
Incremental dependency aided metapattern generator. pp149-163

149

Malaysian Journal of Computer Science. Vol. 25(3), 2012

INCREMENTAL DEPENDENCY AIDED

METAPATTERN GENERATOR

Issam A.R. Moghrabi

M.I.S Department,

 School of Business Administration,

 Gulf University for Science and Technology, Kuwait

Gulf University for Science and Technology P.O. Box 7207 Hawally 32093 Kuwait

Email: Moughrabi.i@gust.edu.kw

ABSTRACT

Accumulation of data in electronic format is increasing at an exponential rate. Valuable transaction data will

remain static and unexploited until analyzed to acquire knowledge. This work aims at enhancing a data mining

technique called Metapattern generation. Domain knowledge is exploited in our approach and integrated with an

existing Data Mining algorithm to generate interesting patterns that were not generated by the existing traditional

techniques. Furthermore, new techniques are employed to enable the original algorithm to cope with incremental

data.

Keywords: Data mining, database systems, metapatterns, association rules.

1.0 INTRODUCTION

Data mining, often referred to as Knowledge Discovery in Databases (KDD), deals with pattern recognition and

creating knowledge models. It describes a multidisciplinary field of research that includes machine learning,

statistics, database technology, rule based systems, neural networks, and visualization. Looking at the practical use

of data mining and knowledge acquisition, the discovered data can be applied to information management, query

processing, decision making, process control, and many other applications [2,4,11]. Several applications in

information providing services, such as electronic libraries, on-line services, and World Wide Web have used

mining to better understand user behavior so as to enhance the services provided and increase business

opportunities.

In this work we will concentrate on a technique called Metapattern generation [8,9,12,13]. The standard Metapattern

Generator algorithm is improved and considerably modified by integrating it with Induced Functional

Dependencies, Join dependencies and foreign dependencies. This integration enhances the generation of transitive

patterns and also makes the generation of non-transitive patterns possible.

2.0 THE ORIGINAL METAPATTERN GENERATOR

Classification algorithms require considerable user interference and lack proper knowledge representation as they

generate structures that are hard to understand. Such algorithms are also time consuming. The new approach focuses

on minimizing the user interference and generating interesting Value Sensitive rules [9,14,16]. Classification

algorithms usually generate decision trees instead of implication rules. Although this kind of algorithms were

applied and used in more than one domain and generated acceptable results, it has many drawbacks as it requires

considerable user interference and lacks proper knowledge representation as it generates structures that are hard to

understand. Such algorithms are also too time consuming.

The meta pattern generation algorithm extends applicability to intelligent retrieval planning and record/case

clustering in record/case-based systems. To achieve this, we make use of the unsupervised learning and integrated

knowledge discovery systems. Integrated knowledge discovery systems integrate Induction, Deduction, and human

external knowledge in an iterative discovery loop [3, 4, 5, 6, 9,10].

Metapattern is proposed as a template or a second order expression in a language (L) that describes a type of pattern

to be discovered. A metapattern is a generalization of similar patterns. It is expressed in form of predicates where

predicate names generalize table names and predicate parameters generalize attribute names. For example the

metapattern

mailto:Moughrabi.i@gust.edu.kw

Incremental dependency aided metapattern generator. pp149-163

150

Malaysian Journal of Computer Science. Vol. 25(3), 2012

P (X, Y) ^ Q (Y, Z)  R (X, Z),

specifies that the patterns to be discovered are transitive. The result of executing a metapattern is a set of patterns

whose left-hand sides are instantiated forms of the left-hand side of the metapattern, and whose right-hand sides are

the results of the corresponding metapattern action.

In fact the more precise formulation of the above metapattern is:

P (X, Y)^Q (Y, Z)  CompStrength(R (X, Z))

CompStrength(R (X, Z)) is an action that computes the strength of the pattern. Each pattern is evaluated against the

database Udb by two values:

The Strength value PS, which is the probability of seeing the right hand side of p being true when the left-hand

side of p is true. Based on “Laplace’s Rule of succession” [1], the strength value of p can be computed as:

ps = Prob(RHS|LHS, Udb , IO) = (|SRHS|+1) / (|SLHS|+2)

The Base value Pb, which estimates how likely the left-hand side of p occurs in databases that have the same

schema of Udb is estimated by the following formula:

pb = (|SLHS|) / DOM (LHS)

where LHS represents the left-hand side of p, RHS the right-hand side of p, SLHS the set of tuples in Udb that satisfy

LHS, SRHS the set of tuples in SLHS that satisfy RHS, DOM (LHS) is the product of sizes of the tables that appear in

LHS and IO is the assumption that the prior distribution of SRHS in SLHS is uniform. Intuitively, this ps value is the

probability of seeing a tuple that satisfies RHS given the condition that the tuple satisfies LHS [12].

A pattern is said to be “interesting” only if its strength is within the user-specified threshold. It is said to be plausible

if the base is above the user-specified threshold. When ps s or ps 1-s, the pattern is accepted. Otherwise, if the base

value is still above its threshold (i.e., pb b), then the pattern is considered plausible.

2.1 The Original Algorithm

The metapatterns are generated based on the data and the patterns. Humans will calibrate the generated metapatterns

based on their external knowledge. The system should provide suggestions and feedback of metapatterns so that

experts can discover new knowledge and try better metapatterns. For this purpose, the metapattern-based discovery

loop was developed in [9,13,14,16].

The original metapattern generator looks for overlaps between attributes of different tables. The overlap is measured

in terms of finding the ratio of the intersection of values in the underlying database of the two columns. Given two

columns Cx and Cy, the overlap is defined as follows [7,9]:

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |), (1)

where Vx and Vy are the value sets of Cx, and Cy respectively. If the computed overlap is greater or equal to the user

defined threshold, then a reference is created for the two columns and inserted to a table called a Significant

Connection Table (SCT). The SCT is then tested for finding cycles with alternating edges. Out of the found cycles

the transitive metapatterns are generated. The algorithm can be outlined as follows:

Procedure MetaPatternGenerator (D as DataBase, S as Schema, o, b, s as Threshold)

D is the underlying database

S is the schema of the database

o, b, and s are the user defined overlap, base and strength thresholds respectively

For each two columns Cx & Cy from different tables

If Cx & Cy are of the same type then

Incremental dependency aided metapattern generator. pp149-163

151

Malaysian Journal of Computer Science. Vol. 25(3), 2012

OL = Overlap (Cx, Cy)

If OL >= o then

Add the term of these attributes to Significant Connection Table

End For

Find Cycles in the graph that can be generated from the Significant Connection Table.

Generate MetaPatterns from the generated cycles.

End.

Based on the above presentation, the algorithm for the pattern generation in the automated discovery loop can be

outlined as follows:

Procedure PatternGenerator (s,b as threshold)

M: = MetaPatternGenerator (D,S,o,b,s)

Loop

 Order and Display M;

 Let User examine, create, and reorder M;

 Select m from M;

 For each Pattern p instantiated from m;

 Compute the strength value Ps and the base value Pb;

 If Ps>= s or Ps <= 1-s then

 Output (p);

 Else if Pb>= b then

 Select a set C of constraints for p;

 Create new metapattern by adding the constraint to the left-hand side of p;

 Insert the new mettapattern to M;

Until M is empty or the user aborts the process;

2.2 The Computational Complexity Of The Metapattern Generator

First, the computation cost of the overlap defined above is O (p
2
), where p is the cardinality of the table. Since, we

have n
2
 overlaps to be computed, where n is the number of attributes, it follows that the time complexity of

computing all overlaps is O (p
2
n

2
).

After generating the SCT or the graph, the algorithm looks for cycles in the graph. The graph generated has at most

n
2
 nodes. Finding cycles in the graph can be solved either using the Warshall’s or Strassen’s algorithms [18].

Warshall’s algorithm solves the problem in O (m
3
). Strassen’s algorithm solves it in O (m

2.81
), where m is the

number of nodes [14,15].

In our case, the number of nodes in the graph is n
2
, where n is the number of attributes. When substituting m for n

2
,

we obtain the time complexity of finding cycles in terms of attributes. Thus, the problem is solved in O (n
2*2.81

) or O

(n
5.62

). This means that the computational complexity of generating metapatterns is O (p
2
n

2
) + O (n

5.62
)

The maximum number of metapatterns that can be generated from n attributes is n
2
 and the maximum length of a

metapattern is n
2
. From each metapattern of length n

2
, we can generate n

2
 patterns.

Each pattern of length L requires L joins to test its strength. The length of the pattern is the same as its metapattern

length. This means that the pattern length L is n
2
. Since the join operation is recursive over the whole pattern, the

cost of these joins is p
n

2
. The worst case has an order of n

4
p
n

2
.

Therefore, the computational complexity of whole algorithm is given by:

Incremental dependency aided metapattern generator. pp149-163

152

Malaysian Journal of Computer Science. Vol. 25(3), 2012

O (p
2
n

2
) + O (n

5.62
)+ O (n

4
p
n

2
) = Max (O (n

4
p

n
2

), O (n
5.62

))

3.0 THE NEW ALGORITHM

As evident from our experimentation on the traditional metapattern generation technique and by tracing the steps of

the algorithm in [14, 15], the original algorithm can be enhanced in both performance efficiency and in the quality of

the generated metapatterns. The main observation is that the traditional algorithm does not make use of domain

knowledge and is incapable of generating patterns over sub-domains. It only generates transitivity patterns that hold

over the whole underlying domain. Furthermore, the algorithm in its present form is impractical partially because it

is incapable of updating previously generated metapatterns. Another drawback is that the evaluation of the patterns

against the underlying database mainly relies on carrying out joins among several tables.

By incorporating the domain knowledge and exploiting existing data dependencies, we are able to generate

transitivity patterns, pseudo-transitive patterns, additive patterns and extended transitive patterns that the original

algorithm is not able to generate.

Since patterns can be defined over sub-domains rather than over a whole domain, we make use of value sensitive

dependencies and incorporate the idea of finding overlaps in sub domains to generate value sensitive or class based

patterns.

Not only Domain knowledge is used in our new approach to generate previously non-generated patterns, but also it

is used to deduce overlaps. Given the Foreign dependencies, we can deduce some overlapping attributes without

computing the overlap. This is explained in details in section 3.1.

In the original algorithm, each pattern is evaluated against the underlying database. This evaluation can be achieved

by joining tables instantiated in the pattern over the overlapping attributes. To minimize this cost, we have

developed a new way that reduces vastly the high cost of joining tables with very large instances. The algorithm is

detailed in the Appendix.

3.1 Deducing Overlaps From Functional Dependencies

Functional dependencies can be used to deduce Foreign dependencies or overlaps. Given two attributes Cx, and Cy

then the overlap between the two attributes is defined as follows:

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |),

where Vx and Vy, are the value sets of Cx, and Cy respectively.

The computation requires an equi-join between the two tables over the values Vx and Vy. To avoid such joins, in

some cases, we can make use of Domain Knowledge and functional dependencies.

To illustrate, we give the following example.

Let OL be the user defined threshold and given the relation R (A, B, C, D, E) with the following dependencies

 A → B, C

 AD → E

When normalizing, R will be decomposed into R1 (A, B, C) and R2 (A, D, E). Since in R2 A is a foreign key, we

can state the following:

ValueSet (R2.A)⊆ ValueSet (R1.A)⇒ ValueSet (R2.A)⋂ ValueSet (R1.A) =ValueSet (R2.A) (1)

Let Cx = R1.A and Cy = R2.A and let Vx = ValueSet (R1.A) and Vy = ValueSet (R2.A). Substituting the values in

this last equation we obtain Vy⊆ Vx⇒ Vy⋂ Vx = Vy. Then, in this particular case of Vy⋂ Vx = Vy, we can substitute

Incremental dependency aided metapattern generator. pp149-163

153

Malaysian Journal of Computer Science. Vol. 25(3), 2012

the deduced value in the overlap equation. Thus, the overlap between two columns Cx and Cy can now be computed

as:

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |)

= Max (|Vy| / | Vx |, |Vy| / | Vy |)

= Max (|Vy| / | Vx |, 1)

= 1 since (|Vy| / | Vx |) ≤ 1

Since Overlap (Cx, Cy)=1 and 0 ≤ OL ≤ 1 then Overlap (Cx, Cy) ≥ OL, this means that in the case of foreign keys the

overlap is always equal to 1, which is the maximum value an overlap can have.

3.2 Computation of A Pattern Strength

Given the pattern T1 (X1, Y1)T2 (X2, Y2)…Tn (Xn, Yn)Tm (Xm, Ym) and Yi overlaps Xi+1, then the only way to

compute the strength and confidence of the LHS is to make a join between tables T1… Tn, over the overlapping

attributes. In essence, we are not interested at this stage in computing the strength using the resulting set of records,

but rather interested in the count of the resulting set instead. Consequently, we have derived a simple way to

compute |SLHS| such that the computational complexity is reduced.

The new algorithm will find the number of distinct occurrences of values of the column T1.Y1 and put the resulting

tuples in a temporary table or view, which we call Tcnt1. The next step is to do a join between Tcnt1 and T2 over

Tcnt1.Y1and T2.X2 and compute the resulting distinct occurrences of T2.Y2. The resulting tuples then overwrite Tcnt.

This action is done iteratively until we reach Tn-1. On Tn, we do the same operation we did on T1 and put the

resulting set of records in Tcntn. Finally, for computing the cardinality of SLHS is done by computing the sum of the

product from Tcnt1 and Tcntn.

The main enhancement in this algorithm is that we are always joining a relatively small table with a very large table.

In other words, the number of tuples in Tcnt1 is always less or equal to the number of values in the domain of the Yi

attribute. The cardinality of SLHS can thus be computed by the following algorithm (figure 1):

Function S_lhs (T1 (X1, Y1)^T2 (X2, Y2)^…^Tn (Xn, Yn)): integer

Tcnt1, Tcntn, Tmp = table

Begin

 If n = 1 then S_lhs = Select Count (*) from T1;

 Else

 Tcnt1 = Select Y1, Count (*) as Cnt1 From T1 Group by Y1

 Tcntn = Select Xn, Count (*) as Cntn From Tn Group by Xn

 For i =2 to n-1 do

 Tmp= Select Ti.Yi, Sum (Tcnt1.Cnt1) as Cnt1

 From Tcnt1, TiWhere Tcnt1.Y1= Ti XiGroup by Ti.Yi

 Tcnt1=Tmp

 End for

 S_lhs = select sum (Cnt1*Cntn) from Tcnt1, Tcntn where Tcnt1.Y1= Tcntn.Xn

 End if

End

Function S_lhs (T1 (X1, Y1)^T2 (X2, Y2)^…^Tn (Xn, Yn)): integer

Tcnt1, Tcntn, Tmp = table

Begin

 If n = 1 then S_lhs = Select Count (*) from T1;

Incremental dependency aided metapattern generator. pp149-163

154

Malaysian Journal of Computer Science. Vol. 25(3), 2012

 Else

 Tcnt1 = Select Y1, Count (*) as Cnt1 From T1 Group by Y1

 Tcntn = Select Xn, Count (*) as Cntn From Tn Group by Xn

 For i =2 to n-1 do

 Tmp= Select Ti.Yi, Sum (Tcnt1.Cnt1) as Cnt1

 From Tcnt1, Ti Where Tcnt1.Y1= Ti Xi Group by Ti.Yi

 Tcnt1=Tmp

 End for

 S_lhs = select sum (Cnt1*Cntn) from Tcnt1, Tcntn where Tcnt1.Y1= Tcntn.Xn

 End if End

Fig. 1: Computing |SLHS| algorithm

For example, let us take the following transitive pattern generated from the database in figure 2. We will use the

database example to illustrate the computation of the cardinality of the left-hand side in T3 (C31, C32)T1 (C11,

C12)T4 (C43, C43)T2 (C21, C23)

cnt1 c32 c11 c12 c43 cnt3

2 kk jj 5 4 5

2 ll nn 5 5 6

5 mm ll 7 6 1

3 oo qq 5 7 2

 kk 5

 pp 4

 mm 2

 nn 4

 kk 4

 nn 5

 cnt2 c12

 5 2

 2 4

 2 5 Result

 2 7 26

Fig.2: An example for computing |S LHS|

3.2.1 The Computational Complexity

Let the table Ti have pi tuples and the view Tcntn be defined as Tcntn = Select Xi, Count (*) as Cntr from Ti group

by Xi. Also let the number of tuples in Tcntr = r, where r<<p and the number of tuples in Tcnt1 = q where q <<p.

Because of using a Group By, the data selected is sorted implicitly. Thus the complexity of the first select statement

is O (p1log p1) and the second is O (pnlog pn). The cost of the select statement within the loop is O (qipi log qipi). For

simplicity, assume that p = p1= p2=…=pn and q = q1= q2=…=qn then the computational cost of the entire loop is O

(nqplog qp). Also, the cost of the last select statement is O (riqn). As a result, the time complexity of the whole

algorithm is as follows:

Incremental dependency aided metapattern generator. pp149-163

155

Malaysian Journal of Computer Science. Vol. 25(3), 2012

O (p1log p1)+O (pnlog pn)+O (nqplog qp)+O (riqn). This is O (nqplog qp).

In the worst case where q = p, the time complexity is O (np
2
 log p

2
)<< O (p

n
), the original time complexity of

computing |SLHS|.

3.3 Incremental Updating Of Discovered Patterns

In our approach, incremental updating techniques are developed for efficient maintenance of discovered rules in

databases with data insertion. The major idea is to reuse the computed overlaps and strengths of each pattern. Our

new techniques are described in the following sections.

3.3.1 Computing the Overlap For Incremental Metapattern

Given two attributes Cx and Cy , the overlap between the two attributes is given by:

Overlap (Cx, Cy) = max (|Vx⋂ Vy| / | Vx |, |Vx⋂ Vy| / | Vy |) [17,18],

where Vx and Vy, are the values of Cx and Cy respectively.

Let V′x be the values added to Cx.

Let V′y be the values added to Cy.

New Overlap (Cx, Cy) =

Max (|(Vx∪ V′x) ⋂ (Vy∪ V′y)| / |(Vx∪ V′x)|, |(Vx∪ V′x) ⋂ (Vy∪ V′y)| / |(Vx∪ V′x)|).

Computing the overlap for every set of updates is very expensive since Vx and Vy are very large sets of tuples. By

using the distributive law:

(Vx∪ V′x) ⋂ (Vy∪ V′y)= (Vx⋂ Vy) ∪ (Vx⋂ V′y) ∪ (Vy⋂ V′x) ∪ (V′x⋂ V′y), and instead of computing (Vx⋂ Vy) after

each set of updates, we will only compute (Vx⋂ V′y), (Vy⋂ V′x), and (V′x⋂ V′y). The first two intersections are

between a large set and a small set. The last one is an intersection between two small sets. The main save here is

that (Vx⋂ Vy) is computed just once.

3.4 Generating Dependency Aided Patterns

By introducing dependencies as one kind of domain knowledge, the algorithm will be able to generate new form of

rules that the original algorithm was not able to generate. The dependencies will be used to guide the algorithm in

the generation process. The dependencies that can be exploited are Functional Dependencies, Induced

Dependencies, Value Sensitive Induced Dependencies, Weak Induced Dependencies [6], Join Dependencies [6].

By removing unimportant attributes, we are not only minimizing the number of attributes that the dependency

generator will run over but also minimizing the possibility of generating uninteresting rules. Unimportant attributes

are likely to result in rules with no predictive value.

Interesting patterns are not necessarily transitive and our approach seeks to uncover interesting hidden patterns,

whether transitive or not, which the original algorithm fails to generate. In the following part, we discuss the new

types of patterns generated. These are Pseudo transitive, Additive, Extended transitive and Relational.

The original algorithm has several drawbacks even when generating transitivity patterns. It uses no criteria except

the overlap for the selection of the attributes. As a result, many attributes could be selected that will result in patterns

that have no predictive value. We can overcome this weakness by selecting attributes using the interdependency

measure.

Incremental dependency aided metapattern generator. pp149-163

156

Malaysian Journal of Computer Science. Vol. 25(3), 2012

Again, only attributes that are functionally interdependent are selected. And for consistency with Functional

interdependency, foreign interdependency is used in our approach instead of overlap. The following is the definition

of the two different kinds of interdependencies

DEFINITION- Foreign Interdependency. Let r be a nonempty (base or view) relation defined on R and let X and

Y be subsets of attributes from R. A Foreign interdependency XY between X and Y exists in r if:

XY (k) and Y  X (k’) are weak Foreign dependencies and k or k’ is above the user-defined threshold

DEFINITION- Functional Interdependency. Let r be a nonempty (base or view) relation defined on R and let X

and Y be subsets of attributes from R. A functional interdependency XY between X and Y exists in r if:

XY (k) and Y  X (k’) are weak functional dependencies and k or k’ is above the user-defined threshold

In our approach, these two kinds of interdependencies are used in the generation process of both the transitive

and non-transitive patterns that the original algorithm fails to generate.

The compare function that compares the values of the attributes and returns the operator that has the highest

number of tuples is defined as follows:

Function compare (X3, X4): relational operator

Max=0

For all relational operators

Op = operator

Select count (*) from V1, V2, V3

Where V1.X1= V2.X1 and V2.X2= V3.X2

And V1.X3 Op V3.X4

If count (*)>Max then

Compare = Op

Max = count(*)

End If

End For

End.

To illustrate, we consider the following table:

Table 1 An Employee Database Example

Emp ID Education Field Position Experience Salary

1 Bac II Math Secretary 1 500

2 Bac II Exp Cash Reg 2 600

3 Bac II Math Cash Reg 2 600

4 Bac II Phy Show Rm 3 650

5 BS CompSc Programmer 1 750

6 BS CompSc Programmer 2 850

7 BA Business Sales 3 1000

8 MS CompSc Analyst 2 1500

9 MBA Business SalesMngr 1 1250

10 MBA Intr Affairs Comunic 1 1000

11 MS CompSc Proj Mngr 4 2000

12 PhD CompSc GM 10 3500

13 BacII Phy Sales 7 700

From the example database in table 1, the UpdateDependencies function can find the following weak induced

functional dependencies:

PositionEducation [11/13] WFD-1

Incremental dependency aided metapattern generator. pp149-163

157

Malaysian Journal of Computer Science. Vol. 25(3), 2012

Position, Experience Salary [13/13] WFD-2

Education, Experience Salary [11/13] WFD-3

If the weak dependency threshold is less or equal to 11/13 then the above weak induced dependencies will be

accepted. After updating SDT and CRT tables, the Update (SCT) can implicitly generate views to compute foreign

dependencies or overlaps. The views V1, V2, V3 correspond to the weak dependencies WFD-1, WFD-2, WFD-3

respectively.

V1 Education Position V2 Position Experience Salary

 Bac II Secretary Secretary 1 500

 Bac II Cash Reg Cash Reg 2 600

 Bac II Cash Reg Cash Reg 2 600

 Bac II Show Rm Show Rm 3 650

 BS Programmer Programmer 1 750

 BS Programmer Programmer 2 850

 BA Sales Sales 3 1000

 MS Analyst Analyst 2 1500

 MBA SalesMngr SalesMngr 1 1250

 MBA Comunic Comunic 1 1000

 MS Proj Mngr Proj Mngr 4 2000

 PhD GM GM 10 3500

 BacII Sales Sales 7 700

V3 Education Experience Salary

 Bac II 1 500

 Bac II 2 600

 Bac II 2 600

 Bac II 3 650

 BS 1 750

 BS 2 850

 BA 3 1000

 MS 2 1500

 MBA 1 1250

 MBA 1 1000

 MS 4 2000

 PhD 10 3500

 BacII 7 700

Fig.3: Example for Database

From the views V1, V2, V3 we have the following weak induced Foreign dependencies:

V1.Position V2.Position [1]

V2.Experience V3.Experience [1]

V2.Salary V3.Salary [1]

V3.Education V1.Education [1]

From the above set weak functional and foreign dependencies we will deduce the following set of functional and

foreign interdependencies. These interdependencies are inserted to the new SCT that can keep information about

interdependencies as well as on dependencies.

V1.Education V1.Position

V1.Position V2.Position

V2.Position, Experience V2.Salary

V2.Experience V3.Experience

V2.Salary V3.Salary

V3.Education, Experience V3.Salary

V3.Education V1.Education

Based on the definition of pseudo transitive Patterns and for the above set of interdependencies the

Incremental dependency aided metapattern generator. pp149-163

158

Malaysian Journal of Computer Science. Vol. 25(3), 2012

Generate PseudoTransitive Metapatterns(DP) will generate the following metapattern:

P (x, y)Q (y, z, w)R (x, z, w) and finally the GeneratePatterns(…) will generate the following pseudo transitive

patterns:

V1 (Education, Position)V2 (Position, Experience, Salary)  V3 (Education, Experience, Salary)

Ps=17/19, Pb=19/169

V1 (Education, Position)V3 (Education, Experience, Salary)  V2 (Position, Experience, Salary)

Ps=21/31, Pb=31/169

Additive

From the example database in fig. 2, the Update Dependencies (D, S) will find the following weak induced

functional dependencies:

PositionEducation [11/13] WFD-1

PositionExperience [9/13] WFD-2

Education, Experience Salary [11/13] WFD-3

If the weak dependency threshold is less or equal to 9/13 then the above weak induced dependencies will be

accepted. After updating SDT and CRT tables, the Update (SCT) can implicitly generate views to compute foreign

dependencies or overlaps. The vertical views V1, V2, V3 correspond to the weak dependencies WFD-1, WFD-2,

WFD-3 respectively.

The complete algorithm is presented in the Appendix. The following table illustrates a summarized comparison

between the old and the new techniques where the merits of the new approach are clear:

Database (size) Old metapatttern- number of

generated rules

(quality, time in sec)

Newmetapatttern number of

generated rules (quality, time)

Randomly generated (500 MB) 42(50%, 4.4*60) 68(89%, 2.24*60)

Randomly generated (990 MB) 51(58%, 5.61*60) 69(91%, 2.92*60)

National Bank of Kuwait mock

database (13 GB)

62(61%, 17*60) 82(90%, 11.8*60)

4.0 CONCLUSIONS

This paper has presented a robust and efficient approach for generating metapatterns that builds on and improves on

existing techniques in terms of performance and the quality of the generated metapatterns. The original metapattern

generator is modified to exploit dependencies, such as Functional Dependencies and Foreign Dependencies, to

generate patterns other than transitivity patterns. Experimental results have shown that with this approach pseudo-

transitive, additive, relational, and extended transitive patterns can be generated. This new form of patterns can now

be generated by making use of domain knowledge and exploiting existing data dependencies.

Another contribution of this work is the notion of generating value sensitive patterns. Since patterns can be defined

over sub-domains rather than over a whole domain, the new approach will make use of value sensitive dependencies

and incorporate the idea of finding overlaps in sub-domains to generate value sensitive patterns. Furthermore,

current algorithms are incapable of updating previously generated metapatterns. A simple, yet effective, technique

Incremental dependency aided metapattern generator. pp149-163

159

Malaysian Journal of Computer Science. Vol. 25(3), 2012

has been developed to update the set of previously generated patterns. Another drawback of the traditional current

algorithm is that the evaluation of the patterns against the underlying database mainly relies on carrying out joins

between several tables. This threatens seriously the practical feasibility of the technique as the database increases in

size. This has been overcome by using a new technique for evaluating the patterns against the underlying database.

In the new algorithm, domain knowledge is not only used to generate previously non-generated patterns, but is also

used to deduce overlaps. By deducing some of the overlapping attributes without computing the overlap we will

improve the performance of the algorithm.

The selection of attributes is also a vital issue in inductive learning. In the traditional algorithm, the only criterion

for selecting an attribute is to have an overlap with another attribute from a different table. This kind of selection of

attributes can result in patterns with no predictive value. In this work, for an attribute to be selected, it should be

interdependent with another attribute in addition to the overlap. Moreover, in our approach an overlap between two

attributes of the same table is possible. This notion enables us to generate patterns from denormalized databases that

the original algorithm failed to generate.

REFERENCES

[1] R. Agrawal, and J. Shafer, “Parallel Mining of Association Rules,” IEEE Transactions on knowledge and

Data Engineering, Vol 8, No 6, December 1996, pp. 962-969.

[2] U. Fayyad, “Data Mining and Knowledge Discovery: Making Sense Out of Data.”, IEEE Expert, October

1996.

[3] U. Fayyad, G. Piatetsky-Shapiro, and P.Smyth, “ From Data Mining to Knowledge Discovery: An

Overview,” Advances in knowledge Discovery and Data Mining, MIT Press, Cambridge, Mass, 1996, pp.

1-36

[4] M. Holsheimer, A. Siebes, “Data Mining: The Search for Knowledge in Databases.’ Thesis Report,

Computer Science Department, Amesterdam, The Netherlands, 1994.

[5] IBM Corporation, “Data Management Solutions,” IBM’s Data Mining Technology, Stamford, Connecticut,

April 1996.

[6] M. Kantola, H. Mannila, K. Raiha and H. Siirtola, “Discovering Functional and Inclusion Dependencies in

Relational Databases,” Int’l J. Intelligent Systems, Vol. 7, 1992, pp. 591-607.

[7] M. Kantola, H. Mannila, K. Raiha, “Design by Example: An Application of Armstrong Relations,” J.

Computer Systems Science, vol. 40, no 2, 1986, pp. 126-141.

[8] G. Mao; X. Wu; X. Zhu; G. Chen; C. Liu, “Mining maximal frequent itemsets from data streams”, Journal of

Information Science, 2007, Vol. 33 Issue 3, p251-262.

[9] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A Fast Scalable Classifier For Data Mining,” Proc. Int’l

Conf. Extending Database Technology (EDBT’ 96), Avignon, France, 1996, pp. 68-74.

[10] S. Ryszard “A Theory And Methodology Of Inductive Learning” Machine Learning, an Artificial

Intelligence approach, Vol. 1. Morgan Kaufmann, San Mateo, California, 1983.

[11] Silberschatz, and A. Tuzhilin, “What Makes Patterns Interesting in Knowledge Discovery Systems,”

IEEE Transactions on Knowledge and Data Engineering, Vol. 8, no 6, Ded 1996, pp. 970-974.

[12] Wisse, P., “Metapattern: Context and Time in Information Models”, 1st edition, Addison-Wesley, 2000,

pp. 112-121.

[13] Wei-Min Shen, Bing Leng, “A Metapattern-Based Automated Discovery Loop For Integrated Data

Mining --Unsupervised Learning of Relational Patterns,” IEEE Transactions on Knowledge and Data

Engineering, Vol. 8, no 6, pp. 898-910, 1996.

Incremental dependency aided metapattern generator. pp149-163

160

Malaysian Journal of Computer Science. Vol. 25(3), 2012

[14] Wei-Min Shen, Bing Leng, “Metapattern Generation for Integrated Data Mining”, The 2nd International

Conference on KDD, Portland, Oregan, 1996.

[15] S. Yacout, M. Meshreki, H. Attia, “Monitoring and Control of Machining Process by Data Mining and

Pattern Recognition”, Sixth International Conference on Complex, Intelligent, and Software Intensive

Systems (CISIS), 2012, pp. 106-113.

[16] Yazici, and M. Sözat, “The Integrity Constraints for Similarity-Based Fuzzy Relational databases,” Int’l

J. Intelligent Systems, Vol. 13, 1998, pp. 641-659.

[17] Z. Zhao, J. Gao, H. Glotin, and X. Wu, “A Matrix Modular Neural Network Based on Task

Decomposition with Subspace Division by Adaptive Affinity Propagation Clustering”, Applied

Mathematical Modelling, 34(2010), 3884-3895.

[18] X. Wu, K. Yu, H. Wang, and W. Ding, “Online Streaming Feature Selection”, Proceedings of the 27th

International Conference on Machine Learning (ICML 2010), Haifa, Israel, June 21-24, 2010, 1159-

1166.

BIOGRAPHY

Issam Moghrabi is a Professor of M.I.S/CS at GUST and is currently the Director of the M.B.A Program. He is a

Fulbright Scholar and received several recognitions/awards for his achievements in research. He is a referee for

several journals and serves on the editorial board of well-known publications. His main research interests are

Database Systems, Nonlinear Programming, Data Mining and Information Retrieval.

APPENDIX

THE SYNTHESIZED ALGORITHM

Let us first make the following definitions:

SDT = Sub-Domain Table (SD-Id, Table name, attribute name, Domain/Sub-domain)

CRT = Cardinality Table (SD1, SD2, card (SD1 ∩ SD2)) SD1&SD2 are of the same Type

SCT = Significant Connection Table

RFN = Reference Name

FD = Functional Dependencies

ID = Induced Dependencies

VSID = Value Sensitive Induced Dependencies

WID = Weak Induced Dependencies

JD = Join Dependencies

Procedure DataMiner (D as DataBase, S as Schema, OT, b, s as threshold)

D is the database instance

S is the table schemas and integrity constraints

OT the user defined overlap threshold

Incremental dependency aided metapattern generator. pp149-163

161

Malaysian Journal of Computer Science. Vol. 25(3), 2012

b is the user defined base threshold

s is the user defined strength threshold

The Dataminer is the main procedure that calls other procedures

It makes use of dependencies both functional and induced.

It looks for overlaps in sub domains that are in Sub-Domains Table (SDT).

SDT: is as defined above keeps entries of attribute sub-domains with overlaps.

DP1 is the set of defined functional and Foreign dependencies

DP2 is the set of induced functional and foreign dependencies.

M is the set of MetaPatterns

Begin

DP1 = GetDependencies (D, S) //reads dependencies defined at design time

For each set of Updates

DP2=Update Dependencies (D, S)

DP=DP1 U DP2

Update CRT (D, SDT)

Update SCT (CRT, DP, OT)

Generate MetaPattern (SCT)

Generate Patterns (M, D, DP, b, s)

End for

End.

Procedure Update Dependencies (D as DataBase, S as Schema,)

Tl is the user-defined threshold of the number of attributes appearing on the LHS of a dependency.

Tr, Tb are the ratio and base thresholds respectively of the value sensitive dependency

Tc is the confidence or strength threshold of the weak dependencies

Each of the mentioned functions below will update the list of dependencies that reflect the under lying database

after each set of updates. The functions will apply the definitions of the dependencies defined in previous sections.

Begin

Update (ID, Tl) // Updates Induced Dependencies with LHS length  Tl

Update (VSID, Tr, Tb) // Updates Value Sensitive Induced Dependencies and outputs those with ratio and base

above Tr, Tb

Update (WID, Tc) // Updates Weak Induced Dependencies and outputs those with confidence above Tc

Update (JD) // Updates Join Dependencies

Update (SDT)// Updates this table with any new domains or sub-domains especially when new VSIDs are found

End

Procedure Update CRT (D as DataBase, SDT as table)

D is the database instance

SDT: is as defined above keeps entries of attribute sub-domains with overlaps.

Incremental dependency aided metapattern generator. pp149-163

162

Malaysian Journal of Computer Science. Vol. 25(3), 2012

Update CRT keeps an updated version of the intersection between any two sub-domains of the same type found in

SDT. The purpose of this procedure is to keep the intersection between two sub-domains computed in previous

runs and update it using the distributive law

Begin

For each two sub-domains of the same type in SDT

Find Card (SD1 ∩ SD2)

If record not found then

Insert the record into CRT

Else

Update record in CRT

End If

End for

End

Procedure Update SCT (CRT as table, DP as Dependencies, OT as Threshold)

CRT remembers the cardinality of the intersection between two sub-domains

DP is the set of dependencies

OT is the user defined Overlap Threshold

Update SCT updates the Significant Connection Table, which keeps entries of interdependencies and not only

overlapping sub-domains.

It deduces overlaps from dependencies.

It computes the overlap only for promising sub-domains after each set of updates. See section 3.3

If no overlaps (foreign dependencys) were found between the whole domain of two attributes it searches for

overlaps in the sub-domains. If patterns were then found for these attributes, Value Sensitive Patterns are then

generated.

Begin

For the changes in dependencies

Deduce Overlaps using ID and add an RFN to SCT for each

Deduce Overlaps add an RFN to SCT for each

Deduce Overlaps using JD and add an RFN to SCT for each

End For

For each two column sub-domains Cx& Cy in SDT from different views

If Cx& Cy are of the same type then

UL = Upper Limit (Cx, Cy). See section 3.3.

If UL>= OT then

OL =Overlap (Cx, Cy)

If OL >= OT and not in SCT then

Create RFN (Cx, Cy) and add to SCT

Else

Incremental dependency aided metapattern generator. pp149-163

163

Malaysian Journal of Computer Science. Vol. 25(3), 2012

Search for new sub-domains where OL>= OT

If any is found then

Create a new sub-domain entry in the SDT

Update CRT (D as DataBase, SDT as table)

Create RFN (Cx, Cy) and add to SCT

End if

End if

End if

End For

End.

Procedure Generate MetaPattern (SCT as Table, DP as Dependencies)

SCT is the Significant Connection Table. (Interdependency Table)

DP is the set of dependencies.

Generate the metapatterns with the help of interdependencies stored in SCT.

Begin

Generate Transitivity Metapattern(DP) // Searches for transitivity patterns

Generate PseudoTransitive Metapattern(DP) Searches for Pseudo transitive

Generate ExtendedTransitive Metapattern(DP) Searches for Extended transitive patterns

Generate Additive Metapattern(DP) Searches for Additive patterns

Generate Relational Metapattern(DP) Searches for Relational patterns

End

Procedure Generate Patterns (M as MetaPatterns, D as DataBase, DP as Dependencies, b, s as Threshold)

M is the set of generated Metapatterns.

D is the database instance.

DP is the set of dependencies.

b is the user defined base threshold

s is the user defined strength threshold

Ps = Prob(RHS|LHS, Udb, Io) = (|SRHS|+1) / (|SLHS|+2)

Pb = (|SLHS|) / Dom(LHS)

SLHS is the set of tuples in Udb that satisfy LHS.

SRHS is the set of tuples in SLHS that satisfy RHS.

Loop

Order and Display M;

Let User examine, create, and reorder M;

Until M is empty or the user instructs to stop;

End.

