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ABSTRACT   

Multicore architecture has dramatically changed the general direction of software development dedicated for 

personal computers. As such, it is important for software designers to keep pace with the evolving challenges that 

happen in the hardware side, for example in this context of multicore architecture, so that they can leverage on the 

advantages of multicore technology as much as possible while developing software. As one of the well-known 

techniques, Divide and Conquer has a natural adaptation with the multicore technology. The technique needs to be 

further developed to fit into this new environment. In this paper, we present a new concurrent multithreaded 

Colored Petri Nets model that provides a new approach for scheduling Divide and Conquer problems on a 

multicore environment. Two new schedulers have been developed to control the actions of the model. The Multi 

Stealing Scheduler (MSS) has been designed to redistribute threads among the modelled cores. The MSS is general, 

scalable and it can be used for any Divide and Conquer problem. The second scheduler is the Local Threads 

Scheduler (LTS) that has the duty of threads creation and division inside each modelled core. In addition, the LTS 

introduces a new recursive method to provide the necessary information to multiply two matrices. Two main things 

have been achieved: First, workload among the modelled cores becomes well balanced; second, the technique 

produces a high level of concurrency between the elements of the model, which greatly minimise the execution time. 

Keywords: Concurrency, Multithreading, Colored Petri Nets, Divide and Conquer, Matrix Multiplication 

1.0 INTRODUCTION 
 
In computer science, Divide and Conquer (D&C) represents one of the vital techniques that can be used to solve a 
variety of problems [1, 2]. The solution to such kind of technique should be adapted to be more efficient in order to 
suit the multicore architecture. One of the main ideas is to provide a high-level concurrent multithreaded scheduler 
that can manage load distribution among the used cores. Matrix Multiplication is one of the D&C problems that 
plays a main role in many scientific applications. It represents a keystone in a numerous number of problems such as 
transitive closure and reduction, solving linear systems, matrix inversion, etc. Therefore, to accelerate the execution 
of these problems, Matrix Multiplication should also be sped up to make use of these developments in the hardware 
side. It is apparent that there is a strong relation between D&C, multithreading, and concurrency. Any D&C problem 
can be divided into a finite number of threads that can be assigned to the available cores. The process of assigning 
besides the execution of these threads can be done concurrently, leading to highly execution rates. 
 
The development of new concurrent methods that effectively utilise the dimensioning growth of the number of cores 
is the cornerstone for the optimum utilisation of the multicore technology. These new methods should fulfil several 
conditions such as: generality, scalability, high degree of concurrency, and fairness in load distribution. Modelling 
represents the first step towards building robust systems that are able to achieve these demands. Through modelling 
and modelling tools, many errors and weak points in the software can be identified and corrected. This study has two 
objectives: First, it aims to provide a general concurrent multithreaded scheduler that can balance load distribution in 
a centralised manner for any Divide and Conquer problem on a multicore architecture. The second objective aims to 
provide another scheduler that is specifically designed for multiplying two matrices. The two schedulers are working 
together in achieving one goal, that is, to design a new centralised, scalable, efficient, concurrent, multithreaded 
scheduler model for Divide and Conquer problems. 
 
In this paper, we propose Multi Stealing Scheduler (MSS) to fairly organise threads distribution among n-modelled 
cores in a simulated multicore environment. The MSS is general enough to be applied for any D&C problem. The 
scheduler represents a centralised unit that balances cores’ threads through stealing threads from the victim (non 
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idle) cores and send them to the thief (idle) cores. The process of stealing allows multi threads to be stolen from one 
or more victim cores and redistributed to one or more thief cores. The main objective of this study is to make all the 
cores working concurrently as much as possible. As an extension to this paper, we also propose another scheduler, 
Local Threads Scheduler (LTS). The LTS is in charge of threads creation, division, and it provides the necessary 
information that assists in multiplying two-dimensional matrices in a multicore environment. 
 
The rest of this paper is organised as follows: background for Work Stealing techniques, the modelling language, 
Colored Petri Net (CPN), and the modelling tool, CPN-Tool, are given in Section 2. In Section 3, scheduling Divide 
and Conquer problems on a multicore environment is explained in detail. Building the CPN model is fully described 
in Section 4. The results of the simulation process, discussion and the conclusion are included in the Sections 5, 6, 
and 7 respectively. 
 
2.0 BACKGROUND 

 
The Multi Stealing Scheduler is built on the basis of Work Stealing. The idea of Work Stealing came from the effort 
of Blumofe and Leiserson [3]. They designed an algorithm that is able to schedule fully-strict (well-structured) 
multithreaded computations. The results were good especially when dealing with areas that need static partition. 
However, the quality of the results is not the same when the algorithm is applied in the modern environments that 
deal with multiprogramming. This is due to the algorithm’s designed mechanism that deals with a fixed set of 
processors. Another major contribution represented in the work of Arrora et al [4] through designing a non fully-
strict mechanism for multithreaded computation. Their work is considered an improvement to [3] in view of the fact 
that they succeeded in designing an algorithm  that can deal with a multiprogrammed environment instead of a 
dedicated one. The achievement made by [4] was considered one of the best load balancing techniques in the 
academic as well as in the industrial fields. However, some problems have been encountered: First, the algorithm of 
Arrora et al faced the memory management problem. It can deal with only m/n threads inside its deques where m 
represents the total memory size and n represents the number of processes. The second problem is related with 
overflow that can easily occur due to the use of arrays in representing deques. The sizes of the arrays have to be 
adjusted many times. There is no easy way to free additional sizes of memory. 
 
Several works have extended [4] in different ways. “Stealing The Half”, a new idea introduced by [5]. As the name 
implies, a half number of the threads can be stolen in one trial. A locality-guided work stealing algorithm that 
improves the data locality of multithreaded computations by allowing a thread to have an affinity for a processor has 
been suggested by [6]. Hendler et al presented in [7] a new algorithm that can detect synchronisation conflicts by 
pointer-crossing instead of gaps between indexes as suggested by [4]. The algorithm does get rid of fixing the 
overflow problem [4] through adopting non-blocking dynamic-sized work stealing deques. Despite this, there was a 
kind of trade-off between space and time complexity since lists (main structure used to represent deques) have been 
used as an alternative to arrays. Chase and Lev [8] presented a simple lock-free work stealing deque.  Their 
algorithm is based on using a cyclic array that can easily deal with overflows. Memory size is the only limitation to 
this algorithm; however, there is no need for garbage collection. Another contribution is represented by the work of 
[9]. Agrawal, et al presented an adaptive thread scheduler, called A-STEAL. Their scheduler performs better than 
[4] when the machine has a large number of cores and many jobs running on it. Vrba et al have analysed the 
performance of applications running under graph-partitioning and Work Stealing schedulers [10]. Work Stealing has 
been formally proven to be optimal only for the restricted class of fully-strict computations. Recently, Ding et al 
presented in [11] a work-stealing scheduler for time-sharing multicore systems. Their scheduler has been designed 
to deal with two important drawbacks in the work of Arrora et al, significant unfairness and degraded throughput. 
The scheduler improves average system throughput and reduces average unfairness. 
 
The common feature in the above studies is the decentralisation in managing threads distribution where the selection 
of the victim cores is done randomly. We have conducted four studies [12-15] regarding concurrent multithreading 
scheduling for D&C problems where the process of managing the threads is done in a centralised manner. That is, 
we suggested designing a separate hardware unit that is in charge of extracting threads from the victim cores and 
submit these threads to the thief cores. In the first two studies [12, 13], we suggested a simple scheduler that can 
manage threads distribution among the modelled cores. The scheduler concurrently steals threads from the victim 
cores and distributes them to the thief cores. However, in each stealing trial, only a single thread at a time is given to 
a thief core. In addition, we suggested specific inner schedulers (a scheduler per core) that can manage threads 
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creation, division, and calculation inside each modelled core. The inner scheduler in [12] is directed to calculate 
Fibonacci series while the inner scheduler in [13] is dedicated for the Binary Search problem. Although the two 
models succeeded in reaching the final results, their load distribution was not efficient enough in view of the fact 
that only a single thread is given to the thief core at the same time. We often found that some cores have plenty of 
threads while other cores have only a single thread. The third study suggests searching for the richest core prior to 
any distribution process [14] while in the fourth study, we introduced the idea of partial stealing [15].  
 
In this paper, we use Colored Petri Nets (CPN) as a graphical language for building and analyzing models of 
concurrent systems [16]. CPN has been developed from Petri Nets (PN) as being the origin of CPN [17, 18]. There 
are two main differences between CPN and PN: CPN has included the idea of data types besides the use of 
expressions and functions written in Standard Meta Language (SML) [19, 20] in models. As a software tool, we use 
CPN-Tool [21] which is developed by Kurt Jensen [16]. CPN-Tool provides all the necessary facilities to create, 
simulate, and validate Colored Petri Nets. In addition, it provides interaction methods such as menus and toolbars 
besides giving feedback messages when errors are encountered during the process of performing code’s syntax 
checking. CPN-Tool uses Colored Petri Nets’ Meta Language (CPN-ML) [21] as a language of writing declarations, 
expressions, and codes inside the model. CPN-ML has been built based on SML [19, 20]. 
 

 

3.0 SCHEDULING DIVIDE AND CONQUER PROBLEMS ON A MULTICORE ENVIRONMENT 

In this paper, we present a new methodology for scheduling Divide and Conquer problems on a modelled multicore 
environment.  The methodology of this study has been built on two schedulers: The first scheduler is the Multi 
Stealing Scheduler (MSS) that is designed to be general for any D&C problem. The scheduler represents a 
centralised unit that dynamically balances threads distribution among the modelled cores. The MSS is scalable; it 
can concurrently deal with n different cores. To get practical results, we introduce another scheduler, Local Threads 
Scheduler (LTS) that schedules threads creation, division, and managing to multiply two matrices. The LTS 
dynamically divides threads till reaching Leaf-Level threads (a Leaf-Level holds a row number of the first matrix 
and a column number of the second matrix). Along with LTS, each core has also three components: A Multiplier 
that represents the core’s unit is responsible for multiplying rows by columns. In addition, each core has two Guards 
that control the activation of the LTS and the Multiplier. The two matrices, resulting matrix and Leaf-Level threads 
are kept inside a Shared Area. Moreover, the Shared Area holds a common value used by the Guards. Fig. 1 shows 
the relation between the elements of the model. 
 

3.1.  Multi Stealing Scheduler (MSS) 

The MSS has been designed to be general for any class of D&C problems. The scheduler redistributes threads 
among the n modelled cores. The distribution process is centralised; it consists of stealing one or more threads from 
the victim cores, then delivering these stolen threads to the thief cores.  
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Fig. 1: The Elements of the Model 

Accordingly, the statuses of idle cores can be minimized to the fullest extent. The modelled cores have been 
designed to deal with a different number of threads. At any instance, each core may have zero, one or more threads, 
besides, each individual modelled core has its own list which is used to retain its own threads. The cores’ lists 
concurrently accept/give threads from/to the MSS.  
 
In mathematics, we can balance the values of any n different variables as follows:  
Let v = (x1, x2, x3, x4 … xn) be a set of non-negative integer numbers (xi ≥ 0). To balance the values in these 
variables, we need to calculate the following:  
Let sum = ∑ �x��

�
���  

Let c = sum + k, where k is a constant (k ≥ 0). The value of c represents the smallest value such that  
c mod n = 0. Let h = (c / n)  
Now, the new value of the first (n – k) variables is h, while the value of the rest is h-1. 
 
Example: Let v = (1, 3, 2, 0, 7, 9, 1, 4). We have n=8, sum = ∑ �x��

	
���   ⇒ sum = 27 

Now, the smallest value of c that achieves (c mod n = 0) is 32. Since c = sum + k ⇒ k = 32 – 27 ⇒ k = 5 
h = (32 / 8) ⇒ h = 4 
∴ The first 3 variables will have the value 4, that is x1=4, x2=4, x3=4, while the rest of the variables will have the 
value 3, that is: x4=3, x5=3, x6=3, x7=3, x8=3 

Although the new values (4, 4, 4, 3, 3, 3, 3, 3) seem balanced with unavoidable bias to some elements, however, 
there are many cases where these calculations are not only bias but also totally unfair. Let us consider the example 
where the original values of the variables are: (1, 0, 0, 0, 0, 0, 2, 3). Now, if we recalculate the values of n, sum, c, k 
and h, we will get the following: n = 8, sum = 6, c = 8, k = 2, h = 1. Therefore, the new values will be: (1, 1, 1, 1, 1, 
1, 0, 0). It is obvious that the last two variables have been treated unfairly.  Applying the same policy in threads 
redistribution among n modelled cores will generate an unbalanced situation. It is clear that some cores will sacrifice 
all their threads in return of feeding other cores. Therefore, this technique is totally rejected in our case. 

The MSS that we suggest in this study treats the lists of threads fairly regardless of the original distribution of 
threads in the modelled cores.  Regarding the previous example, our MSS produces the following values: (1, 1, 1, 1, 
0, 0, 1, 1). The mechanism of the MSS is depicted in Fig. 2. We can distinguish four different parts in this scheduler: 
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Part I: Calculating the Total Number of Threads (First Loop). At the beginning, the scheduler needs to know the 
entire number of threads in the modelled cores. This resembles using Σ in the previous example. 

Part II: Calculating the Base Value. In the MSS, the Base value represents the upper limit of threads for each core. 
The value is obtained by dividing the total number of threads by the number of cores. No core is allowed to have 
more than Base threads. In case we have too few number of threads compared with the number of cores, then the 
value of Base is adjusted to one. 

Part III: Moving the Extra Threads. The second loop in the MSS is dedicated for extracting the extra threads from 
the cores that own more than Base threads. Thus, the multi stealing happens in this part. The Temp list will 
eventually hold a collection of extra threads gathered from wealthy (victim) cores.  

Part IV: This part is in charge of balancing the number of threads in the entire cores. First, we calculate the value of 
the variable Add. This variable represents the extra number of threads that has to be distributed when all the cores 
have the same share (Base) of threads. Naturally, the value of Add ranges from zero to N-1. Then we enter a loop 
that has two functions: 

 A- Adjusting the number of threads in each core. If the number of threads is less than the Base value then 
the scheduler cuts (if available) a number of threads from the Temp list to fulfil the core’s need. 

 B- Managing the extra threads. The scheduler checks whether the same core would get an extra thread or 
not. This can be done through adjusting the value of the variable Add. If the current value of Add is greater than 
zero, then a single thread is extracted from the Temp list and sent to the core; otherwise no extra thread is added. 

3.2.  Local Threads Scheduler (LTS)  

We have n LTSs that work concurrently at the same time (Fig. 1). The LTS creates and manages two types of 
threads; Normal and Leaf-Level Threads. 

3.2.1.  Normal Threads 

The LTS creates a tree of threads (Fig. 3). We have modelled the normal threads (symbolised by rectangles) as a 7-
tuple: (ThreadId, FatherId, StartRow, EndRow, N, StartColumn, EndColumn). The first two parameters hold the 
thread’s number and the thread’s father number. ThreadId and FatherId are denoted as “Tx” (x is a positive integer 
number).  

ThreadId has the value of its ancestor’s ThreadId multiplied by two, while FatherId has the value of its ancestor’s 
ThreadId. As for the other parameters, a normal thread holds the necessary information to multiply two matrices. In 
mathematics, multiplying two matrices, Am,n × Bn,p generates a new matrix Cm,p, where m,n,p > 0.The parameter n 
stands for both the first matrix (A) column number and the second matrix (B) row number. 

The StartRow and EndRow parameters carry the initial and the final numbers of the rows that belong to the first 
matrix (A). These two numbers are reduced through the process of division till they match. The resulting match 
number represents the required row number. The same thing can be said for StartColumn and EndColumn. They 
carry the first and last column numbers in the second matrix (B). Normal threads are created inside the modelled 
cores and they can be reallocated under the supervision of the MSS. 
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START

Number of Lists: N
Lists of Threads: 
L(1), L(2)...L(N)

Total 0
I 1

I <= N

Total Total + Length L(1)
I I + 1

Base Int (Total / N)

Base = 0

Base 1

Temp Empty List
I 1

I <= N

Length L(I) > 
Base

Diff Length L(I) - Base
Sub Copy The First Diff Threads from L(I)

Delete The First Diff Threads from L(I)
Temp Sub ^ Temp

I I + 1

I 1
Add Total - (Base * N)

(Temp <> Empty) 
AND (I <= N)

Length L(I) 
< Base

Diff Base - Length (Li)

Length Temp 
>= Diff

Sub Copy the First Diff Threads from Temp
Delete the First Diff Threads from Temp

Sub Copy the Whole Threads from Temp
Temp Empty

L(I) Sub ^ L(I)

(Temp <> Empty) 
AND (Add > 0)

Sub Copy the First Thread of Temp
Delete the First Thread of Temp

L(I) Sub ^ L(I)
Add Add - 1

Updated Lists of 
Threads: 

L(1), L(2)...L(N)

END

A

A

No

Yes

Yes

No

Yes No

Yes

No

Yes No

Yes

No

Yes No

I I + 1

B

B

No

Yes

 

Fig. 2: Multi Stealing Scheduler (MSS). The inputs are lists of threads (L(1), L(2)…L(N)). Every list belongs to a 
core. The outputs are the same lists after reallocating the threads inside them. The symbol “^” is used to connect two 

lists. 
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3.2.2.  Leaf-Level Threads 

A Leaf-Level thread is a simple representation of the terminal normal thread and it (Leaf-Level thread) is used 
directly in finding the result of multiplying a single row by a single column. In multiplying a single row by a single 
column, we need only a row number, size of the elements in the row, and a column number. These three parameters 
are the elements of the Leaf-Level threads. This kind of threads is kept inside the Shared Area (Fig. 1).  In Fig.3, an 
example for a Leaf-Level thread is (3,4,2). This thread is allocated for multiplying the elements of the third row 
(matrix A) by the elements of the second column (matrix B). Both the row and the column have four elements. 

 

Fig. 3: An example of the division process of the Local Threads Schedulers intended for multiplying two matrices:  
A3,4 × B4,4 = C3,4 . Normal threads are symbolised by rectangles while Leaf-Level threads are symbolised by ovals 

 

3.2.3.  LTS Mechanism  

The essence of the LTS mechanism (Fig. 4) is in computing the values of the parameters: StartRow, EndRow, 

StartColumn, and EndColumn. The LTS is executed in each of the n modelling cores. The scheduler receives a list 
of normal threads and it (scheduler) continuously divides normal threads till generating Leaf-Level threads. To 
accelerate the process of division, any normal thread that has four normal grandchildren is directly divided into these 
four threads. 
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Fig. 4: Local Threads Scheduler (LTS) 
 
The term “LTS” in Fig. 4 indicates calling the same algorithm with the adjusted parameters. That is, according to 
Fig. 3, when the scheduler processes the first thread (T1,T0,1,3,4,1,4), it will directly generates (T4,T2,1,1,4,1,2), 
(T5,T2,1,1,4,3,4), (T6,T3,2,2,4,1,4), and (T7,T3,3,3,4,1,4) without generating (T2,T1,1,1,4,1,4) and 
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(T3,T1,2,3,4,1,4). This process is repeated recursively. We can distinguish seven different statuses (Fig. 4) in 
calculating the above parameters. 
In Status 1, when both the StartRow and EndRow are matched, and at the same time, StartColumn and EndColumn 
are matched also; a Leaf-Level thread can be directly generated and sent to the Shared Area (Fig. 1). Status 2 is 
reserved for normal threads that come one step before the terminal normal threads. The result is in generating two 
terminal normal (non Leaf-Level) threads sent back to their list. Statuses 3 and 4 are activated when we have a 
matching in the rows parameters with a contrast in the column parameters. We have divided the threads into two sets 
depending on the result of dividing EndColumn by 2. 

All the mentioned statuses are dedicated for managing threads that have a matching in the rows parameters while 
statuses 5, 6, and 7 are customized for threads that have mismatching in the rows parameters. When EndRow 
exceeds StartRow in one value, Status 5 is called. Two normal threads are sending to the list; each one has equal 
values of StartRow and EndRow. Statuses 6 and 7 manage the threads that have more than one value between 
StartRow and EndRow. In both these two statuses, the LTS mechanism tries to narrow down the differences between 
the rows parameters. The result of dividing EndRow by 2 has been taken as the point of threads’ division. Status 6 
deals with threads that have less difference between StartRow and EndRow, while Status 7 is dedicated for those 
threads that have much difference between these parameters. The LTS output is a set of Leaf-Level threads. The 
entire cores keep the Leaf-Level threads in the Shared Area (Fig. 1). 

3.3.  The Multipliers   

The Multiplier has the function of extracting the row number, number of elements in the row, and the column 
number from the Leaf-Level Threads. Then, it uses this information in reading the elements of the desired row (first 
matrix) and the desired column (second element). Finally, it multiplies the elements of the row by the elements of 
the column and save the resulting value in the resulting matrix. All the Multipliers operate concurrently in 
computing the elements of the new matrix. 

3.4.  The Guards   

In Fig. 1, each core has two function units: LTS and Multiplier. To enable/disable the activation of these two units; 
Guards have been added. The reason behind using Guards is to enforce the MSS to redistribute threads when there is 
an urgent need. For instance, one or more cores become idle.  At the same time, one or more cores are wealthy in 
threads. The Guards, temporarily, disable the activation of the LTSs and Multipliers so that they can enforce the 
MSS to redistribute the threads among the modelled cores in a fair manner. Two Guards have been assigned for each 
core; one for the LTS (LTSGuard) and the other for the Multiplier (MulGuard). Both Guards have the same 
mechanism. The only exception is that the LTSGuard deals with the list of normal threads while the MulGuard deals 
with the list of Leaf-Level threads.  

The general mechanism of a Guard is illustrated in Fig. 5. Every Guard (LTSGuard / MulGuard) reads the same 
shared value called the GuardsValue. This value consists of n-tuples (L1, L2…Ln).  The Lx represents Normal 
threads list size of core x. For instance, a GuardsValue with (1,0,2,3) means that core 1 has one Normal thread, core 
2 has zero Normal threads, etc. 

Every Guard uses the GuardsValue, the associated core number and its list of threads (Normal or Leaf-Level 
depending on whether it is LTSGuard or MulGuard) as shown in Fig. 5 to decide whether it should activate (Guard 
is Locked) or deactivate (Guard is Opened) its LTS / Multiplier. We can distinguish four different statuses in the 
Guard behavior: 

First Status is dedicated for an empty list of threads. When the associated list (Normal or Leaf-Level) is empty, then 
its associated Guard (LTSGuard / MulGuard) immediately disables (Locked) the LTS / Multiplier. The variable 
“EmptyList” retains the value true. 

Second Status, the Guard opens the way for the LTS / Multiplier as long as all the cores are wealthy in threads 
(AllAreBusy remains true); therefore, the Guard enables LTS / Multiplier.  
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Third Status is aroused when some cores have only a single thread; in addition, one or more (not all) cores have zero 
threads (AllLessThan2 remains true). In this case, the Guard permits the LTS / Multiplier for working (as long as its 
associated list is not empty) since there is no chance to steal threads from other cores. 

Finally, Fourth Status treats what is remained. This includes the occurrences where some cores are wealthy (more 
than one thread) and others are idle (zero threads); as a result, a Guard should be locked. 

 

Fig. 5: Guards’ Mechanism 

4.0 A CPN MODEL FOR MULTICORE MULTI-STEALING SCHEDULER 

We design a Colored Petri Nets (CPN) model that simulates the behaviour of the two schedulers, Multipliers and the 
Guards (Fig. 1). The model is hierarchical and scalable; it consists of a main page and three sub pages. The main 
page emulates the behavior of the Multi Stealing Scheduler (Fig. 2) while each one of the sub pages emulates a 
single core. Therefore, we have a CPN model with three modelled cores.  
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4.1.  The Main Page   

The main page (Fig. 6) of this model consists of four places (List 1, List 2, List 3, and GuardsValue), one transition 
(MSS), and three substituted transitions (Core1, Core2, and Core3).  

4.1.1.  Main Page Places 

In CPN, a place is an oval shape that holds the data. In our model, List 1, List 2, and List 3 are of type NormalList 
(located at the lower right corner of every place). The type NormalList represents a list of the seven tuples 
mentioned in Section 3.2.1. Thus, the content of each place is a list of normal threads. In CPN, every place has an 
initial value usually located at the right corner of the place. Initially, List 2 and List 3 are empty (empty list is 
represented as [ ]), while List 1 has only one thread (the main thread).  

At the top of each place, there is a circle attached to a rectangle; both are used to reflect the current content of each 
place. The circle carries the number of tokens (data) and the rectangle carries the data itself. In the case of List 1; 
there is only one list while there is an empty list in both List 2 and List 3. The content of List 1 is a single normal 
main thread: ("T1","T0",1,4,5,1,6). The main thread holds the information needed to multiply two matrices. 

The dimensions of the first matrix are (4×5) and of the second matrix are (5×6). The parameter “T1” stands for the 
thread’s number while the parameter “T0” represents the thread’s predecessor number (in case of the main thread, 
there is no actual predecessor; even that, we keep its Id). The third and fourth parameters (1 and 4) stand for the 
numbers of the corresponding first and last row of the first matrix. The fifth parameter (number 5) corresponds to 
the number of columns and rows of the first and second matrices respectively. The last two parameters (1 and 6) 
stand for the first and last column numbers of the second matrix. The current content of each place changes during 
the simulation process while the initial contents never changed.  

Place GuardsValue is dedicated for holding the current size of List 1, List 2, and List 3. The purpose of this place is 
to control the activation of the cores. The initial value of the place is (1,0,0) which indicates that there is only one 
thread in Core 1, second and third cores have zero threads. This value is used by the cores to enable/disable their 
transitions so that it will be possible to enforce the MSS Transition to redistribute the threads. The Fusion tag [21] at 
the lower left corner of the place indicates that this place is a shared place. In other words, places with the same 
fusion number in different cores share the same area.  

4.1.2.  Main Page Transition 

In CPN, the model’s part that is in charge of doing actions (threads movement, division, etc in our model) is the 
Transition (such as MSS Transition in Fig. 6). Any transition can be executed if it has enough tokens (data) in its 
input places, and at the same time, the guard function (if exists) returns the value True. In our example, the 
Transition MSS has three input lists arguments, C1Out, C2Out, and C3Out (all of them of type NormalList), and it 
has a guard function (Guardian). The Guardian Function is a simple SML Boolean function that is designed to return 
True or False. The function returns True if and only if at least one of the input lists (that is one of the cores) has zero 
Normal threads, and at the same time, at least one of the same input lists has more than one Normal thread; 
otherwise, it returns False. It is obvious that there is no meaning behind redistributing the threads if all the cores are 
empty (idle) or all of them are non-empty (busy). The execution of the MSS Transition is represented by running the 
SML code located above the transition. The main thing in this code is the calling of the MSS function that is an 
SML function designed to execute the flowchart in Fig. 2. The output of this function is the balanced lists of threads 
represented by C1In, C2In, and C3In. In addition, the code calculates the size of threads of each core returned as 
GIn. 

4.1.3.  Main Page Substituted Transitions 

At the bottom of the main page, three substituted transitions (Core1, Core2, and Core3) are located. In the 
hierarchical CPN models, a substituted transition represents a whole page. Thus the substituted transition is a 
replacement for a whole core. At the lower left corner of each substituted transition, there is a substituted tag; it is an 
indication to a subpage. Fig. 7 shows the components of Core 1; other cores (Core 2 and Core 3) will have exactly 
the same structure. 
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Fig. 6: The CPN Model of the Main Page 
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Fig. 7: The CPN Model of a Single Core 

4.2.  Core 1 (Sub Page 1) 

There are six places: List 1, GuardsValue, LeafLevel Threads, A Matrix, B Matrix, and C Matrix. In addition, there 
are two transitions: LTS Core 1 and Multiplier1. Other cores will have exactly the same number of places and 
transitions. 

4.2.1.  Core 1 Places 

•••• Place List 1 represents the same List 1 place in Fig. 6. The I/O tag located at the lower left corner of the place 
indicates the ability to get/remove normal threads to/from the core under the control of MSS in Fig. 6. CPN-Tool 
[21] provides an internal mechanism of adding/removing data (threads) from the main page to the sub pages.  

•••• Place LeafLevel Threads holds a list of another kind of threads. A LeafLevel thread has the following 
structure: Row * Size * Column. It represents the number of the desired row of the first matrix followed by the 
number of elements in the row, followed by the number of the desired column of the second matrix.  

•••• The GuardsValue place shared the same area with GuardsValue place in the main page.  

•••• The places A Matrix and B Matrix hold the data (numbers) of the given two matrices respectively. The 
numbers inside the two matrices organised as lists of numbers. The output matrix, C Matrix, holds only zeros. 

Places LeafLevel Threads, GuardsValue, A Matrix, B Matrix, and C Matrix are fused. Fusion places share the same 
area. That is, Places: A Matrix in Core1, A Matrix in Core2, and A Matrix in Core3 shared the same area. The same 
thing is applied for other fused places. 

4.2.2.  Core1 Transitions 

•••• Transition LTS Core1 is in charge of the following: 

1- Reading the contents of the Normal and LeafLevel threads lists through NormalIn and LeafIn respectively. In 
addition, the transition reads the sizes of the lists through GIn. 

2- Updating the contents of the Normal and LeafLevel threads lists as illustrated in Fig. 4.  

3- Updating of the content of GuardsValue place. This process is done according to the new size of the Normal 
List. The arguments of the GuardsValue Place say that X, Y, and Z are updated as follows: The transition 
updates only its own argument. That is, Transition LTS Core1 updates X, Transition LTS Core 2 updates Y, etc. 
The updating is sent back as GOut. The code below the LTS Core 1 Transition is in charge of executing all the 
mentioned actions of this transition. 

The Transition LTS Core1 is accompanied with a guard. The LTSGuard function controls the activation of the 
transition. The mechanism of this function has been illustrated in Fig. 5.  

•••• Transition Multiplier1 is responsible of multiplying a single row from A Matrix by a single column from B 
Matrix. The result of multiplication is stored in the appropriate location of the C Matrix. The code that is in 
charge of doing multiplication is located at the lower right corner of the transition. The transition is accompanied 
by a guard as in the previous transition. The MulGuard function works as LTSGuard with one difference. 
LTSGuard deals with Normal threads while MULGuard deals with LeafLevel threads.  
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5.0 THE RESULTS OF THE SIMULATION PROCESS 

The model concurrently schedules threads creation, threads balancing, and matrices multiplications. An example of 
multiplying two matrices is given in Table 1: 
 
 

 
 

Table 1 An example of multiplying two matrices 

A Matrix, a 4×5 matrix. 
Never changed during the 

simulation 

B Matrix, a 5×6 matrix. 
Never changed during the 

simulation 

The C Matrix, a 4×6 resulted matrix. Initially it has only 
zeros. At the end of the simulation process, it will be as 

below 

[1,2,3,7,8] 
[2,4,4,9,1] 
[3,1,7,8,2] 
[2,5,6,4,8] 

 

[2,1,4,9,7,6] 
[1,7,6,2,9,5] 
[9,9,8,1,2,4] 
[4,3,8,7,6,5] 
[3,2,1,1,6,7] 

[83,79,104,73,121,119] 
[83,95,137,94,118,100] 

[108,101,140,94,104,105] 
[103,119,126,70,143,137] 

 

It is important to mention that CPN-Tool is a single thread tool. At any moment, the tool randomly picks one of the 
ready transitions (those transitions that have data in their input places, and at the same time, their Guard functions, if 
any, return true). Therefore, different executions of the model generate different sequences of active transitions. 
Nevertheless, all the execution trials lead to the same result (calculating the elements of the C Matrix).  

The result of the simulation is shown in Table 2-A. The simulation process took sixty-nine steps. Prior to the 
simulation process, only one thread resides in Core 1 (Step 0). In the next step (step 1), Core 1’s LTS is being 
selected by the tool; it divides its main thread into four sub threads. We notice that the MSS is the second transition 
chosen by the simulator; it redistributes the available threads between the cores as shown in step 2. The generation 
of the first Leaf-Level thread happened in step 5. In step 6, Core 2’s LTS has been selected again; it exchanges one 
of its normal threads with two children’s normal threads. The execution of the first Leaf-Level thread and getting a 
new value in the C Matrix has been done in step 8 through Multiplier2.  In Table 2-B, we have manually collected 
all the possible transitions that can be done concurrently. It is clear that the model takes less time (only thirty-six 
steps). However, for larger arrays, we can write a simple function in CPN-ML to count the number of steps that can 
be run concurrently. 
 
Table 2-A shows the sequence of transitions’ executions along with contents of the cores and the current number of 
Leaf-Level threads. Table 2-B shows the possible concurrent activities that can be done at the same time. The S, 
S.T, C1, C2, C3, and L stand for Step, Selected Transition, Core 1, Core 2, Core 3 and Leaf-Level threads 
respectively. 

Table 2-A  Table 2-B 

S S.T C1 C2 C3 L  S S.T C1 C2 C3 L 

0  1 0 0 0  0  1 0 0 0 
1 LTS-Core1 4 0 0 0  1 LTS-Core1 4 0 0 0 
2 MSS 2 1 1 0  2 MSS 2 1 1 0 
3 LTS-Core2 2 4 1 0  

3 
LTS-Core2 
LTS-Core3 

2 4 4 0 
4 LTS-Core3 2 4 4 0  
5 LTS-Core2 2 3 4 1  4 LTS-Core2 2 3 4 1 
6 LTS-Core2 2 4 4 1  5 LTS-Core2 2 4 4 1 
7 LTS-Core2 2 3 4 2  6 LTS-Core2 2 3 4 2 
8 Multiplier2 2 3 4 1  

7 
Multiplier2 
LTS-Core3 

2 2 3 2 
9 LTS-Core3 2 3 3 2  
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10 Multiplier1 2 3 3 1  Multiplier1 
LTS-Core2 11 LTS-Core2 2 2 3 2  

12 Multiplier3 2 2 3 1  

8 

Multiplier3 
Multiplier2 
LTS-Core1 
LTS-Core2 

5 3 3 0 
13 Multiplier2 2 2 3 0  
14 LTS-Core1 5 2 3 0  
15 LTS-Core2 5 3 3 0  
16 LTS-Core2 5 2 3 1  9 LTS-Core2 5 2 3 1 
17 LTS-Core2 5 1 3 2  

10 

LTS-Core2 
LTS-Core3 
LTS-Core1 
Multiplier1 

4 1 4 2 
18 LTS-Core3 5 1 4 2  
19 LTS-Core1 4 1 4 3  
20 Multiplier1 4 1 4 2  
21 Multiplier3 4 1 4 1  

11 
Multiplier3 
LTS-Core2 

4 0 4 2 
22 LTS-Core2 4 0 4 2  
23 MSS 3 3 2 2  12 MSS 3 3 2 2 
24 Multiplier3 3 3 2 1  

13 
Multiplier3 
Multiplier1 
LTS-Core2 

3 4 2 0 25 Multiplier1 3 3 2 0  
26 LTS-Core2 3 4 2 0  
27 LTS-Core2 3 3 2 1  14 LTS-Core2 3 3 2 1 
28 Multiplier1 3 3 2 0  

15 
Multiplier1 
LTS-Core2 

3 2 2 1 
29 LTS-Core2 3 2 2 1  
30 Multiplier2 3 2 2 0  

16 
Multiplier2 
LTS-Core3 
LTS-Core1 

4 2 3 0 31 LTS-Core3 3 2 3 0  
32 LTS-Core1 4 2 3 0  
33 LTS-Core3 4 2 2 1  

17 
LTS-Core3 
LTS-Core2 

4 1 2 2 
34 LTS-Core2 4 1 2 2  
35 LTS-Core3 4 1 1 3  

18 
LTS-Core3 
LTS-Core2 

4 0 1 4 
36 LTS-Core2 4 0 1 4  
37 MSS 2 2 1 4  19 MSS 2 2 1 4 
38 LTS-Core3 2 2 0 5  20 LTS-Core3 2 2 0 5 
39 MSS 2 1 1 5  21 MSS 2 1 1 5 
40 Multiplier2 2 1 1 4  22 Multiplier2 2 1 1 4 
41 Multiplier2 2 1 1 3  

23 
Multiplier2 
LTS-Core3 

2 1 0 4 
42 LTS-Core3 2 1 0 4  
43 MSS 1 1 1 4  24 MSS 1 1 1 4 
44 Multiplier1 1 1 1 3  

25 

Multiplier1 
Multiplier2 
LTS-Core1 
Multiplier3 
LTS-Core2 

4 0 1 2 
45 Multiplier2 1 1 1 2  
46 LTS-Core1 4 1 1 2  
47 Multiplier3 4 1 1 1  
48 LTS-Core2 4 0 1 2  
49 MSS 2 2 1 2  26 MSS 2 2 1 2 
50 LTS-Core3 2 2 0 3  27 LTS-Core3 2 2 0 3 
51 MSS 2 1 1 3  28 MSS 2 1 1 3 
52 Multiplier3 2 1 1 2  

29 
Multiplier3 
LTS-Core1 
LTS-Core3 

3 1 2 2 53 LTS-Core1 3 1 1 2  
54 LTS-Core3 3 1 2 2  
55 LTS-Core1 2 1 2 3  

30 
LTS-Core1 
Multiplier3 

2 1 2 2 
56 Multiplier3 2 1 2 2  
57 Multiplier3 2 1 2 1  

31 
Multiplier3 
Multiplier1 
LTS-Core3 

2 1 1 1 58 Multiplier1 2 1 2 0  
59 LTS-Core3 2 1 1 1  
60 Multiplier3 2 1 1 0  

32 
Multiplier3 
LTS-Core2 

2 0 1 1 
61 LTS-Core2 2 0 1 1  
62 MSS 1 1 1 1  33 MSS 1 1 1 1 



A Concurrent Multi-Stealing Scheduler Model For Divide And Conquer Problems.  pp 177-195 

 

192 
Malaysian Journal of Computer Science.  Vol. 25(4), 2012 

 
 

63 Multiplier3 1 1 1 0  
34 

Multiplier3 
LTS-Core3 

1 1 0 1 
64 LTS-Core3 1 1 0 1  
65 Multiplier3 1 1 0 0  

35 
Multiplier3 
LTS-Core1 
LTS-Core2 

0 0 0 2 66 LTS-Core1 0 1 0 1  
67 LTS-Core2 0 0 0 2  
68 Multiplier3 0 0 0 1  

36 
Multiplier3 
Multiplier2 

0 0 0 0 
69 Multiplier2 0 0 0 0  

 

6.0 DISCUSSION 

The model has been executed several times. All the trials have led to the same result that is represented in 
calculating the elements of the C Matrix. However, different trials have different sequences of transitions’ 
activations; this is due to the non-deterministic nature of the Colored Petri Nets. Nevertheless, all the trials generate 
the same number of Leaf-Level Threads, which is 24 threads, that is exactly matched the number of elements in the 
C Matrix.  

One of the major differences that distinguishes this study from the previous studies in [12-15] is the way of stealing.  
Blumofe and Leiserson [3] have built their algorithm on the basis of allowing the thief core choose its victim in a 
random manner. Consequently, the thief core steals threads from the selected victim core. This scenario has been 
followed by the subsequent researches. However, the MSS in this study as the schedulers in [12-15] are in charge of 
this mission. In other words, we present a centralised unit (MSS) that is responsible of controlling threads movement 
among the core. As the number of cores per chip increases, we may reach to the level of having several thousands of 
cores on a single chip. The management of this number of cores needs to be controlled. As a result, having a random 
method in choosing cores may no longer suit this advancement in computer architecture. The MSS can deal with any 
number of cores. It is a scalable scheduler that can concurrently redistribute threads among the modelled cores 
regardless of the type of problems in which those cores are involved. That is, the scheduler can be used to solve any 
Divide and Conquer problem.  

The MSS has been designed to solve the limitations founded in the previous schedulers [12-15]. The scheduler in 
[12, 13] was designed to assign only a single for each thief core while in the MSS more than one threads can be 
assigned to each thief core at the same time. In addition, in [12, 13], the chosen victim core may not be the best 
choice since the searching for it is done serially, as a result, threads are extracted from the first encountered victim 
core. This will extend the time needed to balance the number of threads because we have to repeat the process of 
balancing several times while in the MSS we achieve balancing from the first trial. In [14], we partially solved the 
wasted time problem in [12, 13] through searching for the richest core first. However, in certain cases, the richest 
core itself may be at the end of the cores list. Although that [14] shows a better performance than [12, 13], yet it 
doesn’t satisfy our need for a significant change. In [15], we presented a partial multi stealing scheduler that focuses 
on wealthy victim cores and thief cores only. The poor victim cores have been execluded. Compared with MSS, the 
presented partial multi stealing scheduler consumes less time, however, this can be seen as a special case. However, 
the MSS is more general and it is adequate with any situation of threads distribution. 

The result of reallocating is fair enough. However, we may see that those cores that come first in order may get extra 
threads but no more than one extra thread per core. This is due to the additional number of threads that remains after 
redistributing the majority number of them. 

The entire Local Threads Schedulers (LTSs) and Multipliers are working concurrently. At any moment, in any core, 
we may find both the LTS and the Multiplier working at the same time or only one of them is functioning; this is 
due to the availability of Normal and Leaf-Level threads in the core.  

The computation of the parameters: StartRow, EndRow, StartColumn, and EndColumn in Fig. 4, greatly increased 
the independence in computing the elements of the resulted matrix (C Matrix). Starting from the root, the LTS 
generates distinct, independent, and dividable/non-dividable threads that are able to be reallocated by the MSS. 

In the LTS, the ability to divide a single Normal thread into four Normal Threads has highly minimised the time 
needed in reaching Leaf-Level threads.  This can be a starting point to generate eight, sixteen, or more threads 
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directly. However, this will depend on the size of the problem itself. In addition, the LTS algorithm will have more 
steps to facilitate the direct generation of eight threads, sixteen threads, etc. Anyway, the generation of more than 
two threads in one step has no doubt improved the performance of the model. 

The Guarding Mechanism that we added to the model easily freezes the activities for LTSs and Multipliers when 
there is a need to reallocate threads. The two types of Guards: LTS Guard and Multiplier Guard test the sizes of the 
lists of threads represented as GuardsValue, and then decide whether they should activate or deactivate the 
transitions.  In case there is a need for reallocating the threads, the entire actions of the core are disabled by the 
Guards, i.e. the cores are no longer be able to divide threads and multiply rows by columns. This will leave no 
choice to the model other than reallocating the threads and then unlocking other activities.  

We can classify the results in Table 2-A into the following groups: 

••••Group 1 (MSS Distributions’ Steps): The MSS has been activated in the following steps 2, 23, 37, 39, 43, 49, 51, 
and 62 (subtotal is 8 steps). The steps clearly showed the reallocating of threads among the modelled cores using 
MSS (Fig. 2). 
 
••••Group 2 (Normal Threads Generations’ Steps): The generation of 4 / 2 /1 normal thread(s) have been taken 
place in the steps: 1, 3, 4, 6, 14, 15, 18, 26, 31, 32, 46, 53, and 54 (subtotal is 13 steps). 
 
••••Group 3 (Leaf-Level Threads Generations’ Steps): Leaf-Level Threads are created in the steps: 5, 7, 9, 11, 16, 
17, 19, 22, 27, 29, 33, 34, 35, 36, 38, 42, 48, 50, 55, 59, 61, 64, 66 and 67 (subtotal is 24 steps). 
 
••••Group 4 (Multipliers Actions’ Steps): The process of computing new C Matrix elements occurred in the steps: 8, 
10, 12,13, 20,21, 24, 25, 28, 30, 40, 41, 44, 45, 47, 52, 56, 57, 58, 60, 63, 65, 68 and 69 (subtotal is 24 steps). 

In Table 2-B, all the possible transitions that can occur concurrently are grouped together. It is clear that some 
transitions can be run at the same time with other transitions. Only thirty-six steps are needed to achieve the same 
task. For instance, in step 25 (Table 2-B), five transitions can be executed at the same time in any sequence. Prior to 
this step, we had four Leaf-Level threads, thus any one of the three Multipliers can be executed in any sequence. 
LTS-Core1 generates four Normal threads while LTS-Core2 generates a single Leaf-Level thread. All the above 
actions can be done in any sequence, and at the same time, without interfering between each other. However, in 
other steps, certain actions have to be done individually as in step number one (only Core 1 has a thread), also in 
step number four where LTS-Core2 has previously executed concurrently with LTS-Core3 in step 3, and the same 
transition (LTS-Core2) has been chosen again by the simulator in step five. Thus it has to be executed individually 
since it cannot execute the same transition twice at the same time. In addition, all the MSS have to be executed 
individually. 

Adding more cores will no doubt decrease the number of steps especially when we improve the LTS algorithm to 
generate eight or more threads in one step. This will definitely increase the number of possible concurrent transitions 
among the modelled cores.  However, any increase in the number of cores should be accompanied with an increase 
in generating more threads in one step. The reason is that adding more cores without a suitable increase in threads 
will make some cores idle even after applying the MSS.  

7.0 CONCLUSION 

In this study, we introduce a new Colored Petri Nets model for solving Divide and Conquer problems on a multicore 
environment. The model is scalable, i.e. it can be easily expanded by adding more cores. In addition, the model is 
concurrent and it uses multithreaded in scheduling the activities of the cores. Two new schedulers have been 
developed to achieve the mission of the model. The Multi Stealing Scheduler effectively redistributes threads among 
the modelled cores through stealing more than one thread from different cores and redistributing them among the 
idle cores. The Multi Stealing Scheduler is an open technique; it can be used to control threads distribution for any 
Divide and Conquer problem. The Local Threads Scheduler manages threads creation, division, and cooperating 
with Multi Stealing Scheduler in reallocating threads.  In addition, the Local Threads Scheduler provides a new 
recursive approach in getting the necessary information to multiply two matrices. Besides the two schedulers, we 
have developed a new mechanism that controls the activation of the model’s elements. The Guard mechanism 
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proves its efficiency in enforcing the Multi Stealing Scheduler to redistribute the threads among the modelled cores 
when there is a need. This has greatly reduced the time some cores being in an idle situation as in the previous 
studies that used Work Stealing technique. The result of the simulation shows a high percentage of concurrency 
among the different actions of the model. 
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