiment. 
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Table 1. List of Android Malware Families Used 

No. Malware Family Name No. of Samples Discovered Month Characteristics

1 AnserverBot 13 September-11

Silently downloads an update for malicious 

application on run time containing malicious code 

from a hacker

2 BaseBridge 11 June-11
Silently updates malicious application and downloads 

a malicious code from a hacker

3 DroidDream 11 March-11
Hijacks an application and controls the UI and 

performs commands received from a hacker

4 DroidKungFu3 10 August-11
Malicious code is encrypted and it steals user's 

phone number and send it to hacker

5 DroidKungFu4 10 October-11
C&C server address is in the native program but in 

cipher text. It receives commands from a hacker

6 Geinimi 9 December-10

Makes phone calls in background and sends 

premium sms. Commands are received from a 

hacker

7 GoldDream 10 July-11

Makes phone calls in background and sends 

premium sms. Commands are received from a 

hacker

8 KMin 10 October-11
Sends premium sms without user's knowledge. 

Commands are received from a hacker

9 Pjapps 9 February-11

Sends premium sms without user's knowledge and 

steals user's phone number. Sends stolen data to a 

hacker

10 Plankton 7 June-11
Downloads malicious code as an update from a 

hacker

Total 100  

 

Apart from analysing infected samples, 12 normal application samples were examined and their network traffic 

was collected on a device by installing the most popular applications from the Android market. tPacketCapture 

Pro [16] was purchased from Google Play for the network traffic collection process. The paid version of the 

application is capable of monitoring specific applications as specified by the user, and capturing network traffic 

as opposed to the free version, which captures all of a device’s traffic. Such a feature in the paid version assures 

data validity, since it is essential to have the network traffic of only one specific application. Each of the normal 

application was run between 10 to 15 minutes so as to capture its patterns. The device and the applications were 

clean. After that, selected network traffic features were extracted using tshark [21] (tshark is a command line 

application similar to Wireshark). Table 2 shows the normal applications chosen from the Android market. 

 

Table 2. Normal Applications Selected from Google Play 

Facebook MailDroid

Twitter Feedly

Chrome Maps

Google Reader Gmail

Flipboard Skype

Youtube Facebook Messenger
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Consequently, the final dataset was a combination of normal and infected traffic. The data was randomly 

arranged in the dataset using a pre-processing feature in the Waikato Environment for Knowledge Analysis 

(WEKA), which is a machine learning software, and in particular a package called 

weka.filters.unsupervised.instance.randomize. This way, the classifier training process is more accurate. Table 3 

presents an excerpt from the labelled dataset. 

 

Table 3. The Dataset Sample 

tcp_size duration no_parameter results

0 0.432149 0 normal

166 0.513963 0 normal

306 0.137004 9 infected

448 0.317172 0 normal

347 0.080052 6 infected

0 0.00002 0 normal

1164 0.050994 1 infected

0 0.000038 0 normal

0 0.634737 0 normal

306 0.007583 9 infected

0 2.859491 0 normal

0 7.967501 0 normal

306 0.051335 9 infected

166 0.709343 0 normal

306 0.035025 9 infected

0 6.209529 0 normal

807 0.386469 10 infected

0 0.000541 0 normal

197 4.230825 0 normal

0 6.00186 0 normal

448 2.549219 9 normal

0 0.000011 8 normal

347 0.051966 6 infected

0 0.001416 0 normal

318 0.19875 1 normal  

 

3.2 Feature Extraction 

Among numerous features of network traffic, only 3 features were selected. As the number of selected features 

rises, the processing power and processing time soar. The features are as follows: 

• Connection duration: it describes how long a connection lasts. Technically, an http-based bot is not 

constantly connected to the server. It connects to the server at relatively specific intervals to check 

whether there is a new command from the hacker (botmaster) or not. Thus, most of the 

communications consist of simple handshakes, and it is a plausible feature for malware detection. 

• TCP size: one of the most essential functions of a mobile bot is to steal user information and send it to 

a hacker. For that purpose, TCP payload includes mobile device data with distinguishable size from 

other packets. Thus, TCP size was chosen for this work. 

• Number of parameters in GET/POST request: GET and POST are two methods in http protocol 

used to submit data from the client to the server. They should not literally be considered as English 

words. For instance, Fig 2 shows a POST method from Geinimi malware on a mobile device leaking 

user data to a C&C server. 
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Fig 2. Leaked data from malware to a server 

 

Fig 2 shows that 10 different kinds of information or parameters are sent from the user’s device to a server by 

Geinimi malware, namely PTID, IMEI, sdkver, SALESID, IMSI, longitude, latitude, DID, autosdkver and 

CPID. However, in normal network traffic on a mobile device, such pattern is seen occasionally. Hence, the 

number of parameters is a possible candidate for our analysis and to our knowledge it has not been used in any 

previous papers. 

 

3.3 Machine Learning Classifiers 

The classifiers work with a labelled dataset and find a pattern to build a proper detection model. In this study, 5 

different classifiers have been used, ranging from a simple to more complex and powerful ones, as follows: 

• Naïve Bayes: It is a simple probabilistic classifier based on the Bayes theorem with a strong features 

independence assumption, meaning that, it presumes there is no dependency between various dataset 

features, something that is rarely true [22]. 

• K-nearest Neighbor: It is one of the most straightforward classifiers, also referred to as KNN [23]. 

Regardless of its simplicity, it has accomplished a number of pattern recognition tasks [24]. In this 

project, 3 neighbours were chosen to perform this classifier. 

• Decision Tree (J48): It is a renowned, relatively simple classifier. It is an open source Java 

implementation of the C4.5 decision tree. The model looks like a tree and a decision is made based on 

whether a record of data belongs to a branch or not. It is a popular classifier since it is easy to interpret 

and explain [25]. 

• Multi-Layer Perceptron (MLP): The multi-layer perceptron (MLP) is a type of artificial neural 

network (ANN) consisting of a network of neuron layers inspired by the human brain. It has been 

widely employed among researchers in various fields such as banking, defence, and electronics [26]. 

MLP has medium-level complexity. 

• Support Vector Machine (SVM): The support vector machine was developed in the reverse order of a 

neural network. It has a robust theoretical background, which renders it superior in terms of 

performance compared to neural networks. However, it is complex, hard to interpret, CPU-bound, and 

memory-intensive [27]. 

In order to evaluate each classifier, 2 validation methods known as k-fold cross-validation and 70% split were 

used. The k-fold cross-validation method is a means of enhancing the holdout method. The data set is divided 

into k subsets, and the holdout method is repeated k times. Each time, one of the k subsets serves as the test set 

and the other k-1 subsets are compiled to form a training set. Then, the average error across all k trials is 

computed. The advantage of this method is that it matters less how the data gets divided. Every data point gets 

to be in a test set exactly once, and in a training set k-1 times. The variance of the resulting estimate is reduced 

as k increases. The disadvantage of this method is that the training phase has to be rerun from scratch k times, 

meaning it takes k times as many computations to perform an evaluation [28]. Specifically, a 10-fold option was 

used, which is described as applying the classifier to data 10 times and every time with a 90-10 configuration, 

i.e. 90% of data for training and 10% for testing. The final model is the average of all 10 iterations. 

The second method is 70% split, which is defined as using 70% of a dataset for training purposes. The benefit of 

this method is that it takes much less time compared to the 10-fold method since the process is done once, 

whereas the same process is done 10 times for the other method. Over-fitting is a drawback of the 70% method, 

and it occurs when a classifier memorizes a dataset instead of getting trained. Generally, in the majority of the 

experiments, the 10-fold method produces better results than the split method [28]. 

This experiment was performed on a desktop computer with Intel core i5 2400 CPU at 3.10 GHZ and 4GB of 

RAM. The operating system of this machine is Microsoft Windows 7. The WEKA machine learning software 
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was used for this study due to its simplicity and user-friendly environment [29]. The Java Runtime Environment 

(JRE) version 1.7.0_21 ran the WEKA software. 

 

 

4.0  RESULTS AND DISCUSSION 

It is important to reiterate that the purpose of this work is to study and evaluate various machine learning 

classifiers for mobile malware detection in order to tackle the problem of rapid growth of malwares. In intrusion 

detection and response studies, detection rate (i.e. true positive and false positive rates), precision and recall are 

examples of system performance measurements [30]. 

 

4.1 Effectiveness 

The results are expressed in terms of performance measurements. Detection rate, also known as a true positive 

rate (TPR), is the probability of correctly detecting an instance as malware. Additionally, false positive rate 

(FPR) is another measurement defined as the false detection of normal traffic as infected. The higher the TPR, 

the better the result is. Conversely, the lower the FPR, the better it is. The empirical results are presented in 

Table 4. 

 

Table 4. The Experimental Results 

TPR FPR TPR FPR

Naïve bayes 93.00% 7.00% 93.13% 6.86%

K-nearest neighbor (KNN) 99.94% 0.06% 99.53% 0.46%

Decision Tree (J48) 99.70% 0.30% 99.20% 0.80%

MLP 97.04% 2.96% 97.33% 2.66%

SVM 99.50% 0.50% 99.33% 0.66%

10-fold validation 70% split validation

 

 

One of the purposes of this work is to study the detection methods. As a result, performing a comparison with 

other studies is common in the research community to demonstrate improvements over related works. As 

mentioned earlier, a study was conducted by Su et al.[17] in which the MalGenome data sample was used with 

classifiers. In this paper, 100 malwares from the MalGenome data sample were used, whereas Su et al. [17] used 

49 from the same data sample. In terms of number of classifiers, 5 classifiers were used in this work, ranging 

from simple to complex classifiers, but Su et al.[17] used only 2 classifiers. More classifiers facilitate a more 

comprehensive analysis. As discussed previously, in this work 3 of the most effective network traffic features 

were applied, namely connection duration, TCP size and number of GET/POST parameters. On the other hand, 

Su et al.[17] employed 9 features, namely the average and standard deviation of the number of sent/received 

packets, the average and standard deviation of the number of bytes sent/received  and  the  average  TCP/IP  

session  duration. It should be noted that as the number of features increases, the classifiers need to process 

additional data, which leads to higher processing power consumption as well as longer time. The decision tree 

(J48) and random forest classifiers utilized by Su et al. [17] produced true positive rates of 91.6% and 96.7% 

respectively. However, as Table 4 depicts, the best result in this work was achieved with the KNN classifier, 

with as much as 99.94%. It was discussed in Section 3.3 that the 10-fold validation usually produces enhanced 

results. In this study, the best result of the 10-fold validation is 99.94% while the best result of the 70% split 

validation is 99.53%.Therefore, a comparison between the 2 studies concurs that an improvement has been 

achieved in this research work through selecting the most suitable network traffic features as well as increasing 

the detection rate. The table below summarizes the outcome of the two studies. 
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Table 5. Result Comparison with Similar Work 

10-fold validation 70% split validation

Naïve bayes - 93% 93.13%

K-nearest neighbor (KNN) - 99.94% 99.53%

Decision Tree (J48) 91.60% 99.70% 99.20%

Random Forest 96.70% - -

MLP - 97.04% 97.33%

SVM - 99.50% 99.33%

Su et al. [15]

Current study

 

According to the above table, it is found that the results of this study are superior to similar work done by Su et 

al. [17]. A 99.94% detection rate was achieved in this study using the K-nearest neighbour classifier compared 

to 96.7% in the other work using the random forest classifier.  

 

4.2 Performance 

To reiterate, it should be mentioned that the output of the training phase is a detection model. Since this study 

was conducted on mobile devices, time is an important factor. As the processing time of a classifier goes up, the 

more resources, such as CPU, battery, and memory are solicited in a mobile device by the classifier. Time is 

defined as how long it takes to prepare a final model in the training phase. The emphasis is on the 10-fold 

method time as it is more logical compared to the 70% split method. Because the 10-fold validation is done 10 

times on data and the average is the last result, the 70% method applies an algorithm on data only once and it is 

considered a very positive aspect. The k-nearest neighbour classifier produced the best time result with 0.01 

seconds. Naïve Bayes and the decision tree are second and third with 0.04 and 0.09 seconds respectively. In the 

fourth and fifth place are SVM and MLP with 0.31 and 1.80 seconds accordingly. The timing results for both 

validation methods are tabulated in Table 6. 

 

Table 6. Comparison of Processing Time of Classifiers (in seconds) 

classifiers 10-fold cross-validation 70% split validation

Naïve bayes 0.04 0.01

K-nearest neighbor (KNN) 0.01 0.01

Decision Tree (J48) 0.09 0.03

MLP 1.8 1.84

SVM 0.31 0.15
 

 

As a conclusion, the k-nearest neighbour exhibits optimal performance in terms of detection rate. With respect 

to time, the k-nearest neighbour is the first among other classifiers. 
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4.3 ROC Curve 

A Receiver Operating Characteristic (ROC) curve is normally used to measure intrusion detection performance. 

It indicates how the detection rate changes, as the internal threshold is varied to generate more or fewer false 

alarms. It plots intrusion detection accuracy against false positive probability. Fig 3 to Fig 7 below depict the 

ROC curve for the 5 classifiers. 

 

 

Fig 3. Naïve Bayes ROC Curve 

 

Fig 4. K-nearest Neighbor ROC Curve 

 

 

Fig 5. Decision Tree ROC Curve 

 

Fig 6. Multi-Layer Perceptron ROC Curve 
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Fig 7. Support Vector Machine ROC Curves 

 

ROC curves signify the tradeoff between false positive and true positive rates, which means that any increase in 

the true positive rate is accompanied by a decrease in the false positive rate. Then, as shown by the ROC curves, 

the k-nearest neighbor classifier performed the best result. The line in the k-nearest neighbor diagram is the 

closest to the left-hand border and the top border compared to other diagrams, indicated that it offers the finest 

result among the other classifiers.  

Furthermore, the area under the curve (AUC) is used to measure the accuracy. An area of 1 means a perfect 

result while a 0.5 value is a worthless result. The AUC point system is as follows: 0.90 – 1.00 = excellent (A), 

0.80 - 0.90 = good (B), 0.70 - 0.80 = fair (C), 0.60 - 0.70 = poor (D) and 0.50 - 0.60 = fail (F). Fig 8 presents the 

experimental AUC values. 

 

Classifiers AUC Value

Naïve bayes 0.979

K-nearest neighbor (KNN) 1

Decision Tree (J48) 0.995

MLP 0.979

SVM 0.994
 

Fig 8. The Values of the Area Under the Curve for ROC Diagrams 
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It is found that the KNN classifier has the optimum AUC value (1.00) compared to the other classifiers. The 

decision tree classifier is in second place with 0.995, followed by SVM with 0.994. Naïve Bayes and MLP are 

fourth and fifth with 0.979 AUC value. 

 

5.0  CONCLUSIONS AND FUTURE WORK 

Mobile devices are used by billions of people around the globe. Sensitive data is stored on such devices, from 

contact lists, to passwords and credit card numbers. The research community is witnessing the manifestation of 

new mobile malware on a monthly basis, which steals user data and causes many difficulties for the user. In this 

study, a machine learning approach was used to tackle the security vulnerabilities on mobile devices. Machine 

learning classifiers were applied to the network traffic of a mobile device to detect malicious activities. Five 

types of classifiers were used, namely Naïve Bayes, KNN, decision tree, MLP, and SVM. The results are 

surprisingly high, with a 99.94 % detection rate for KNN.  

The data sample employed in this study is one of the newest in the research community. However, with the 

advent of novel malware each month, it is imperative to collect malware samples continuously and to analyse 

and improve security systems.  

For future work, the presented method may be potentially applied to developing a comprehensive cloud-based 

intrusion detection system (IDS) using distributed application frameworks in the cloud [31] with the help of 

virtual machine deployment in the cloud [32]. Alternatively, the same process can be performed on the entire 

data sample, whereas this study was conducted only on 10% of the sample. Moreover, additional network 

attributes should be applied in prospective works to inspect network traffic more profoundly. 
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