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ABSTRACT 

Accumulation of data in electronic format is increasing at an exponential rate. Valuable transaction data will 

remain static and unexploited until analyzed to acquire knowledge. This work aims at enhancing a data mining 

technique called Metapattern generation. Domain knowledge is exploited in our approach and integrated with an 

existing Data Mining algorithm to generate interesting patterns that were not generated by the existing traditional 

techniques. Furthermore, new techniques are employed to enable the original algorithm to cope with incremental 

data. 
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1.0 INTRODUCTION 

Data mining, often referred to as Knowledge Discovery in Databases (KDD), deals with pattern recognition and 

creating knowledge models. It describes a multidisciplinary field of research that includes machine learning, 

statistics, database technology, rule based systems, neural networks, and visualization. Looking at the practical use 

of data mining and knowledge acquisition, the discovered data can be applied to information management, query 

processing, decision making, process control, and many other applications [2,4,11]. Several applications in 

information providing services, such as electronic libraries, on-line services, and World Wide Web have used 

mining to better understand user behavior so as to enhance the services provided and increase business 

opportunities. 

 

In this work we will concentrate on a technique called Metapattern generation [8,9,12,13]. The standard Metapattern 

Generator algorithm is improved and considerably modified by integrating it with Induced Functional 

Dependencies, Join dependencies and foreign dependencies. This integration enhances the generation of transitive 

patterns and also makes the generation of non-transitive patterns possible. 

2.0 THE ORIGINAL METAPATTERN GENERATOR 

Classification algorithms require considerable user interference and lack proper knowledge representation as they 

generate structures that are hard to understand. Such algorithms are also time consuming. The new approach focuses 

on minimizing the user interference and generating interesting Value Sensitive rules [9,14,16]. Classification 

algorithms usually generate decision trees instead of implication rules. Although this kind of algorithms were 

applied and used in more than one domain and generated acceptable results, it has many drawbacks as it requires 

considerable user interference and lacks proper knowledge representation as it generates structures that are hard to 

understand. Such algorithms are also too time consuming.  

The meta pattern generation algorithm extends applicability to intelligent retrieval planning and record/case 

clustering in record/case-based systems. To achieve this, we make use of the unsupervised learning and integrated 

knowledge discovery systems. Integrated knowledge discovery systems integrate Induction, Deduction, and human 

external knowledge in an iterative discovery loop [3, 4, 5, 6, 9,10]. 

Metapattern is proposed as a template or a second order expression in a language (L) that describes a type of pattern 

to be discovered. A metapattern is a generalization of similar patterns. It is expressed in form of predicates where 

predicate names generalize table names and predicate parameters generalize attribute names. For example the 

metapattern 
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P (X, Y) ^ Q (Y, Z)  R (X, Z), 

 

specifies that the patterns to be discovered are transitive. The result of executing a metapattern is a set of patterns 

whose left-hand sides are instantiated forms of the left-hand side of the metapattern, and whose right-hand sides are 

the results of the corresponding metapattern action. 

 

In fact the more precise formulation of the above metapattern is: 

 

P (X, Y)^Q (Y, Z)  CompStrength(R (X, Z)) 

 

CompStrength(R (X, Z)) is an action that computes the strength of the pattern. Each pattern is evaluated against the 

database Udb by two values:  

 

The Strength value PS, which is the probability of seeing the right hand side of p being true when the left-hand 

side of p is true. Based on “Laplace’s Rule of succession” [1], the strength value of p can be computed as: 

 

ps = Prob(RHS|LHS, Udb , IO) = (|SRHS|+1) / (|SLHS|+2) 

 

The Base value Pb, which estimates how likely the left-hand side of p occurs in databases that have the same 

schema of Udb is estimated by the following formula: 

 

pb = (|SLHS|) / DOM (LHS) 

 

where LHS represents the left-hand side of p, RHS the right-hand side of p, SLHS the set of tuples in Udb that satisfy 

LHS, SRHS the set of tuples in SLHS that satisfy RHS, DOM (LHS) is the product of sizes of the tables that appear in 

LHS and IO is the assumption that the prior distribution of SRHS in SLHS is uniform. Intuitively, this ps value is the 

probability of seeing a tuple that satisfies RHS given the condition that the tuple satisfies LHS [12].  

A pattern is said to be “interesting” only if its strength is within the user-specified threshold. It is said to be plausible 

if the base is above the user-specified threshold. When ps s or ps 1-s, the pattern is accepted. Otherwise, if the base 

value is still above its threshold (i.e., pb b), then the pattern is considered plausible. 

2.1 The Original Algorithm 

The metapatterns are generated based on the data and the patterns. Humans will calibrate the generated metapatterns 

based on their external knowledge. The system should provide suggestions and feedback of metapatterns so that 

experts can discover new knowledge and try better metapatterns. For this purpose, the metapattern-based discovery 

loop was developed in [9,13,14,16]. 

 

The original metapattern generator looks for overlaps between attributes of different tables. The overlap is measured 

in terms of finding the ratio of the intersection of values in the underlying database of the two columns. Given two 

columns Cx and Cy, the overlap is defined as follows [7,9]: 

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |),   (1) 

where Vx and Vy are the value sets of Cx, and Cy respectively. If the computed overlap is greater or equal to the user 

defined threshold, then a reference is created for the two columns and inserted to a table called a Significant 

Connection Table (SCT). The SCT is then tested for finding cycles with alternating edges. Out of the found cycles 

the transitive metapatterns are generated. The algorithm can be outlined as follows: 

 

 

Procedure MetaPatternGenerator (D as DataBase, S as Schema, o, b, s as Threshold) 

 

D is the underlying database 

S is the schema of the database 

o, b, and s are the user defined overlap, base and strength thresholds respectively 

For each two columns Cx & Cy from different tables 

 

If Cx & Cy are of the same type then 
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OL = Overlap (Cx, Cy) 

 

If OL >= o then 

Add the term of these attributes to Significant Connection Table 

 

End For 

 

Find Cycles in the graph that can be generated from the Significant Connection Table. 

Generate MetaPatterns from the generated cycles. 

 

End. 

 

Based on the above presentation, the algorithm for the pattern generation in the automated discovery loop can be 

outlined as follows: 

 

Procedure PatternGenerator (s,b as threshold) 

 

M: = MetaPatternGenerator (D,S,o,b,s) 

 

Loop 

 Order and Display M; 

 Let User examine, create, and reorder M; 

 Select m from M; 

 For each Pattern p instantiated from m; 

   

 Compute the strength value Ps and the base value Pb; 

 If Ps>= s or Ps <= 1-s then 

  Output (p); 

 Else if Pb>= b then 

 Select a set C of constraints for p; 

 

 Create new metapattern by adding the constraint to the left-hand side of p; 

 Insert the new mettapattern to M; 

Until M is empty or the user aborts the process; 

2.2 The Computational Complexity Of The Metapattern Generator 

First, the computation cost of the overlap defined above is O (p
2
), where p is the cardinality of the table. Since, we 

have n
2
 overlaps to be computed, where n is the number of attributes, it follows that the time complexity of 

computing all overlaps is O (p
2
n

2
).  

 

After generating the SCT or the graph, the algorithm looks for cycles in the graph. The graph generated has at most 

n
2
 nodes. Finding cycles in the graph can be solved either using the Warshall’s or Strassen’s algorithms [18]. 

Warshall’s algorithm solves the problem in O (m
3
). Strassen’s algorithm solves it in O (m 

2.81
), where m is the 

number of nodes [14,15]. 

 

In our case, the number of nodes in the graph is n
2
, where n is the number of attributes. When substituting m for n

2
, 

we obtain the time complexity of finding cycles in terms of attributes. Thus, the problem is solved in O (n
2*2.81

) or O 

(n
5.62

). This means that the computational complexity of generating metapatterns is O (p
2
n

2
) + O (n

5.62
) 

 

The maximum number of metapatterns that can be generated from n attributes is n
2
 and the maximum length of a 

metapattern is n
2
. From each metapattern of length n

2
, we can generate n

2
 patterns.  

 

Each pattern of length L requires L joins to test its strength. The length of the pattern is the same as its metapattern 

length. This means that the pattern length L is n
2
. Since the join operation is recursive over the whole pattern, the 

cost of these joins is p
n

2
. The worst case has an order of n

4
p
n

2
. 

Therefore, the computational complexity of whole algorithm is given by: 
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O (p
2
n

2
) + O (n

5.62
)+ O (n

4
p
n

2
) = Max (O (n

4
p

n
2

), O (n
5.62

)) 

3.0 THE NEW ALGORITHM  

As evident from our experimentation on the traditional metapattern generation technique and by tracing the steps of 

the algorithm in [14, 15], the original algorithm can be enhanced in both performance efficiency and in the quality of 

the generated metapatterns. The main observation is that the traditional algorithm does not make use of domain 

knowledge and is incapable of generating patterns over sub-domains. It only generates transitivity patterns that hold 

over the whole underlying domain. Furthermore, the algorithm in its present form is impractical partially because it 

is incapable of updating previously generated metapatterns. Another drawback is that the evaluation of the patterns 

against the underlying database mainly relies on carrying out joins among several tables.  

 

By incorporating the domain knowledge and exploiting existing data dependencies, we are able to generate 

transitivity patterns, pseudo-transitive patterns, additive patterns and extended transitive patterns that the original 

algorithm is not able to generate. 

 

Since patterns can be defined over sub-domains rather than over a whole domain, we make use of value sensitive 

dependencies and incorporate the idea of finding overlaps in sub domains to generate value sensitive or class based 

patterns.  

 

Not only Domain knowledge is used in our new approach to generate previously non-generated patterns, but also it 

is used to deduce overlaps. Given the Foreign dependencies, we can deduce some overlapping attributes without 

computing the overlap. This is explained in details in section 3.1. 

 

In the original algorithm, each pattern is evaluated against the underlying database. This evaluation can be achieved 

by joining tables instantiated in the pattern over the overlapping attributes. To minimize this cost, we have 

developed a new way that reduces vastly the high cost of joining tables with very large instances. The algorithm is 

detailed in the Appendix. 

3.1 Deducing Overlaps From Functional Dependencies 

 

Functional dependencies can be used to deduce Foreign dependencies or overlaps. Given two attributes Cx, and Cy 

then the overlap between the two attributes is defined as follows: 

 

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |), 

 

where Vx and Vy, are the value sets of Cx, and Cy respectively. 

 

The computation requires an equi-join between the two tables over the values Vx and Vy. To avoid such joins, in 

some cases, we can make use of Domain Knowledge and functional dependencies.  

 

To illustrate, we give the following example. 

Let OL be the user defined threshold and given the relation R (A, B, C, D, E) with the following dependencies 

  

 A → B, C 

 

 AD → E 

 

When normalizing, R will be decomposed into R1 (A, B, C) and R2 (A, D, E). Since in R2 A is a foreign key, we 

can state the following: 

 

ValueSet (R2.A)⊆ ValueSet (R1.A)⇒ ValueSet (R2.A)⋂ ValueSet (R1.A) =ValueSet (R2.A) (1) 

 

Let Cx = R1.A and Cy = R2.A and let Vx = ValueSet (R1.A) and Vy = ValueSet (R2.A). Substituting the values in 

this last equation we obtain Vy⊆ Vx⇒ Vy⋂ Vx = Vy. Then, in this particular case of Vy⋂ Vx = Vy, we can substitute 
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the deduced value in the overlap equation. Thus, the overlap between two columns Cx and Cy can now be computed 

as: 

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |) 

 

= Max (|Vy| / | Vx |, |Vy| / | Vy |) 

 

= Max (|Vy| / | Vx |, 1) 

 

= 1 since (|Vy| / | Vx |) ≤ 1 

 

Since Overlap (Cx, Cy)=1 and 0 ≤ OL ≤ 1 then Overlap (Cx, Cy) ≥ OL, this means that in the case of foreign keys the 

overlap is always equal to 1, which is the maximum value an overlap can have.  

3.2 Computation of A Pattern Strength 

Given the pattern T1 (X1, Y1)T2 (X2, Y2)…Tn (Xn, Yn)Tm (Xm, Ym) and Yi overlaps Xi+1, then the only way to 

compute the strength and confidence of the LHS is to make a join between tables T1… Tn, over the overlapping 

attributes. In essence, we are not interested at this stage in computing the strength using the resulting set of records, 

but rather interested in the count of the resulting set instead. Consequently, we have derived a simple way to 

compute |SLHS| such that the computational complexity is reduced.  

 

The new algorithm will find the number of distinct occurrences of values of the column T1.Y1 and put the resulting 

tuples in a temporary table or view, which we call Tcnt1. The next step is to do a join between Tcnt1 and T2 over 

Tcnt1.Y1and T2.X2 and compute the resulting distinct occurrences of T2.Y2. The resulting tuples then overwrite Tcnt. 

This action is done iteratively until we reach Tn-1. On Tn, we do the same operation we did on T1 and put the 

resulting set of records in Tcntn. Finally, for computing the cardinality of SLHS is done by computing the sum of the 

product from Tcnt1 and Tcntn. 

 

The main enhancement in this algorithm is that we are always joining a relatively small table with a very large table. 

In other words, the number of tuples in Tcnt1 is always less or equal to the number of values in the domain of the Yi 

attribute. The cardinality of SLHS can thus be computed by the following algorithm (figure 1): 

 

Function S_lhs (T1 (X1, Y1)^T2 (X2, Y2)^…^Tn (Xn, Yn)): integer 

Tcnt1, Tcntn, Tmp = table 

Begin 

 If n = 1 then S_lhs = Select Count (*) from T1; 

 Else 

  Tcnt1 = Select Y1, Count (*) as Cnt1 From T1 Group by Y1 

  Tcntn = Select Xn, Count (*) as Cntn From Tn Group by Xn 

  For i =2 to n-1 do  

   Tmp=  Select Ti.Yi, Sum (Tcnt1.Cnt1) as Cnt1 

    From Tcnt1, TiWhere Tcnt1.Y1= Ti XiGroup by Ti.Yi 

   Tcnt1=Tmp 

  End for 

  S_lhs = select sum (Cnt1*Cntn) from Tcnt1, Tcntn where Tcnt1.Y1= Tcntn.Xn 

 End if  

End 

 

 

Function S_lhs (T1 (X1, Y1)^T2 (X2, Y2)^…^Tn (Xn, Yn)): integer 

Tcnt1, Tcntn, Tmp = table 

Begin 

 If n = 1 then S_lhs = Select Count (*) from T1; 
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 Else 

  Tcnt1 = Select Y1, Count (*) as Cnt1 From T1 Group by Y1 

  Tcntn = Select Xn, Count (*) as Cntn From Tn Group by Xn 

  For i =2 to n-1 do  

   Tmp=  Select Ti.Yi, Sum (Tcnt1.Cnt1) as Cnt1 

    From Tcnt1, Ti Where Tcnt1.Y1= Ti Xi Group by Ti.Yi 

   Tcnt1=Tmp 

  End for 

  S_lhs = select sum (Cnt1*Cntn) from Tcnt1, Tcntn where Tcnt1.Y1= Tcntn.Xn 

 End if  End 

Fig. 1: Computing |SLHS| algorithm 

For example, let us take the following transitive pattern generated from the database in figure 2. We will use the 

database example to illustrate the computation of the cardinality of the left-hand side in T3 (C31, C32)T1 (C11, 

C12)T4 (C43, C43)T2 (C21, C23) 

cnt1 c32  c11 c12  c43 cnt3 

2 kk  jj 5  4 5 

2 ll  nn 5  5 6 

5 mm  ll 7  6 1 

3 oo  qq 5  7 2 

   kk 5    

   pp 4    

   mm 2    

   nn 4    

   kk 4    

   nn 5    

 

 

  cnt2 c12    

  5 2    

  2 4    

  2 5    Result 

  2 7    26 

 

Fig.2: An example for computing |S LHS| 

3.2.1 The Computational Complexity 

Let the table Ti have pi tuples and the view Tcntn be defined as Tcntn = Select Xi, Count (*) as Cntr from Ti group 

by Xi. Also let the number of tuples in Tcntr = r, where r<<p and the number of tuples in Tcnt1 = q where q <<p. 

Because of using a Group By, the data selected is sorted implicitly. Thus the complexity of the first select statement 

is O (p1log p1) and the second is O (pnlog pn). The cost of the select statement within the loop is O (qipi log qipi). For 

simplicity, assume that p = p1= p2=…=pn and q = q1= q2=…=qn then the computational cost of the entire loop is O 

(nqplog qp). Also, the cost of the last select statement is O (riqn). As a result, the time complexity of the whole 

algorithm is as follows: 
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O (p1log p1)+O (pnlog pn)+O (nqplog qp)+O (riqn). This is O (nqplog qp). 

 

In the worst case where q = p, the time complexity is O (np
2
 log p

2
)<< O (p

n
), the original time complexity of 

computing |SLHS|. 

3.3 Incremental Updating Of Discovered Patterns 

In our approach, incremental updating techniques are developed for efficient maintenance of discovered rules in 

databases with data insertion. The major idea is to reuse the computed overlaps and strengths of each pattern. Our 

new techniques are described in the following sections. 

 

3.3.1 Computing the Overlap For Incremental Metapattern 

Given two attributes Cx and Cy , the overlap between the two attributes is given by: 

 

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |) [17,18], 

 

where Vx and Vy, are the values of Cx and Cy respectively. 

 

Let V′x be the values added to Cx. 

 

Let V′y be the values added to Cy. 

 

New Overlap (Cx, Cy) =  

 

Max (|(Vx∪ V′x) ⋂ (Vy∪ V′y)| / |(Vx∪ V′x)|, |(Vx∪ V′x) ⋂ (Vy∪ V′y)| / |(Vx∪ V′x)|). 

 

Computing the overlap for every set of updates is very expensive since Vx and Vy are very large sets of tuples. By 

using the distributive law: 

 

(Vx∪ V′x) ⋂ (Vy∪ V′y)= (Vx⋂ Vy) ∪ (Vx⋂ V′y) ∪ (Vy⋂ V′x) ∪ (V′x⋂ V′y), and instead of computing (Vx⋂ Vy) after 

each set of updates, we will only compute (Vx⋂ V′y), (Vy⋂ V′x), and (V′x⋂ V′y). The first two intersections are 

between a large set and a small set. The last one is an intersection between two small sets.   The main save here is 

that  (Vx⋂ Vy) is computed just once. 

3.4 Generating Dependency Aided Patterns 

By introducing dependencies as one kind of domain knowledge, the algorithm will be able to generate new form of 

rules that the original algorithm was not able to generate. The dependencies will be used to guide the algorithm in 

the generation process. The dependencies that can be exploited are Functional Dependencies, Induced 

Dependencies, Value Sensitive Induced Dependencies, Weak Induced Dependencies [6], Join Dependencies [6].  

 

By removing unimportant attributes, we are not only minimizing the number of attributes that the dependency 

generator will run over but also minimizing the possibility of generating uninteresting rules. Unimportant attributes 

are likely to result in rules with no predictive value. 

 

Interesting patterns are not necessarily transitive and our approach seeks to uncover interesting hidden patterns, 

whether transitive or not, which the original algorithm fails to generate. In the following part, we discuss the new 

types of patterns generated. These are Pseudo transitive, Additive, Extended transitive and Relational. 

 

The original algorithm has several drawbacks even when generating transitivity patterns. It uses no criteria except 

the overlap for the selection of the attributes. As a result, many attributes could be selected that will result in patterns 

that have no predictive value. We can overcome this weakness by selecting attributes using the interdependency 

measure. 
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Again, only attributes that are functionally interdependent are selected. And for consistency with Functional 

interdependency, foreign interdependency is used in our approach instead of overlap. The following is the definition 

of the two different kinds of interdependencies 

 

DEFINITION- Foreign Interdependency. Let r be a nonempty (base or view) relation defined on R and let X and 

Y be subsets of attributes from R. A Foreign interdependency XY between X and Y exists in r if: 

XY (k) and Y  X (k’) are weak Foreign dependencies and k or k’ is above the user-defined threshold  

 

DEFINITION- Functional Interdependency. Let r be a nonempty (base or view) relation defined on R and let X 

and Y be subsets of attributes from R. A functional interdependency XY between X and Y exists in r if: 

XY (k) and Y  X (k’) are weak functional dependencies and k or k’ is above the user-defined threshold  

 

In our approach, these two kinds of interdependencies are used in the generation process of both the transitive 

and non-transitive patterns that the original algorithm fails to generate. 

 

The compare function that compares the values of the attributes and returns the operator that has the highest 

number of tuples is defined as follows: 

 

Function compare (X3, X4): relational operator 

Max=0 

For all relational operators 

Op = operator 

Select count (*) from V1, V2, V3 

Where V1.X1= V2.X1 and V2.X2= V3.X2 

And V1.X3 Op V3.X4 

 

If count (*)>Max then 

Compare = Op 

Max = count(*) 

End If 

End For 

End. 

To illustrate, we consider the following table: 

Table 1 An Employee Database Example 

Emp ID Education Field Position Experience Salary 

1 Bac II Math Secretary 1 500 

2 Bac II Exp Cash Reg 2 600 

3 Bac II Math Cash Reg 2 600 

4 Bac II Phy Show Rm 3 650 

5 BS CompSc Programmer 1 750 

6 BS CompSc Programmer 2 850 

7 BA Business Sales 3 1000 

8 MS CompSc Analyst 2 1500 

9 MBA Business SalesMngr 1 1250 

10 MBA Intr Affairs Comunic 1 1000 

11 MS CompSc Proj Mngr 4 2000 

12 PhD CompSc GM 10 3500 

13 BacII Phy Sales 7 700 

 

From the example database in table 1, the UpdateDependencies function can find the following weak induced 

functional dependencies: 

 

PositionEducation [11/13]    WFD-1 
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Position, Experience Salary [13/13]  WFD-2 

Education, Experience Salary [11/13]    WFD-3 

 

If the weak dependency threshold is less or equal to 11/13 then the above weak induced dependencies will be 

accepted. After updating SDT and CRT tables, the Update (SCT) can implicitly generate views to compute foreign 

dependencies or overlaps. The views V1, V2, V3 correspond to the weak dependencies WFD-1, WFD-2, WFD-3 

respectively. 

V1 Education Position V2 Position Experience Salary 

 Bac II Secretary  Secretary 1 500 

 Bac II Cash Reg  Cash Reg 2 600 

 Bac II Cash Reg  Cash Reg 2 600 

 Bac II Show Rm  Show Rm 3 650 

 BS Programmer  Programmer 1 750 

 BS Programmer  Programmer 2 850 

 BA Sales  Sales 3 1000 

 MS Analyst  Analyst 2 1500 

 MBA SalesMngr  SalesMngr 1 1250 

 MBA Comunic  Comunic 1 1000 

 MS Proj Mngr  Proj Mngr 4 2000 

 PhD GM  GM 10 3500 

 BacII Sales  Sales 7 700 

V3 Education Experience Salary 

 Bac II 1 500 

 Bac II 2 600 

 Bac II 2 600 

 Bac II 3 650 

 BS 1 750 

 BS 2 850 

 BA 3 1000 

 MS 2 1500 

 MBA 1 1250 

 MBA 1 1000 

 MS 4 2000 

 PhD 10 3500 

 BacII 7 700 

Fig.3: Example for Database 

From the views V1, V2, V3 we have the following weak induced Foreign dependencies: 

V1.Position V2.Position [1] 

V2.Experience V3.Experience [1] 

V2.Salary V3.Salary [1] 

V3.Education V1.Education [1] 

 

From the above set weak functional and foreign dependencies we will deduce the following set of functional and 

foreign interdependencies. These interdependencies are inserted to the new SCT that can keep information about 

interdependencies as well as on dependencies.  

 

V1.Education V1.Position 

V1.Position V2.Position 

V2.Position, Experience V2.Salary 

V2.Experience V3.Experience 

V2.Salary V3.Salary 

V3.Education, Experience V3.Salary 

V3.Education V1.Education 

 

Based on the definition of pseudo transitive Patterns and for the above set of interdependencies the  
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Generate PseudoTransitive Metapatterns(DP) will generate the following metapattern: 

 

P (x, y)Q (y, z, w)R (x, z, w) and finally the GeneratePatterns(…) will generate the following pseudo transitive 

patterns: 

 

V1 (Education, Position)V2 (Position, Experience, Salary)  V3 (Education, Experience, Salary)  

Ps=17/19, Pb=19/169 

 

V1 (Education, Position)V3 (Education, Experience, Salary)  V2 (Position, Experience, Salary) 

Ps=21/31, Pb=31/169 

 

Additive  

 

From the example database in fig. 2, the Update Dependencies (D, S) will find the following weak induced 

functional dependencies: 

 

PositionEducation [11/13]     WFD-1 

PositionExperience [9/13]   WFD-2 

Education, Experience Salary [11/13] WFD-3 

 

If the weak dependency threshold is less or equal to 9/13 then the above weak induced dependencies will be 

accepted. After updating SDT and CRT tables, the Update (SCT) can implicitly generate views to compute foreign 

dependencies or overlaps. The vertical views V1, V2, V3 correspond to the weak dependencies WFD-1, WFD-2, 

WFD-3 respectively. 

 

The complete algorithm is presented in the Appendix. The following table illustrates a summarized comparison 

between the old and the new techniques where the merits of the new approach are clear: 

 

 

Database (size) Old metapatttern- number of 

generated rules  

(quality, time in sec) 

Newmetapatttern number of 

generated rules (quality, time) 

 

Randomly generated (500 MB) 42(50%, 4.4*60) 68(89%, 2.24*60) 

Randomly generated (990 MB) 51(58%, 5.61*60) 69(91%, 2.92*60) 

National Bank of Kuwait mock 

database (13 GB) 

62(61%, 17*60) 82(90%, 11.8*60) 

4.0 CONCLUSIONS 

This paper has presented a robust and efficient approach for generating metapatterns that builds on and improves on 

existing techniques in terms of performance and the quality of the generated metapatterns. The original metapattern 

generator is modified to exploit dependencies, such as Functional Dependencies and Foreign Dependencies, to 

generate patterns other than transitivity patterns. Experimental results have shown that with this approach pseudo-

transitive, additive, relational, and extended transitive patterns can be generated. This new form of patterns can now 

be generated by making use of domain knowledge and exploiting existing data dependencies. 

 

Another contribution of this work is the notion of generating value sensitive patterns. Since patterns can be defined 

over sub-domains rather than over a whole domain, the new approach will make use of value sensitive dependencies 

and incorporate the idea of finding overlaps in sub-domains to generate value sensitive patterns. Furthermore, 

current algorithms are incapable of updating previously generated metapatterns. A simple, yet effective, technique 
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has been developed to update the set of previously generated patterns. Another drawback of the traditional current 

algorithm is that the evaluation of the patterns against the underlying database mainly relies on carrying out joins 

between several tables. This threatens seriously the practical feasibility of the technique as the database increases in 

size. This has been overcome by using a new technique for evaluating the patterns against the underlying database. 

 

In the new algorithm, domain knowledge is not only used to generate previously non-generated patterns, but is also 

used to deduce overlaps. By deducing some of the overlapping attributes without computing the overlap we will 

improve the performance of the algorithm. 

 

The selection of attributes is also a vital issue in inductive learning. In the traditional algorithm, the only criterion 

for selecting an attribute is to have an overlap with another attribute from a different table. This kind of selection of 

attributes can result in patterns with no predictive value. In this work, for an attribute to be selected, it should be 

interdependent with another attribute in addition to the overlap. Moreover, in our approach an overlap between two 

attributes of the same table is possible. This notion enables us to generate patterns from denormalized databases that 

the original algorithm failed to generate. 
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APPENDIX 

THE SYNTHESIZED ALGORITHM 

Let us first make the following definitions: 

SDT = Sub-Domain Table (SD-Id, Table name, attribute name, Domain/Sub-domain) 

CRT = Cardinality Table (SD1, SD2, card (SD1 ∩ SD2)) SD1&SD2 are of the same Type 

SCT = Significant Connection Table 

RFN = Reference Name 

FD = Functional Dependencies 

ID = Induced Dependencies 

VSID = Value Sensitive Induced Dependencies 

WID = Weak Induced Dependencies 

JD = Join Dependencies 

 

Procedure DataMiner (D as DataBase, S as Schema, OT, b, s as threshold) 

D is the database instance 

S is the table schemas and integrity constraints 

OT the user defined overlap threshold 
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b is the user defined base threshold 

s is the user defined strength threshold 

The Dataminer is the main procedure that calls other procedures 

It makes use of dependencies both functional and induced. 

It looks for overlaps in sub domains that are in Sub-Domains Table (SDT). 

SDT: is as defined above keeps entries of attribute sub-domains with overlaps. 

DP1 is the set of defined functional and Foreign dependencies 

DP2 is the set of induced functional and foreign dependencies. 

M is the set of MetaPatterns 

Begin 

DP1 = GetDependencies (D, S) //reads dependencies defined at design time 

For each set of Updates 

DP2=Update Dependencies (D, S) 

DP=DP1 U DP2 

Update CRT (D, SDT) 

Update SCT (CRT, DP, OT) 

Generate MetaPattern (SCT) 

Generate Patterns (M, D, DP, b, s) 

End for 

End. 

 

Procedure Update Dependencies (D as DataBase, S as Schema, ) 

Tl is the user-defined threshold of the number of attributes appearing on the LHS of a dependency. 

Tr, Tb are the ratio and base thresholds respectively of the value sensitive dependency 

Tc is the confidence or strength threshold of the weak dependencies 

Each of the mentioned functions below will update the list of dependencies that reflect the under lying database 

after each set of updates. The functions will apply the definitions of the dependencies defined in previous sections. 

Begin 

Update (ID, Tl) // Updates Induced Dependencies with LHS length  Tl 

Update (VSID, Tr, Tb) // Updates Value Sensitive Induced Dependencies and outputs those with ratio and base 

above Tr, Tb 

Update (WID, Tc) // Updates Weak Induced Dependencies and outputs those with confidence above Tc 

Update (JD) // Updates Join Dependencies 

Update (SDT)// Updates this table with any new domains or sub-domains especially when new VSIDs are found 

End 

 

Procedure Update CRT (D as DataBase, SDT as table) 

D is the database instance 

SDT: is as defined above keeps entries of attribute sub-domains with overlaps. 
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Update CRT keeps an updated version of the intersection between any two sub-domains of the same type found in 

SDT. The purpose of this procedure is to keep the intersection between two sub-domains computed in previous 

runs and update it using the distributive law  

Begin 

For each two sub-domains of the same type in SDT 

Find Card (SD1 ∩ SD2) 

If record not found then 

Insert the record into CRT 

Else  

Update record in CRT 

End If 

End for 

End 

Procedure Update SCT (CRT as table, DP as Dependencies, OT as Threshold) 

CRT remembers the cardinality of the intersection between two sub-domains 

DP is the set of dependencies 

OT is the user defined Overlap Threshold 

Update SCT updates the Significant Connection Table, which keeps entries of interdependencies and not only 

overlapping sub-domains. 

It deduces overlaps from dependencies. 

It computes the overlap only for promising sub-domains after each set of updates. See section 3.3 

If no overlaps (foreign dependencys) were found between the whole domain of two attributes it searches for 

overlaps in the sub-domains. If patterns were then found for these attributes, Value Sensitive Patterns are then 

generated. 

Begin 

For the changes in dependencies 

Deduce Overlaps using ID and add an RFN to SCT for each 

Deduce Overlaps add an RFN to SCT for each 

Deduce Overlaps using JD and add an RFN to SCT for each 

End For 

 

For each two column sub-domains Cx& Cy in SDT from different views 

If Cx& Cy are of the same type then 

UL = Upper Limit (Cx, Cy). See section 3.3. 

If UL>= OT then 

OL =Overlap (Cx, Cy) 

If OL >= OT and not in SCT then 

Create RFN (Cx, Cy) and add to SCT 

Else  
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Search for new sub-domains where OL>= OT 

If any is found then 

Create a new sub-domain entry in the SDT 

Update CRT (D as DataBase, SDT as table) 

Create RFN (Cx, Cy) and add to SCT 

End if 

End if 

End if 

End For 

End. 

 

Procedure Generate MetaPattern (SCT as Table, DP as Dependencies) 

SCT is the Significant Connection Table. (Interdependency Table) 

DP is the set of dependencies. 

Generate the metapatterns with the help of interdependencies stored in SCT. 

Begin 

Generate Transitivity Metapattern(DP) // Searches for transitivity patterns 

Generate PseudoTransitive Metapattern(DP) Searches for Pseudo transitive  

Generate ExtendedTransitive Metapattern(DP) Searches for Extended transitive patterns  

Generate Additive Metapattern(DP) Searches for Additive patterns  

Generate Relational Metapattern(DP) Searches for Relational patterns  

End 

 

Procedure Generate Patterns (M as MetaPatterns, D as DataBase, DP as Dependencies, b, s as Threshold) 

M is the set of generated Metapatterns. 

D is the database instance. 

DP is the set of dependencies. 

b is the user defined base threshold 

s is the user defined strength threshold 

Ps = Prob(RHS|LHS, Udb, Io) = (|SRHS|+1) / (|SLHS|+2) 

Pb = (|SLHS|) / Dom(LHS) 

SLHS is the set of tuples in Udb that satisfy LHS. 

SRHS is the set of tuples in SLHS that satisfy RHS. 

Loop 

Order and Display M; 

Let User examine, create, and reorder M; 

Until M is empty or the user instructs to stop; 

End. 


