
Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

76
Malaysian Journal of Computer Science. Vol. 25(2), 2012

SCATTER SEARCH WITH MULTIPLE IMPROVEMENT METHODS FOR THE LINEAR ORDERING

PROBLEM

Héctor Joaquín Fraire Huacuja1, Guadalupe Castilla Valdez1, Rodolfo A. Pazos Rangel1, Javier González Barbosa1,

Laura Cruz Reyes1, Juan Martín Carpio Valadez2, Héctor José Puga Soberanes2, David Terán Villanueva2

1Instituto Tecnológico de Ciudad Madero, Av. 1o. de Mayo and Sor Juana I. de la Cruz S/N C.P. 89440, Cd.

Madero Tamaulipas, México. E-mail: hfraire@prodigy.net.mx,{ jjgonzalezbarbosa, r_pazos_r, lauracruzreyes,
gpe_cas}@yahoo.com.mx

2Instituto Tecnológico de León, Av. Tecnológico S/N Fracc. Ind. Julián de Obregón. C.P. 37290

León Guanajuato, México. E-mail: jmcarpio61@hotmail.com, {pugahector, david_teran01}@yahoo.com.mx

ABSTRACT

In this work, the Linear Ordering Problem (LOP) is approached. This is an NP-hard problem which has been solved

with different metaheuristic algorithms. Particularly, it has been solved with a Scatter Search algorithm that applies

the traditional approach which incorporates a single improvement method. In this paper, we propose a Scatter

Search algorithm which uses multiple improvement methods to achieve a better balance of intensification and

diversification. To validate our approach, a statistically-supported experimental study of its performance was
carried out using the most challenging standard instances. The overall performance of the proposed Scatter Search

algorithm was compared with the state-of-the-art algorithm solution for LOP. The experimental evidence shows that

our algorithm outperforms the best algorithm solution for LOP, improving 2.89% the number of best-known

solutions obtained, and 71% the average percentage error. It is worth noticing that it obtains 53 new best-known

solutions for the instances used. We claim that the combination of multiple improvement methods (local searches)

can be applied to improve the balance between intensification and diversification in other metaheuristics to solve

LOP and problems in other domain.

Keywords: Metaheuristics, Scatter Search, Linear Ordering Problem, Local Search, Balancing of intensification

and diversification.

1.0 INTRODUCTION

The problem addressed in this work has important applications in areas such as scheduling, social sciences,

electronics, archeology, and particularly in economy. In this context, the input-output model developed by Wassily

Leontief [1] is used to represent the interactions of economic sectors in a country. The problem of the triangulation

of an input-output table consists of finding a simultaneous permutation of its columns and rows, such that the sum of

the values above the main diagonal is maximized. This problem is equivalent to the linear ordering problem (LOP)

which is defined as follows:

Given a matrix C of weights of size n  n, the problem consists of finding a permutation P of columns (and rows)

such that
() ()

1

1 1

()
i j

n n

LOP p p

i j i

pC C


  

  is maximized. As we can see, the objective value of permutation P is the

sum of the weights above the main diagonal of C. Permutation P provides the ordering of rows and columns and

pi is the index of column (and row) i [2].

This problem has been solved with a Scatter Search algorithm that applies the traditional structure, incorporating a

single improvement method. In this paper, we propose a Scatter Search algorithm which uses multiple improvement

methods to achieve a better balance of intensification and diversification.

2.0 RELATED WORK

LOP is NP-hard [3, 4], and several metaheuristic algorithms have been proposed to solve it. In this section, the most

recent and relevant metaheuristic algorithm solutions for LOP are described.

A Scatter Search solution for LOP was proposed by Campos et al. [5], following the basic template proposed by

Glover [6]. It includes five processes: 1) Diversification Generator Method, 2) Improvement Method, 3) Reference

Set Update Method, 4) Subset Generation Method and 5) Combination Method. They evaluated ten strategies for the

Diversification Generator Method: seven based on GRASP constructions, one based on a random generator, one

mailto:hfraire@itcm.edu.mx
mailto:r_pazos_r@yahoo.com.mx
mailto:lauracruzreyes@yahoo.com
mailto:jmcarpio61@hotmail.com

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

77
Malaysian Journal of Computer Science. Vol. 25(2), 2012

based on a diversified strategy proposed by Glover, and one method that uses a memory-based frequency, which

maintains a record of the number of times that an element i occupies position j in the permutation, and penalizes the

attractiveness of the element with respect to the position for subsequent constructions. The evaluation of

attractiveness is given by the greedy function proposed by Becker [7]. The best performance was achieved by the

method that uses a memory-based frequency. The Improvement Method is implemented using a single local search.

The Updating Method consists of maintaining in the reference set, b, the best solutions, where b is a constant search

parameter. The Subset Generation Method consists of generating different subsets of the reference set, which will be

used by the combination method. Subsets with several sizes were generated: two-element subsets, three-element

subsets which were obtained by including the best solution that is not in the two-element subsets, four-element

subsets which are obtained from three-element subsets by incorporating the best solution that is not in the subset,

and subsets that contain the best i elements, where i = 5, ..., b. In the work reported by Campos et. al. [5], the
criterion of best solution is expanded to include in the Reference Set, solutions from P with the largest index of

similarity, and the size of the Reference Set is maintained unchanged. The Combination Method applies a min-max

construction based on voting.

A LOP solution based on the Tabu Search metaheuristic is proposed by Laguna et al. [2]. This solution includes an

intensification phase using short-term memory based on a tabu criterion, a diversification process implemented by

long-term memory based on frequency record, and an additional intensification process applying path relinking

based on elite solutions. Two insertion neighborhoods and two selection strategies (first and best) were evaluated,

the insertion neighborhood using consecutive swaps movements and the first selection criterion achieved the best

results. In this evaluation, the first selection criterion achieved the best results. A first local search was used to

explore the insertion neighborhood, and when this search ends, a best local search was applied to the current
solution.

A Memetic algorithm is proposed by Schiavinotto and Stutzle [8]. They studied three neighborhoods: interchange,

insertion, and another one based on the Chanas and Kobylanski heuristic [9]. It is noteworthy that the insertion

neighborhood was implemented applying an exploration strategy based on the Dynasearch method proposed by

Congram [10], which reduces the cost to evaluate the neighborhood from O(n3) to O(n2). Three different methods of

local search were evaluated: two implemented by insertion movements, from which one uses a selection rule

between the best and first criterion (LSf), another uses a first random criterion, and the third local search is based on

the Chanas and Kobylanski (LSCK) algorithm. An iterative local search metaheuristic was implemented. This starts

from a random initial solution, which is improved applying local search LSf , followed by an iterative process that

includes perturbation using an interchange movement and a local optimization. Finally, a memetic algorithm, that
uses a single local search LSf , was implemented. This algorithm currently is considered the best solution for LOP in

the state of the art [11].

In [11], Martí and Reinelt report an assessment of the ten most relevant metaheuristics for LOP using a standard

benchmark. They use two sets of standard instances, the OPT-I set contains instances whose optimal value is known,

and the UB-I set, which comprises those instances for which only the best-known value is available. For each

instance, the algorithms were executed for 10 and 600 CPU seconds. The experimental results show that for both

time limits, the best solution is obtained by the Memetic algorithm, followed by the Tabu Search algorithm, while

Scatter Search obtains the fifth position.

As we can see, the LOP solution based on Tabu Search is the only metaheuristic that uses multiple local searches. In

this work, we propose to improve the Scatter Search performance using a modified structure that incorporates
multiple local searches. Our main idea consists of achieving a better balance of intensification and diversification of

the metaheuristic, using local search algorithms with different levels of intensification.

3.0 THEORETICAL FRAMEWORK

3.1 The Insertion Neighborhood

Given a permutation P = (p1, p2, p3, …, pn), an insertion move , consists of: extracting from

permutation P the element in position j, moving the items that are between position j and position i one position

towards position j, and inserting the extracted element in position i [2]. An insertion movement produces the
permutation P’ given by

 P’

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

78
Malaysian Journal of Computer Science. Vol. 25(2), 2012

The insertion neighborhood of a permutation P is the set of all permutations that are obtained by applying to P an

insertion movement. The cost of an insertion movement is the difference of the objective values of the permutation

generated with the movement and that of the original permutation. It is given by the following expression:

Using the objective function definition, this cost can be expressed as:

 =

In this expression corresponds to the difference in the objective function value caused by the change

of relative position of the elements in positions j and k, within the range of the insertion movement.

3.2 The Consecutive Insertion Movement

A consecutive insertion movement consists of the insertion of the element at position j to positions j1, or j1 [8].

Given permutations P and P’ = then we have that:

P’

The cost of a consecutive insertion movement is given by:

Now we show how a general insertion movement can be carried out by a series of consecutive insertion movements.

Let P = (1, 2, 3, 4, 5, 6) and P’ = , then the cost of the movement is given by:

)

By applying consecutive insertion movements to permutation P = (1, 2, 3, 4, 5, 6) to obtain

P’= , we have that:

 = (

Let S be the sum of the costs corresponding to the consecutive movements that are required to transform P into P’ =

P3, it is given by:

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

79
Malaysian Journal of Computer Science. Vol. 25(2), 2012

3.3 The Cost of the Insertion Neighborhood Exploration

As we can see in the previous section, the cost of an insertion movement is equal to the sum of the costs of

consecutive insertion movements, and it can be calculated before the movement is performed. This property is very

useful to efficiently determine the position where a given element must be inserted to produce an improvement in
the objective value. For a permutation P of size n, the worst case occurs when we are looking for the position where

to insert the first element. In Table 1, we can observe the process to determine the cost of inserting pi in positions i =

2, 3, 4, …, n, without using consecutive movements. The columns contain the evaluated position, the insertion cost

and the number of operations (subtractions) that have to be carried out respectively. As we can see, the

computational complexity of the exploration process is O(n
2
).

Table 1. Cost of exploring the insertion neighborhood without using consecutive insertions.

Evaluated

Position (i)

Subtraction

Operations

2 1

3 2

4 3
…. …..
N -1

 Total

On the other hand, calculating the same cost using consecutive insertions requires only one subtraction operation for
each position. The number of operations performed in this case is shown in Table 2.

Table 2. Cost of exploring the insertion neighborhood using consecutive insertion movements.

Evaluated

Position (i)

Consecutive

Insertion Cost

Subtraction

Operations

2 1

3 1

4 1

.. ….. ..

n 1

 Total

As shown, the complexity of the exploration process is reduced from O(n2) to O(n). In this work, the local searches

used as improvement methods in the Scatter Search algorithm, apply consecutive insertion movements to explore
the neighborhood of the current solution.

4.0 LOCAL SEARCH

As we have previously mentioned, we say that it is possible to achieve a better balance of intensification and

diversification of the Scatter Search metaheuristic, using local search algorithms with different levels of

intensification. The balance of intensification and diversification in the search algorithms depends on explicit

structural elements, such as the exploration strategy and the criterion to select the neighbor to replace the current

solution, or implicit elements such as the neighborhood structure and the problem representation. In this work, a set

of local search algorithms with different intensification levels were implemented that try to reinsert the elements of

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

80
Malaysian Journal of Computer Science. Vol. 25(2), 2012

the current solution in new positions to improve its objective value. This process carried out a series of consecutive

insertions, checking the positions from i+1 to n, and then from i–1 to 1. As was previously shown, this exploration

process is performed in O(n). The saving in time produced by this strategy is used for other processes of the

algorithm that contribute to obtain the global optimum.

Five local searches that use an insertion neighborhood were implemented. LS1 and LS2, apply a selection rule which

chooses the first neighbor that leads to an improvement, LS2 includes a stagnation verification rule which ends the

process after n/2 iterations without improvement. Fig. 1 and Fig. 2 show the algorithms for these local searches. LS3

explores all the neighbors of the current solution and, it chooses one that produces the largest increase in the

objective function. LS4 performs an exhaustive search restarting the exploration of all the elements of the

permutation whenever one improvement occurs during an iteration. The algorithms for these searches are shown in

Fig. 3 and Fig. 4. Although LS4 yields high quality solutions, it involves a higher computational cost than those of

LS1, LS2, and LS3 and could produce premature stagnation. Fig. 5 shows the random local search algorithm LS5,

which performs a random insertion movement for each element of the permutation. Clearly, this method is

inefficient and is only used as a basis for comparison.

As we can see, the intensification level increases from LS1 to LS4, but also increases the time consumption. We

believe that combining different local searches in the processes where an improvement is required in the Scatter

Search algorithm, could avoid premature stagnation and improve the quality of the solutions. Summarizing, the

combination of local searches with different intensification levels could contribute to improve the intensification and
diversification balance of the Scatter Search metaheuristic.

Fig. 1. LS1 First Local Search Algorithm.

Procedure LS1(P)

1. Cost = Calculating_cost(P);
2. without_improving = 0;

3. for (i =1 to n)

4. if(i >2) then Costmax= Cost(InsertMov(pi, i-1))

5. else Costmax= Cost(InsertMov(pi, i+1))

6. improving = 0; j = i-1;

7. while (not improving and j ≥)

8. if (Cost(InsertMov(pi, j)) > Costmax) then

9. Costmax = Cost(InsertMov(pi, j);

10. jmax = j; improving =1; break;

11. endif;
12. j = j-1;

13. endwhile;
14. j = i+1;

15. while (not improving and j ≤ n)

16. if Cost(InsertMov (pi,j)) > Costmax) then

17. Costmax = Cost(InsertMov(pi, j));

18. jmax = j; improving =1; break;

19. end if;
20. j= j+1;

21. endwhile;
22. if (improving)

23. P ’ = Insert(pi, jmax);

24. Cost = Cost + Costmax;

25. P = P ’;
26. endif;

27. end_for

28. return (P);

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

81
Malaysian Journal of Computer Science. Vol. 25(2), 2012

Fig. 2. LS2 First Local Search with stagnation detection Algorithm.

Fig. 3. LS3 Best Local Search Algorithm.

Procedure LS3(P)

1. Cost = Calculating_cost(P)

2. for(i =1 to n)

3. if(i >2) then Costmax= Calculating_cost(InsertMov(pi, i-1))

4. else Costmax= Calculating_cost(InsertMov(pi, i+1))

5. j = i-1;

6. improving = 0;

7. while (not improving and j ≥1)

8. if (Calculating_cost(InsertMov(pi, j)) > Costmax) then

9. Costmax = Calculating_cost(InsertMov(pi, j);

10. jmax = j; improving =1; break;

11. endif;
12. j = j-1;

13. endwhile;

14. j=i+1;

15. while (not improving and j ≤ n)

16. if Calculating_cost(InsertMov (pi,j)) > Costmax) then

17. Costmax = Calculating_cost(InsertMov(pi, j));

18. jmax = j; improving =1; break;

19. endif;

20. j= j+1;

21. endwhile;
22. if (improving and Costmax > 0)

23. P’= InsertMov(pi, jmax);

24. Cost = Cost + Costmax;

25. P = P’;

26. endif;

27. endfor

28. return (P);

Procedure LS2(P)

1. Cost = Calculating_cost(P);
2. withoutimproving = 0;

3. do
4. i = getrandom(1, n);

5. if(i >2) then Costmax= Cost(InsertMov(pi, i-1))

6. else Costmax= Cost(InsertMov(pi, i+1))

7. improving = 0; j = i-1;

8. while (not improving and j ≥)

9. if (Cost(InsertMov(pi, j)) > Costmax) then

10. Costmax = Cost(InsertMov(pi, j);

11. jmax = j; improving =1; break;

12. endif;
13. j = j-1;

14. endwhile;

15. j = i+1;

16. while (not improving and j ≤ n)

17. if Cost(InsertMov (pi,j)) > Costmax) then

18. Costmax = Cost(InsertMov(pi, j));

19. jmax = j; improving =1; break;

20. end if;
21. j= j+1;

22. endwhile;

23. if (improving)

24. P ’ = Insert(pi, jmax);

25. Cost = Cost + Costmax;

26. withoutimproving = 0;

27. P = P ’;
28. endif;

29. else
30. ++withoutimproving ;

31. while (whitoutimproving < (n/2))

32. return (P);

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

82
Malaysian Journal of Computer Science. Vol. 25(2), 2012

Fig. 4. LS4 Intensive Best Local Search Algorithm.

Fig. 5. LS5 Random Local Search Algorithm.

5. 0 SCATTER SEARCH WITH MULTIPLE IMPROVEMENT METHODS

Scatter Search (SS) is an evolutionary method based on the classical methods of rules combination used to solve

decision problems in the field of operations research. This metaheuristic developed by Fred Glover in the 70's,

combines solutions of the Reference Set to create new improved solutions [12]. The main processes of the standard

Scatter Search are described in the following lines and their structure can be reviewed in [13].

 Diversification Generation Method. Generate the set U of diverse solutions, from which the solutions to build

the Reference Set (RefSet) will be extracted.

 Improvemenet Method. Typically, it is a local search method for improving the solutions of both the RefSet as
well as those generated in the method of combination, before considering their inclusion in RefSet.

 Generating and Updating Method. Usually, the same criterion to initialize or to update the RefSet is applied,

which consist of selecting the best quality solutions from U, removing them from U and incorporating them into

RefSet. The same is done to select the most diverse solutions from U, using some diversity metric.

 Subset Generation Method, this process consists of generating from RefSet, the subsets to which the

combination method will be applied afterwards; the most common method for generating the subsets consists of

forming all the possible solution pairs from RefSet.

Procedure LS5(P)

1. Cost = Calculating_cost(P);

2. for(i =1 to n)

3. do
4. j = getrandom(1,n);

5. while (j = = i);

6. Cost = Cost + Calculating_cost(InsertMov(pi, j));

7. P ’= Insert(pi, j);

8. P = P ’;

9. endfor
10. return (P);

Procedure LS4 (P)

1. Cost=Calculating_cost (P);

2. do
3. for (i= 1 to n)

4. if(i>2) then Costmax= Calculating_cost(InsertMov(pi, i-1))

5. else Costmax= Calculating_cost (InsertMov(pi, i+1))

6. for(j=i-1 to 1)

7. if (Calculating_cost(InsertMov(pi, j)) > Costmax) then

8. Costmax = Calculating_cost(InsertMov(pi, j)) ;

9. jmax = j;

10. endif

11. endfor
12. for(j=i+1 to n)

13. if (Calculating_cost(InsertMov(pi, j)) > Costmax) then

14. Costmax = Calculating_cost(InsertMov(pi, j));

15. jmax = j;

16. endif

17. endfor
18. if(Costmax > 0)

19. Insert(pi, jmax);

20. Cost = Cost + Costmax;

21. P = P ’;

22. improving = 1;

23. endif

24. endfor

25. while (improving)

26. return (P)

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

83
Malaysian Journal of Computer Science. Vol. 25(2), 2012

 Combination Method. In this process, the solutions of the subsets generated in step 4 are combined. The most

successful strategy for combining solutions is the weighted combination based on votes, which is suitable for

most of the problems representations [14].

In this work, we propose a new approach to obtain a suitable balance of intensification and diversification in SS

algorithms using different improvement methods throughout the entire global search process. Fig. 6 shows the

Scatter Search structure used which includes four improving steps, and Fig. 7 shows the proposed Scatter Search

algorithm (MI-SS). Most of the strategies in the MI-SS algorithm are taken from the Scatter Search standard

structure. The processes in which the proposed strategies were incorporated are described in the following sections.

5.1 Diversification Method

The diversification method creates a set of |U| solutions, which will provide solutions to build the reference set

(RefSet), |U|= 10 * |RefSet| = 10*10 =100. The solutions in U are randomly generated and ordered according to their

objective value.

The process for generating and updating RefSet was implemented in the traditional way: selecting the best |RefSet|/2

solutions considering the quality, and the |RefSet|/2 most diverse solutions from U. The distance metric proposed by

Pantrigo [15] is used to select the most diverse solutions. In this metric, the distance between two given solutions R

and S is defined by:

To select the most diverse solutions from U, we propose the following diversity indicator:

 
|Re |

1 2 |Re |

1

() (,) , where and Ref , ,...,
fSet

i fSet

i

IDiv R d R Q n R U Set Q Q Q


 
   
 


For each candidate solution RU, IDiv(R) was calculated, and the solution in U with the largest IDiv value was
included in RefSet.

If a stagnation condition in the average quality of the solutions in RefSet is detected, a diversification mechanism is
triggered. It consists of updating RefSet by removing all its elements except the best.

5.2 Combination Method

The combination method implemented was inspired by the order based crossover [16]. It consists of combining two

solutions randomly selected, followed by a random selection of a set of positions from the first solution (0.4 *

instance size), then the values in the non-selected positions are copied directly to the corresponding positions of the

new solution. In the next step, the values in the selected positions are ranked according to the order in the second

solution, and they are copied to the vacant positions of the new solution. The current combination is recorded to

avoid recombining the same solutions in the next iteration.

5.3 Improvement Method

Fig. 7 shows the MI-SS structure used in our algorithm proposal. It is worth noticing that this structure is different

from the standard because it includes four places where different improvement methods can be applied (denoted by

gray boxes). Using this structure, we assessed the algorithm performance with several combinations of the five local

search algorithms described in the previous section: LS1, LS2, LS3, LS4, and LS5.

6.0 EXPERIMENTAL RESULTS

The experimentation was carried out in two phases. In the first one, a set of improvement methods having different

intensification levels at the four places of the scatter search were evaluated using the XLOLIB instances. In the

second phase, the scatter search that incorporates the best combination of improvement methods was evaluated
using a wide set of the hardest benchmark instances (whose description can be found in [11]). For both phases, we

used ANSI C language for programming the solution algorithm, Visual Studio 6 for compiling, SPSS for the

1

1 1

(,) min | |, | |
n n

i i i n i

i i

d R S r s r s  

 


 

  
 
 

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

84
Malaysian Journal of Computer Science. Vol. 25(2), 2012

statistical Wilcoxon test and a computer with an Intel XEON dual processor at 3.06 GHZ, 70 GB in hard disk and

4GB in RAM.

In the first experiment, the performance of the Scatter Search algorithm shown in Fig. 8 was evaluated. Different

combinations of the five local search algorithms described in the previous section (LS1, LS2, LS3, LS4, and LS5)

were applied in the four improvement processes indicated. Table 3 shows the results for a subset of all the

combinations tested, highlighting the combination that produces the best performance algorithm. In this table, the

combination of local searches used in the algorithm is shown in the first column. The (LS5, LS5, LS5, LS5)

combination indicates that LS5 was applied in the four places of improvement, while the combination (LS4, LS3,

LS1, LS4) indicates that LS4 was applied in the first and last places, LS3 in the second, and LS1 in the third place.

The second column contains the average deviation in percentage from the best-known solutions reached by the
algorithm on the test instances. The last column shows the percentage deviation with respect to the objective

function value of the reference combination (LS5, LS5, LS5, LS5). As we can observe, the combination (LS4, LS3,

LS4, LS3) had the lowest error with respect to the best-known solutions of the test instances, and the largest

improvement percentage with respect to the reference configuration; therefore the Scatter Search algorithm

configured with this combination of local searches was used in the second experiment.

Fig. 6. Structure of the Scatter Search with Multiple Methods of Improvement (MI-SS).

Fig. 7. Scatter Search with Multiple Methods of Improvement (MI-SS) Algorithm.

Procedure MI-SS Algorithm

 Randomly_generate_P ()

 LS4 (Generating_Ref_Set_quality()) ------------------(1)

 LS3 (Generating_Ref_Set_Diversity()) ----------------(2)

 Update_Best_solutions()

 while (not stop criterion)

 do
 if(stagnation condition)

 Randomly_generate_P ()

 do

 LS4 (Combination_Method()) -----------(3)

 while(stop criterion)

 Delete_except_best()

 LS3 (Generating_Ref_Set_Diversity()) -----(4)

 while(stop criterion)

 end_while

end MI-SS Algorithm

Generate U

(random)

Generate

RefSet

(quality)

Generate

RefSet

(diversity)

Improvement

Method 1

Improvement
Method 2

 Time<maxtime

U

 Elements in U < Usize*0.3

Combination
method

Improvement

Method 4

Eliminate

except best

Generate

RefSet

(diversity)

Improvement
Method 3

RefSet has
new solutions?

Generate U
(random)

t

RefSet

RefSet Update Method

End

t

t

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

85
Malaysian Journal of Computer Science. Vol. 25(2), 2012

Table 3. Evaluation of different combinations of improvement methods in the MI-SS algorithm.
Combination of

Improvement Methods

Average Deviation from Best Known

(%)

Percentage of

Improvement

LS5, LS5, LS5, LS5 6.36759175 0

LS1, LS1, LS1, LS1 6.84919255 -7.56331151

LS2, LS2, LS2, LS2 8.86974463 -39.295121

LS3, LS3, LS3, LS3 0.61858853 90.2853613

LS4, LS4, LS4, LS4 0.30895276 95.1480438

LS3, LS1, LS3, LS1 0.618427378 90.2878922

LS3, LS3, LS1, LS1 5.29794016 16.7983695

LS1, LS1, LS3, LS3 0.60104226 90.5609172

LS4, LS3, LS3, LS3 0.1869835 97.0635131

LS4, LS3, LS4, LS4 0.18266885 97.1312726

LS3, LS3, LS4, LS4 0.16042490 97.4806032

LS4, LS3, LS4, LS3 0.12519809 98.0338235

LS4, LS1, LS4, LS3 0.16419852 97.4213403

The second experiment consists of assessing the performance of the MI-SS algorithm with respect to the best

algorithms of the state of the art. For this experiment, the set UB-I of the most challenging standard instances was

used. This set includes 255 standard instances: 100 RandomAI, 50 RandomAII, 20 RandomB, 78 XLOLIB, and 7

Special [11]. For each instance a single run was carried out with a seed of 1471 and time limits of 10 and 600 CPU

seconds. Tables 4 and 5 show the results for the proposed algorithm and the best algorithms of the state of the art

reported in [11]. In these tables the average percentage error with respect to the best-known solutions, and the

number of best-known solutions found is shown for each group of instances solved with the following algorithms:

Scatter Search (SS), Tabu Search (TS), Memetic (MM) and Scatter Search with multiple methods of improvement

(MI-SS). At the bottom of both tables the overall performance appears highlighted, which includes the average

percentage error and the number of best known solutions found. In Tables 4 and 5, the average percentage error is
calculated as follows:

where
 represents the value of the objective function for the best-known solution for instance i,

 represents

the value of the objective function for the solution found by the MI-SS algorithm for the same instance, and n is the

number of instances.

Regarding overall performance, for both time limits, MI-SS clearly outperforms the best Scatter Search algorithm

solution for LOP (SS) [5]. For the 10 seconds test, the average percentage error decreases from 0.272 to 0.11. The

number of best-known solutions found increases from 15 to 89. For the 600 seconds test, the average percentage

error decreases from 0.256 to 0.004. The number of best-known solutions found increases from 20 to 213. For all

the instances sets, MI-SS improves both indicators (average percentage error and number of best-known solutions).

Also, MI-SS clearly outperforms the best Tabu Search algorithm solution for LOP (TS) [2].

Table 4. Experimental results for UB-I instances (10 sec.)

Instances
Performance

Indicators
TS [2] MM [8] SS [5] MI-SS

RandA1
% Error (Avg) 0.13 0.05 0.27 0.14

Best 5 32 1 26

RandA2
% Error (Avg) 0 0 0.02 0

Best 3 39 0 39

RandB
% Error (Avg) 0 0 0.04 0

Best 20 20 11 20

XLOLIB
% Error (Avg) 0.63 0.13 0.69 0.13

Best 0 2 0 1

Spec
% Error (Avg) 0.46 0.06 0.34 0.07

Best 3 3 3 3

Average % Error 0.4 0.08 0.272 0.11

Total # Best 31 96 15 89

On the other hand, in the experiment with a time limit of 10 seconds, MI-SS has a lower overall performance than

that of the state-of-the-art solution for LOP (MM); however in the experiment with 600 seconds of time limit, MI-

SS clearly outperforms the MM algorithm. The average percentage error decreases from 0.014 to 0.004, which

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

86
Malaysian Journal of Computer Science. Vol. 25(2), 2012

constitutes a 71 % of improvement. The number of best-known solutions found increases from 207 to 213,

indicating an improvement of 2.89 %. It is remarkable that in this experiment MI-SS obtains 53 new best-known

solutions. An update of the best-known solutions for the UB-I instances set reported in [11] is presented in Table 8.

The overall performance improvement of the MI-SS algorithm could be explained as a consequence of a better

balance reached between intensification and diversification with the Scatter Search structure used in the MI-SS

algorithm. The improved balance incorporated in the MI-SS algorithm seems to increase its performance.

As MM and MI-SS are randomized algorithms, a Wilcoxon non parametric hypothesis test was applied to determine

if the observed differences, in the average error percentages, are statistically significant [17]. For this test the

RandA1 and XLOLIB instances were distributed in groups of instances with the same size: RandA1 (100), RandA1

(150), RandA1 (200), RandA1 (500), XLOLIB (150), and XLOLIB (250). Tables 6 and 7 show the Wilcoxon test
results using a significance level α = 0.05. The tables contain the number of instances in each set (N), the names of

the sets, the number of ranks after removing ties (n), the values for R+ and R- corresponding to the sum of positive

and negative differences between the percentage errors found for each solved instance with MM and MI-SS, and the

reference range taken from a Wilcoxon table (VC). Finally, the winner algorithm is shown in the last column.

In these tables, if R- is larger than R+, the algorithm with the best performance is MI-SS; otherwise the Memetic

algorithm (MM) is the winner. When the highest value of R+ and R- is inside the VC range, the null hypothesis (both

algorithms have the same performance) is accepted, and we can establish that there is not a significant difference in

their performance; otherwise, the null hypothesis is rejected and the difference is statistically significant. As we can

see in last column of Tables 6 and 7, the MI-SS has virtually the same performance as the Memetic algorithm.

Table 5. Experimental results for UB-I instances (600 sec.)

Instances
Performance

Indicators
TS [2] MM [8] SS [5] MI-SS

RandA1
% Error (Avg) 0.10 0.006 0.19 0.002

Best 19 74 2 84

RandA2
% Error (Avg) 0 0 0.01 0

Best 3 50 2 50

RandB
% Error (Avg) 0 0 0.02 0

Best 20 20 13 20

XLOLIB
% Error (Avg) 0.4 0.008 0.82 0.012

Best 0 59 0 52

Spec
% Error (Avg) 0.26 0.026 0.24 0

Best 3 4 3 7

 Average % Error 0.15 0.014 0.256 0.004

Total # Best 45 207 20 213

Table 6. Wilcoxon test results for 10 seconds of time limit (Memetic algorithm versus MI-SS)

Execution time limit of 10 seconds (MM / MI-SS)

N Instances n R
+
 R

-
 VC Best Performance

25 RandAI (100) 6 21 0 0-21 MM, MI-SS

25 RandAI(150) 17 109 44 34-119 MM, MI-SS

25 RandAI(200) 25 194 131 89-336 MM, MI-SS

25 RandAI(500) 25 325 0 89-236 MM

39 XLOLIB(150) 39 347 433 249-531 MM, MI-SS

39 XLOLIB(250) 39 467 313 249-531 MM, MI-SS

Table 7. Wilcoxon test results for 600 seconds of time limit (Memetic algorithm versus MI-SS)

Execution time limit of 600 seconds (MM / MI-SS)

N Instances n R
+
 R

-
 VC Best Performance

25 RandAI (100) 1 1 0 NA NA

25 RandAI(150) 2 2 1 NA NA

25 RandAI(200) 14 51 54 21-84 MM, MI-SS

25 RandAI(500) 25 57 268 89-236 MI-SS

39 XLOLIB(150) 37 591 112 221-482 MM

39 XLOLIB(250) 39 418 362 249-531 MM, MI-SS

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

87
Malaysian Journal of Computer Science. Vol. 25(2), 2012

7.0 CONCLUSIONS AND FUTURE WORK

In this paper, the linear ordering problem is approached. This is an NP-hard relevant problem that has been solved

using several metaheuristics. We propose to improve the best Scatter Search solution of the state of the art for LOP,

using a modified structure that incorporates multiple local searches. The core idea of our approach consists of

achieving a better balance of intensification and diversification of the metaheuristic, using local search algorithms

with different levels of intensification.

An experimental study was carried out using the most challenging sets of instances. The performance of the

proposed Scatter Search algorithm (MI-SS) and the best of the state-of-the-art algorithms for LOP (SS, TS, and

MM) were compared. The experimental results show that MI-SS clearly outperforms the Scatter Search and Tabu
Search algorithms.

Currently, the Memetic algorithm is considered the best of the state-of-the-art algorithm solution for LOP. It is

worth noticing that, regarding overall performance, the proposed Scatter Search algorithm outperforms the Memetic

algorithm when a time limit of 600 seconds is used. It achieves a reduction of 71 % in the average percentage error,

an increase of 2.89% in the number of best-known-solutions found, and finds 53 new best-known solutions. A

Wilcoxon statistical hypothesis test shows that MI-SS has virtually the same performance as the Memetic algorithm.

This performance improvement is due to a larger diversification capacity that MI-SS seems to have as a result of the

combination of multiple local searches incorporated into MI-SS.

We are currently applying the proposed approach to improve the balance of intensification and diversification of a
GRASP solution for LOP.

Table 8. New best-known solutions obtained by the MI-SS algorithm in 600 seconds
 Instances New Best Instances New Best

 RandA1 (100) XLOLIB (150)

1 N-t1d150.04 234510 1 N-stabu2_150 4327571

 RandA1(200) 2 N-t70d11xn_150 5825692

2 N-t1d200.01 410992 3 N-t75d11xx_150 9643994

3 N-t1d200.04 410105 4 N-tiw56r67_150 2057074

4 N-t1d200.08 408883 XLOLIB (250)

5 N-t1d200.13 409270 5 N-be75tot_250 30984685

6 N-t1d200.15 409073 6 N-stabu2_250 11509729

7 N-t1d200.18 407728 7 N-stabu3_250 11906623

8 N-t1d200.25 406476 8 N-t59d11xx_250 3842366

 RandA1(500) 9 N-t59f11xx_250 3994038

9 N-t1d500.01 2404308 10 N-t65f11xx_250 8410169

10 N-t1d500.04 2414801 11 N-t70b11xx_250 25405187

11 N-t1d500.06 2400280 12 N-t70d11xx_250 16043521

12 N-t1d500.08 2414152 13 N-t70f11xx_250 13589177

13 N-t1d500.09 2407035 14 N-t70l11xx_250 1113154

14 N-t1d500.10 2406593 15 N-t75d11xx_250 25038262

15 N-t1d500.11 2416484 16 N-t75k11xx_250 4094205

16 N-t1d500.12 2403299 17 N-t75n11xx_250 4525472

17 N-t1d500.14 2410932 18 N-tiw56n54_250 2099294

18 N-t1d500.15 2412056 19 N-tiw56n62_250 4143436

19 N-t1d500.16 2416692 20 N-tiw56n67_250 6326150

20 N-t1d500.17 2401928 21 N-tiw56n72_250 11151289

21 N-t1d500.19 2404662 22 N-tiw56r54_250 2387755

22 N-t1d500.20 2415076 23 N-tiw56r67_250 5292693

23 N-t1d500.22 2408392 24 N-tiw56r72_250 7452411

24 N-t1d500.23 2408978 Special

25 N-t1d500.24 2403497 1 N-atp134 1797

26 N-t1d500.25 2406618 2 N-atp163 2075

 3 N-atp452 2711

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

88
Malaysian Journal of Computer Science. Vol. 25(2), 2012

ACKNOWLEDGEMENTS

We would like to thank the following agencies of the Mexican Government: Consejo Nacional de Ciencia y

Tecnología, Consejo Tamaulipeco de Ciencia y Tecnología and Dirección General de Educación Superior

Tecnológica for the financial support received. We would also like to thank to Manuel Laguna and Abraham Duarte

for their valuable technical support and to the anonymous reviewers for their valuable observations.

REFERENCES

[1] Leontief, Wassily W.W., Input-Output Economics, New York, Oxford University Press, ed. 2, 1986.
[2] Laguna, M., Martí, R., Campos, V. “Intensification and diversification with elite tabu search solutions for

the linear ordering problem”, Computers and Operations Research, Vol. 26, No. 12, 1999, pp. 1217-1230.

[3] Karp, R., “Reducibility among combinatorial problems”, in Complexity of Computer Computation. Plenum

Press, 1972, pp. 85-104.

[4] Garey, M. R., Johnson, D.S., “Computers and Intractability: A Guide to the Theory of NP-Completeness”,

ed. W. H. Freeman and Co, 1975.

[5] Campos, V., Laguna, M. and Marti, R. “An experimental evaluation of a scatter search for the linear

ordering problem”, Journal of Global Optimization, Vol. 21, 2001, pp. 397–414.

[6] Glover F, “A Template for Scatter Search and Path Relinking”, Artificial Evolution, 1997, pp. 1-51.

[7] Becker, O. “Das Helmstädtersche Reihenfolgeproblem — die Effizienz verschiedener Näherungsverfahren”

in Computer uses in the Social Sciences, Berichteiner Working Conference, Wien, January 1967.
[8] Schiavinotto T. and Stutzle T. “Search Space Analysis of the Linear Ordering Problem”; Applications of

Evolutionary Computing: Lecture Notes in Computer Science, Vol. 2611/2003, 2003, pp. 197-204.

[9] Chanas, S. and Kobylánski, P., “A New Heuristic Algorithm Solving the Linear Ordering Problem”,

Computational Optimization and Applications, Vol. 6, 1996, pp. 191-205.

[10] Congram Richard K., “Polynomially Searchable Exponential Neighborhoods for Sequencing Problems in

Combinatorial Optimization”, Faculty of Mathematical Studies, 2000.

[11] Martí R., Reinelt G. “The Linear Ordering Problem. Exact and heuristic methods in combinatorial

optimization”, Springer, Heidelberg, ISBN: 978-3-642-16728-7, 2011.

[12] Laguna M. and Marti R., “Scatter Search: Methodology and implementations in C”, Kluwer Academic

Publisher, Boston, 2003.

[13] Resende M., Ribeiro C., Glover F. and Martí R., “Scatter Search and Path Relinking: Fundamentals,
advances and applications”, Handbook of Metaheuristics (2nd Edition) Michel Gendreau and Jean-Yves

Potvin, ed.Springer, 2009.

[14] Martí, R., Laguna, M., “Scater Search, Diseño Básico y Estrategias Avanzadas”, Revista Iberoaméricana

de Inteligencia Artificial, Vol. 2 No. 4, 2003, pp. 123-130.

[15] Pantrigo, J.J.; Martí, R.; Duarte A.; Pardo, E.G., “Scatter Search for the Cutwidth Minimization Problem”,

Annals of Operations Research. Submitted in 2010.

[16] Michalewicz, Z., Fogel, D.B. “How to solve it: Modern Heuristics”, ed. Springer Verlag, 2000.

[17] García S., Molina D., Lozano M., and Herrera F., “An experimental study about the use of non-parametric

tests for analysing the behavior of evolutionary algorithms in optimization problems”, in Proceeding of the

III Congreso Español de Metaheuristicas, Algoritmos Evolutivos y Bioinspirados, MAEB 2007, España,

2007.

http://www.informatik.uni-trier.de/~ley/db/conf/ae/ae1997.html#Glover97
http://www.uv.es/rmarti/paper/docs/ss12.pdf
http://www.uv.es/rmarti/paper/docs/ss12.pdf

Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89

89
Malaysian Journal of Computer Science. Vol. 25(2), 2012

BIOGRAPHY

Héctor J. Fraire H. received the B.S. Math and M.I.S degrees from the Universidad Autónoma de Nuevo León,

México in 1976 and 1988, and the PhD degree in computer science from the Centro Nacional de Investigación y

Desarrollo Tecnológico in 2005. Currently he is full professor at the Instituto Tecnológico de Cd. Madero, Mexico.

His research interests include heuristic optimization and machine learning.

Guadalupe Castilla V. was born in Monterrey N.L. Mexico in 1959. She received the M.S. degree from the

Instituto Tecnológico de León, Mexico. Currently she is a PhD in computer sciences student at the Instituto

Tecnológico de Tijuana, Mexico. Her research interests include algorithmics and heuristic optimization.

Rodolfo A. Pazos R. was born in Tampico, Mexico in 1951. He received the B.S.E.E. and M.S.E.E. degrees from

the Instituto Politécnico Nacional, Mexico in 1976 and 1978, and the PhD degree in computer science from

U.C.L.A. in 1983. Currently he is full professor at the Instituto Tecnólogico de Cd. Madero, Mexico. His research

interests include algorithmics and natural language processing.

Juan J. González B. received the PhD degree in computer science from the Centro Nacional de Investigación y

Desarrollo Tecnológico in 2005. His scientific interests include metaheuristic optimization and natural language

processing.

Laura Cruz-Reyes was born in Mexico in 1959. She received the PhD degree in computer science from the Centro

Nacional de Investigación y Desarrollo Tecnológico, Mexico in 2004. She is a professor at Instituto Tecnológico de
Cd. Madero, Mexico. Her research interests include optimization techniques, complex networks, autonomous agents

and algorithm performance explanation.

Juan M. Carpio V. received his BS degree in Mathematics from the Universidad Autónoma de Nuevo León in

1985. He obtained his Master degree in Optics Sciences in 1990 and his PhD in Optics Sciences in 1995 from the

Universidad de Guanajuato. He has publications in international journals with rigorous refereeing and works in

national and international conferences. His research interests include heuristic optimization, optical metrology and

mathematical modeling.

Héctor J. Puga S. was born in Ecatepec, Mexico in 1960. He received his B.S. degree in Physics and Mathematics

degree from the Instituto Politécnico Nacional, Mexico in 1993. He obtained his Master and PhD degrees in Optics
from the Universidad de Guanajuato in 1995 and 2002. Since 2002 he is full professor at the Instituto Tecnólogico

de León, Mexico. His research interests include heuristic optimization and optic metrology.

Jesús D. Terán V. was born in Tampico, Mexico in 1979. He received the Bachelor in Computer System

Engineering from the Instituto de Estudios Superiores de Tamaulipas in 2003 and M.S degree from the Instituto

Tecnológico de Ciudad Madero, Mexico in 2005. Currently he is studying a PhD in Computer Sciences at the

Instituto Tecnológico de Tijuana, Mexico. His research interests include algorithmics and heuristic optimization.

