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ABSTRACT 

 

In this work, the Linear Ordering Problem (LOP) is approached. This is an NP-hard problem which has been solved 

with different metaheuristic algorithms. Particularly, it has been solved with a Scatter Search algorithm that applies 

the traditional approach which incorporates a single improvement method. In this paper, we propose a Scatter 

Search algorithm which uses multiple improvement methods to achieve a better balance of intensification and 

diversification. To validate our approach, a statistically-supported experimental study of its performance was 
carried out using the most challenging standard instances. The overall performance of the proposed Scatter Search 

algorithm was compared with the state-of-the-art algorithm solution for LOP. The experimental evidence shows that 

our algorithm outperforms the best algorithm solution for LOP, improving 2.89% the number of best-known 

solutions obtained, and 71% the average percentage error. It is worth noticing that it obtains 53 new best-known 

solutions for the instances used. We claim that the combination of multiple improvement methods (local searches) 

can be applied to improve the balance between intensification and diversification in other metaheuristics to solve 

LOP and problems in other domain. 

 

Keywords: Metaheuristics, Scatter Search, Linear Ordering Problem, Local Search, Balancing of intensification 

and diversification. 

 

1.0 INTRODUCTION 
 

The problem addressed in this work has important applications in areas such as scheduling, social sciences, 

electronics, archeology, and particularly in economy. In this context, the input-output model developed by Wassily 

Leontief [1] is used to represent the interactions of economic sectors in a country. The problem of the triangulation 

of an input-output table consists of finding a simultaneous permutation of its columns and rows, such that the sum of 

the values above the main diagonal is maximized. This problem is equivalent to the linear ordering problem (LOP) 

which is defined as follows: 

Given a matrix C of weights of size n  n, the problem consists of finding a permutation P of columns (and rows) 

such that 
( ) ( )
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   is maximized. As we can see, the objective value of permutation P is the 

sum of the weights above the main diagonal of C. Permutation P provides the ordering of rows and columns and 

pi is the index of column (and row) i [2]. 

 

This problem has been solved with a Scatter Search algorithm that applies the traditional structure, incorporating a 

single improvement method. In this paper, we propose a Scatter Search algorithm which uses multiple improvement 

methods to achieve a better balance of intensification and diversification. 

  

2.0 RELATED WORK 
 
LOP is NP-hard [3, 4], and several metaheuristic algorithms have been proposed to solve it. In this section, the most 

recent and relevant metaheuristic algorithm solutions for LOP are described. 

  

A Scatter Search solution for LOP was proposed by Campos et al. [5], following the basic template proposed by 

Glover [6]. It includes five processes: 1) Diversification Generator Method, 2) Improvement Method, 3) Reference 

Set Update Method, 4) Subset Generation Method and 5) Combination Method. They evaluated ten strategies for the 

Diversification Generator Method: seven based on GRASP constructions, one based on a random generator, one 

mailto:hfraire@itcm.edu.mx
mailto:r_pazos_r@yahoo.com.mx
mailto:lauracruzreyes@yahoo.com
mailto:jmcarpio61@hotmail.com


Scatter search with multiple improvement methods for the linear ordering problem. pp 76-89 

 

77 
Malaysian Journal of Computer Science. Vol. 25(2), 2012 

 

based on a diversified strategy proposed by Glover, and one method that uses a memory-based frequency, which 

maintains a record of the number of times that an element i occupies position j in the permutation, and penalizes the 

attractiveness of the element with respect to the position for subsequent constructions. The evaluation of 

attractiveness is given by the greedy function proposed by Becker [7]. The best performance was achieved by the 

method that uses a memory-based frequency. The Improvement Method is implemented using a single local search. 

The Updating Method consists of maintaining in the reference set, b, the best solutions, where b is a constant search 

parameter. The Subset Generation Method consists of generating different subsets of the reference set, which will be 

used by the combination method. Subsets with several sizes were generated: two-element subsets, three-element 

subsets which were obtained by including the best solution that is not in the two-element subsets, four-element 

subsets which are obtained from three-element subsets by incorporating the best solution that is not in the subset, 

and subsets that contain the best i elements, where i = 5, ..., b. In the work reported by Campos et. al. [5], the 
criterion of best solution is expanded to include in the Reference Set, solutions from P with the largest index of 

similarity, and the size of the Reference Set is maintained unchanged. The Combination Method applies a min-max 

construction based on voting. 

 

A LOP solution based on the Tabu Search metaheuristic is proposed by Laguna et al. [2]. This solution includes an 

intensification phase using short-term memory based on a tabu criterion, a diversification process implemented by 

long-term memory based on frequency record, and an additional intensification process applying path relinking 

based on elite solutions. Two insertion neighborhoods and two selection strategies (first and best) were evaluated, 

the insertion neighborhood using consecutive swaps movements and the first selection criterion achieved the best 

results. In this evaluation, the first selection criterion achieved the best results. A first local search was used to 

explore the insertion neighborhood, and when this search ends, a best local search was applied to the current 
solution. 

 

A Memetic algorithm is proposed by Schiavinotto and Stutzle [8]. They studied three neighborhoods: interchange, 

insertion, and another one based on the Chanas and Kobylanski heuristic [9]. It is noteworthy that the insertion 

neighborhood was implemented applying an exploration strategy based on the Dynasearch method proposed by 

Congram [10], which reduces the cost to evaluate the neighborhood from O(n3) to O(n2). Three different methods of 

local search were evaluated: two implemented by insertion movements, from which one uses a selection rule 

between the best and first criterion (LSf), another uses a first random criterion, and the third local search is based on 

the Chanas and Kobylanski (LSCK) algorithm. An iterative local search metaheuristic was implemented. This starts 

from a random initial solution, which is improved applying local search LSf , followed by an iterative process that 

includes perturbation using an interchange movement and a local optimization. Finally, a memetic algorithm, that 
uses a single local search LSf , was implemented. This algorithm currently is considered the best solution for LOP in 

the state of the art [11]. 

 

In [11], Martí and Reinelt report an assessment of the ten most relevant metaheuristics for LOP using a standard 

benchmark. They use two sets of standard instances, the OPT-I set contains instances whose optimal value is known, 

and the UB-I set, which comprises those instances for which only the best-known value is available. For each 

instance, the algorithms were executed for 10 and 600 CPU seconds. The experimental results show that for both 

time limits, the best solution is obtained by the Memetic algorithm, followed by the Tabu Search algorithm, while 

Scatter Search obtains the fifth position. 

 

As we can see, the LOP solution based on Tabu Search is the only metaheuristic that uses multiple local searches. In 

this work, we propose to improve the Scatter Search performance using a modified structure that incorporates 
multiple local searches. Our main idea consists of achieving a better balance of intensification and diversification of 

the metaheuristic, using local search algorithms with different levels of intensification. 

 

3.0 THEORETICAL FRAMEWORK 
  

3.1 The Insertion Neighborhood 

 

Given a permutation P = (p1, p2, p3, …, pn), an insertion move                 , consists of: extracting from 

permutation P the element in position j, moving the items that are between position j and position i one position 

towards position j, and inserting the extracted element in position i [2]. An insertion movement produces the 
permutation P’ given by 

 

  P’   
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The insertion neighborhood of a permutation P is the set of all permutations that are obtained by applying to P an 

insertion movement. The cost of an insertion movement is the difference of the objective values of the permutation 

generated with the movement and that of the original permutation. It is given by the following expression: 

  

                             
            

 

Using the objective function definition, this cost can be expressed as:    

    

                       =  
             

   
                          

       
 
                          

  

 

In this expression             corresponds to the difference in the objective function value caused by the change 

of relative position of the elements in positions j and k, within the range of the insertion movement. 

 

3.2 The Consecutive Insertion Movement 

 

A consecutive insertion movement consists of the insertion of the element at position j to positions j1, or j1 [8].  

Given permutations P and P’ =                    then we have that: 

 

P’   
                                     

                                     
  

 
The cost of a consecutive insertion movement is given by: 

 

                       
       

         
              

       
         

             
  

 

Now we show how a general insertion movement can be carried out by a series of consecutive insertion movements.  
 

Let P = (1, 2, 3, 4, 5, 6) and P’ =                               , then the cost of the movement is given by: 

 

                                      
 
                                             ) 

 

By applying consecutive insertion movements to permutation P = (1, 2, 3, 4, 5, 6) to obtain 

P’=                               , we have that:   

 

                                  
 

                                      

 

                
                        

                                                     
 

                  
                                       

 

                
                     

 

                  
                         = (             

 

Let S be the sum of the costs corresponding to the consecutive movements that are required to transform P into P’ = 

P3, it is given by: 
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3.3 The Cost of the Insertion Neighborhood Exploration  

 

As we can see in the previous section, the cost of an insertion movement is equal to the sum of the costs of 

consecutive insertion movements, and it can be calculated before the movement is performed. This property is very 

useful to efficiently determine the position where a given element must be inserted to produce an improvement in 
the objective value. For a permutation P of size n, the worst case occurs when we are looking for the position where 

to insert the first element. In Table 1, we can observe the process to determine the cost of inserting pi in positions i = 

2, 3, 4, …, n, without using consecutive movements. The columns contain the evaluated position, the insertion cost 

and the number of operations (subtractions) that have to be carried out respectively. As we can see, the 

computational complexity of the exploration process is O(n
2
). 

 

Table 1. Cost of exploring the insertion neighborhood without using consecutive insertions. 

 

Evaluated 

Position (i) 
                      

# Subtraction 

Operations 

2               1 

3                              2 

4                                            3 
…. …..    
N                                                            -1 

 Total 
 

 
       

  

On the other hand, calculating the same cost using consecutive insertions requires only one subtraction operation for 
each position. The number of operations performed in this case is shown in Table 2. 

 

Table 2. Cost of exploring the insertion neighborhood using consecutive insertion movements. 

 

Evaluated 

Position (i) 

Consecutive  

Insertion Cost 

# Subtraction 

Operations 

2               1 

3               1 

4               1 

.. ….. .. 

n               1 

 Total     

 

As shown, the complexity of the exploration process is reduced from O(n2) to O(n). In this work, the local searches 

used as improvement methods in the Scatter Search algorithm, apply consecutive insertion movements to explore 
the neighborhood of the current solution. 

 

4.0 LOCAL SEARCH 

 

As we have previously mentioned, we say that it is possible to achieve a better balance of intensification and 

diversification of the Scatter Search metaheuristic, using local search algorithms with different levels of 

intensification. The balance of intensification and diversification in the search algorithms depends on explicit 

structural elements, such as the exploration strategy and the criterion to select the neighbor to replace the current 

solution, or implicit elements such as the neighborhood structure and the problem representation. In this work, a set 

of local search algorithms with different intensification levels were implemented that try to reinsert the elements of 
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the current solution in new positions to improve its objective value. This process carried out a series of consecutive 

insertions, checking the positions from i+1 to n, and then from i–1 to 1. As was previously shown, this exploration 

process is performed in O(n). The saving in time produced by this strategy is used for other processes of the 

algorithm that contribute to obtain the global optimum.  

 

Five local searches that use an insertion neighborhood were implemented. LS1 and LS2, apply a selection rule which 

chooses the first neighbor that leads to an improvement, LS2 includes a stagnation verification rule which ends the 

process after n/2 iterations without improvement. Fig. 1 and Fig. 2 show the algorithms for these local searches. LS3 

explores all the neighbors of the current solution and, it chooses one that produces the largest increase in the 

objective function. LS4 performs an exhaustive search restarting the exploration of all the elements of the 

permutation whenever one improvement occurs during an iteration. The algorithms for these searches are shown in 

Fig. 3 and Fig. 4. Although LS4 yields high quality solutions, it involves a higher computational cost than those of 

LS1, LS2, and LS3 and could produce premature stagnation. Fig. 5 shows the random local search algorithm LS5, 

which performs a random insertion movement for each element of the permutation. Clearly, this method is 

inefficient and is only used as a basis for comparison. 

 

As we can see, the intensification level increases from LS1 to LS4, but also increases the time consumption. We 

believe that combining different local searches in the processes where an improvement is required in the Scatter 

Search algorithm, could avoid premature stagnation and improve the quality of the solutions. Summarizing, the 

combination of local searches with different intensification levels could contribute to improve the intensification and 
diversification balance of the Scatter Search metaheuristic. 

 

 
Fig. 1. LS1 First Local Search Algorithm. 

 

 

 

 

 

 

Procedure LS1(P ) 

1. Cost = Calculating_cost(P); 
2. without_improving = 0; 

3. for (i =1 to n) 

4.  if(i >2) then Costmax= Cost(InsertMov(pi, i-1)) 

5.  else Costmax= Cost(InsertMov(pi, i+1)) 

6.  improving = 0; j = i-1; 

7.  while (not improving and j ≥ )  

8.   if (Cost(InsertMov(pi, j)) > Costmax) then 

9.    Costmax = Cost(InsertMov(pi, j); 

10.    jmax = j; improving =1; break; 

11.   endif; 
12.   j = j-1; 

13.  endwhile;  
14.  j = i+1; 

15.  while (not improving and j ≤ n) 

16.   if Cost(InsertMov (pi,j)) > Costmax) then  

17.    Costmax = Cost(InsertMov(pi, j)); 

18.    jmax = j; improving =1;  break; 

19.   end if; 
20.   j= j+1; 

21.  endwhile;  
22.  if (improving ) 

23.   P ’ = Insert(pi, jmax); 

24.   Cost = Cost + Costmax; 

25.   P = P ’; 
26.  endif; 

27. end_for 

28. return (P); 
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Fig. 2. LS2 First Local Search with stagnation detection Algorithm. 

 

 

 

Fig. 3. LS3 Best Local Search Algorithm. 

Procedure LS3(P ) 

1. Cost = Calculating_cost(P) 

2. for(i =1  to n) 

3.  if(i >2) then Costmax= Calculating_cost(InsertMov(pi, i-1)) 

4.  else Costmax= Calculating_cost(InsertMov(pi, i+1)) 

5.   j = i-1; 

6.  improving = 0;  

7.  while (not improving and j ≥1)  

8.   if (Calculating_cost(InsertMov(pi, j)) > Costmax) then 

9.    Costmax = Calculating_cost(InsertMov(pi, j); 

10.    jmax = j; improving =1; break; 

11.   endif; 
12.   j = j-1; 

13.  endwhile;  

14.  j=i+1; 

15.  while (not improving and j ≤ n) 

16.   if Calculating_cost(InsertMov (pi,j)) > Costmax) then 

17.    Costmax = Calculating_cost(InsertMov(pi, j)); 

18.    jmax = j; improving =1;  break; 

19.   endif; 

20.   j= j+1; 

21.  endwhile;  
22.  if (improving and Costmax > 0) 

23.   P’= InsertMov(pi, jmax); 

24.   Cost = Cost + Costmax; 

25.   P = P’; 

26.  endif; 

27. endfor 

28. return (P); 

Procedure LS2(P ) 

1. Cost = Calculating_cost(P); 
2. withoutimproving = 0; 

3. do 
4.  i = getrandom(1, n); 

5.  if(i >2) then Costmax= Cost(InsertMov(pi, i-1)) 

6.  else Costmax= Cost(InsertMov(pi, i+1)) 

7.  improving = 0; j = i-1; 

8.  while (not improving and j ≥ )  

9.   if (Cost(InsertMov(pi, j)) > Costmax) then 

10.    Costmax = Cost(InsertMov(pi, j); 

11.    jmax = j; improving =1; break; 

12.   endif; 
13.   j = j-1; 

14.  endwhile;  

15.  j = i+1; 

16.  while (not improving and j ≤ n) 

17.   if Cost(InsertMov (pi,j)) > Costmax) then  

18.    Costmax = Cost(InsertMov(pi, j)); 

19.    jmax = j; improving =1;  break; 

20.   end if; 
21.   j= j+1; 

22.  endwhile;  

23.  if (improving ) 

24.   P ’ = Insert(pi, jmax); 

25.   Cost = Cost + Costmax; 

26.   withoutimproving = 0; 

27.   P = P ’; 
28.  endif; 

29.  else 
30.   ++withoutimproving ; 

31. while (whitoutimproving < (n/2)) 

32. return (P); 
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Fig. 4. LS4 Intensive Best Local Search Algorithm. 

 

 
Fig. 5. LS5 Random Local Search Algorithm. 

 

 

5. 0 SCATTER SEARCH WITH MULTIPLE IMPROVEMENT METHODS 

 

Scatter Search (SS) is an evolutionary method based on the classical methods of rules combination used to solve 

decision problems in the field of operations research. This metaheuristic developed by Fred Glover in the 70's, 

combines solutions of the Reference Set to create new improved solutions [12]. The main processes of the standard 

Scatter Search are described in the following lines and their structure can be reviewed in [13]. 

 

 Diversification Generation Method. Generate the set U of diverse solutions, from which the solutions to build 

the Reference Set (RefSet) will be extracted.  

 

 Improvemenet Method. Typically, it is a local search method for improving the solutions of both the RefSet as 
well as those generated in the method of combination, before considering their inclusion in RefSet.  

 

 Generating and Updating Method. Usually, the same criterion to initialize or to update the RefSet is applied, 

which consist of selecting the best quality solutions from U, removing them from U and incorporating them into 

RefSet. The same is done to select the most diverse solutions from U, using some diversity metric. 

 

 Subset Generation Method, this process consists of generating from RefSet, the subsets to which the 

combination method will be applied afterwards; the most common method for generating the subsets consists of 

forming all the possible solution pairs from RefSet. 

 

Procedure LS5(P ) 

1. Cost = Calculating_cost(P); 

2. for(i =1 to n) 

3.  do 
4.   j = getrandom(1,n); 

5.  while ( j = = i); 

6.     Cost = Cost + Calculating_cost(InsertMov(pi, j)); 

7.  P ’= Insert(pi, j); 

8.     P = P ’; 

9. endfor 
10. return (P); 

 

 

Procedure LS4 (P ) 

1. Cost=Calculating_cost (P); 

2. do 
3.  for (i= 1 to n) 

4.   if(i>2) then Costmax= Calculating_cost(InsertMov(pi, i-1)) 

5.   else Costmax= Calculating_cost (InsertMov(pi, i+1)) 

6.   for(j=i-1 to 1)   

7.    if (Calculating_cost(InsertMov(pi, j))  > Costmax) then 

8.     Costmax = Calculating_cost(InsertMov(pi, j)) ; 

9.     jmax = j; 

10.    endif 

11.   endfor 
12.   for(j=i+1 to n) 

13.    if (Calculating_cost(InsertMov(pi, j))  > Costmax) then 

14.     Costmax = Calculating_cost(InsertMov(pi, j));  

15.     jmax = j;  

16.    endif 

17.   endfor 
18.   if(Costmax > 0) 

19.    Insert(pi, jmax); 

20.    Cost = Cost + Costmax; 

21.    P = P ’; 

22.    improving = 1; 

23.   endif 

24.  endfor 

25. while (improving) 

26. return (P ) 
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 Combination Method. In this process, the solutions of the subsets generated in step 4 are combined. The most 

successful strategy for combining solutions is the weighted combination based on votes, which is suitable for 

most of the problems representations [14]. 

 

In this work, we propose a new approach to obtain a suitable balance of intensification and diversification in SS 

algorithms using different improvement methods throughout the entire global search process. Fig. 6 shows the 

Scatter Search structure used which includes four improving steps, and Fig. 7 shows the proposed Scatter Search 

algorithm (MI-SS). Most of the strategies in the MI-SS algorithm are taken from the Scatter Search standard 

structure. The processes in which the proposed strategies were incorporated are described in the following sections. 

 

5.1 Diversification Method 

 

The diversification method creates a set of |U| solutions, which will provide solutions to build the reference set 

(RefSet), |U|= 10 * |RefSet| = 10*10 =100. The solutions in U are randomly generated and ordered according to their 

objective value. 

 

The process for generating and updating RefSet was implemented in the traditional way: selecting the best |RefSet|/2 

solutions considering the quality, and the |RefSet|/2 most diverse solutions from U. The distance metric proposed by 

Pantrigo [15] is used to select the most diverse solutions. In this metric, the distance between two given solutions R 

and S is defined by: 

To select the most diverse solutions from U, we propose the following diversity indicator: 

 
|Re |

1 2 |Re |

1

( ) ( , ) ,     where    and Ref , ,...,
fSet

i fSet
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

 
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 
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For each candidate solution RU, IDiv(R) was calculated, and the solution in U with the largest IDiv value was 
included in RefSet. 

 

If a stagnation condition in the average quality of the solutions in RefSet is detected, a diversification mechanism is 
triggered. It consists of updating RefSet by removing all its elements except the best. 

 

5.2 Combination Method 

   

The combination method implemented was inspired by the order based crossover [16]. It consists of combining two 

solutions randomly selected, followed by a random selection of a set of positions from the first solution (0.4 * 

instance size), then the values in the non-selected positions are copied directly to the corresponding positions of the 

new solution. In the next step, the values in the selected positions are ranked according to the order in the second 

solution, and they are copied to the vacant positions of the new solution. The current combination is recorded to 

avoid recombining the same solutions in the next iteration.  

 

5.3 Improvement Method 

 

Fig. 7 shows the MI-SS structure used in our algorithm proposal. It is worth noticing that this structure is different 

from the standard because it includes four places where different improvement methods can be applied (denoted by 

gray boxes). Using this structure, we assessed the algorithm performance with several combinations of the five local 

search algorithms described in the previous section: LS1, LS2, LS3, LS4, and LS5.  

 

6.0 EXPERIMENTAL RESULTS 

 

The experimentation was carried out in two phases. In the first one, a set of improvement methods having different 

intensification levels at the four places of the scatter search were evaluated using the XLOLIB instances. In the 

second phase, the scatter search that incorporates the best combination of improvement methods was evaluated 
using a wide set of the hardest benchmark instances (whose description can be found in [11]). For both phases, we 

used ANSI C language for programming the solution algorithm, Visual Studio 6 for compiling, SPSS for the 

1

1 1
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statistical Wilcoxon test and a computer with an Intel XEON dual processor at 3.06 GHZ, 70 GB in hard disk and 

4GB in RAM. 

 

In the first experiment, the performance of the Scatter Search algorithm shown in Fig. 8 was evaluated. Different 

combinations of the five local search algorithms described in the previous section (LS1, LS2, LS3, LS4, and LS5) 

were applied in the four improvement processes indicated. Table 3 shows the results for a subset of all the 

combinations tested, highlighting the combination that produces the best performance algorithm. In this table, the 

combination of local searches used in the algorithm is shown in the first column. The (LS5, LS5, LS5, LS5) 

combination indicates that LS5 was applied in the four places of improvement, while the combination (LS4, LS3, 

LS1, LS4) indicates that LS4 was applied in the first and last places, LS3 in the second, and LS1 in the third place. 

The second column contains the average deviation in percentage from the best-known solutions reached by the 
algorithm on the test instances. The last column shows the percentage deviation with respect to the objective 

function value of the reference combination (LS5, LS5, LS5, LS5). As we can observe, the combination (LS4, LS3, 

LS4, LS3) had the lowest error with respect to the best-known solutions of the test instances, and the largest 

improvement percentage with respect to the reference configuration; therefore the Scatter Search algorithm 

configured with this combination of local searches was used in the second experiment. 

Fig. 6. Structure of the Scatter Search with Multiple Methods of Improvement (MI-SS). 

 

 
Fig. 7. Scatter Search with Multiple Methods of Improvement (MI-SS) Algorithm. 

Procedure MI-SS Algorithm  

       Randomly_generate_P (  ) 

       LS4 (Generating_Ref_Set_quality(  )) ------------------( 1 ) 

       LS3 (Generating_Ref_Set_Diversity(  )) ----------------( 2 ) 

       Update_Best_solutions(  ) 

       while (not stop criterion) 

  do 
   if(stagnation condition) 

  Randomly_generate_P (  ) 

   do 

                           LS4 (Combination_Method( )) -----------( 3 ) 

          while(stop criterion) 

   Delete_except_best(  ) 

             LS3 (Generating_Ref_Set_Diversity(  )) -----( 4 ) 

   while(stop criterion) 

      end_while 

end MI-SS Algorithm 
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Table 3. Evaluation of different combinations of improvement methods in the MI-SS algorithm. 
Combination of 

Improvement Methods 

Average Deviation from Best Known 

(%) 

Percentage of 

Improvement 

LS5, LS5, LS5, LS5 6.36759175 0 

LS1, LS1, LS1, LS1 6.84919255 -7.56331151 

LS2, LS2, LS2, LS2 8.86974463 -39.295121 

LS3, LS3, LS3, LS3 0.61858853 90.2853613 

LS4, LS4, LS4, LS4 0.30895276 95.1480438 

LS3, LS1, LS3, LS1 0.618427378 90.2878922 

LS3, LS3, LS1, LS1 5.29794016 16.7983695 

LS1, LS1, LS3, LS3 0.60104226 90.5609172 

LS4, LS3, LS3, LS3 0.1869835 97.0635131 

LS4, LS3, LS4, LS4 0.18266885 97.1312726 

LS3, LS3, LS4, LS4 0.16042490 97.4806032 

LS4, LS3, LS4, LS3 0.12519809 98.0338235 

LS4, LS1, LS4, LS3 0.16419852 97.4213403 

 

The second experiment consists of assessing the performance of the MI-SS algorithm with respect to the best 

algorithms of the state of the art. For this experiment, the set UB-I of the most challenging standard instances was 

used.  This set includes 255 standard instances: 100 RandomAI, 50 RandomAII, 20 RandomB, 78 XLOLIB, and 7 

Special [11]. For each instance a single run was carried out with a seed of 1471 and time limits of 10 and 600 CPU 

seconds. Tables 4 and 5 show the results for the proposed algorithm and the best algorithms of the state of the art 

reported in [11]. In these tables the average percentage error with respect to the best-known solutions, and the 

number of best-known solutions found is shown for each group of instances solved with the following algorithms: 

Scatter Search (SS), Tabu Search (TS), Memetic (MM) and Scatter Search with multiple methods of improvement 

(MI-SS). At the bottom of both tables the overall performance appears highlighted, which includes the average 

percentage error and the number of best known solutions found. In Tables 4 and 5, the average percentage error is 
calculated as follows: 

            
 

 
    

   
       

  

  
    

 

   

 

where   
     represents the value of the objective function for the best-known solution for instance i,   

  represents 

the value of the objective function for the solution found by the MI-SS algorithm for the same instance, and n is the 

number of instances. 

 
Regarding overall performance, for both time limits, MI-SS clearly outperforms the best Scatter Search algorithm 

solution for LOP (SS) [5]. For the 10 seconds test, the average percentage error decreases from 0.272 to 0.11. The 

number of best-known solutions found increases from 15 to 89. For the 600 seconds test, the average percentage 

error decreases from 0.256 to 0.004. The number of best-known solutions found increases from 20 to 213. For all 

the instances sets, MI-SS improves both indicators (average percentage error and number of best-known solutions). 

Also, MI-SS clearly outperforms the best Tabu Search algorithm solution for LOP (TS) [2]. 

 

Table 4. Experimental results for UB-I instances (10 sec.) 

Instances 
Performance 

Indicators 
TS [2] MM [8] SS [5] MI-SS  

RandA1 
% Error (Avg) 0.13 0.05 0.27 0.14 

# Best 5 32 1 26 

RandA2 
% Error (Avg) 0 0 0.02 0 

# Best 3 39 0 39 

RandB 
% Error (Avg) 0 0 0.04 0 

# Best 20 20 11 20 

XLOLIB 
% Error (Avg) 0.63 0.13 0.69 0.13 

# Best 0 2 0 1 

Spec 
% Error (Avg) 0.46 0.06 0.34 0.07 

# Best 3 3 3 3 

Average % Error 0.4 0.08 0.272 0.11 

Total # Best 31 96 15 89 

 

On the other hand, in the experiment with a time limit of 10 seconds, MI-SS has a lower overall performance than 

that of the state-of-the-art solution for LOP (MM); however in the experiment with 600 seconds of time limit, MI-

SS clearly outperforms the MM algorithm. The average percentage error decreases from 0.014 to 0.004, which 
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constitutes a 71 % of improvement. The number of best-known solutions found increases from 207 to 213, 

indicating an improvement of 2.89 %. It is remarkable that in this experiment MI-SS obtains 53 new best-known 

solutions. An update of the best-known solutions for the UB-I instances set reported in [11] is presented in Table 8.  

The overall performance improvement of the MI-SS algorithm could be explained as a consequence of a better 

balance reached between intensification and diversification with the Scatter Search structure used in the MI-SS 

algorithm. The improved balance incorporated in the MI-SS algorithm seems to increase its performance. 

 

As MM and MI-SS are randomized algorithms, a Wilcoxon non parametric hypothesis test was applied to determine 

if the observed differences, in the average error percentages, are statistically significant [17]. For this test the 

RandA1 and XLOLIB instances were distributed in groups of instances with the same size: RandA1 (100), RandA1 

(150), RandA1 (200), RandA1 (500), XLOLIB (150), and XLOLIB (250). Tables 6 and 7 show the Wilcoxon test 
results using a significance level α = 0.05. The tables contain the number of instances in each set (N), the names of 

the sets, the number of ranks after removing ties (n), the values for R+ and R- corresponding to the sum of positive 

and negative differences between the percentage errors found for each solved instance with MM and MI-SS, and the 

reference range taken from a Wilcoxon table (VC). Finally, the winner algorithm is shown in the last column.  

 

In these tables, if R- is larger than R+, the algorithm with the best performance is MI-SS; otherwise the Memetic 

algorithm (MM) is the winner. When the highest value of R+ and R- is inside the VC range, the null hypothesis (both 

algorithms have the same performance) is accepted, and we can establish that there is not a significant difference in 

their performance; otherwise, the null hypothesis is rejected and the difference is statistically significant. As we can 

see in last column of Tables 6 and 7, the MI-SS has virtually the same performance as the Memetic algorithm. 

 
Table 5. Experimental results for UB-I instances (600 sec.) 

Instances 
Performance 

Indicators 
TS [2] MM [8] SS [5] MI-SS 

RandA1 
% Error (Avg) 0.10 0.006 0.19 0.002 

# Best 19 74 2 84 

RandA2 
% Error (Avg) 0 0 0.01 0 

# Best 3 50 2 50 

RandB 
% Error (Avg) 0 0 0.02 0 

# Best 20 20 13 20 

XLOLIB 
% Error (Avg) 0.4 0.008 0.82 0.012 

# Best 0 59 0 52 

Spec 
% Error (Avg) 0.26 0.026 0.24 0 

# Best 3 4 3 7 

 Average % Error 0.15 0.014 0.256 0.004 

Total # Best 45 207 20 213 

 

Table 6. Wilcoxon test results for 10 seconds of time limit (Memetic algorithm versus  MI-SS) 

Execution time limit of 10 seconds (MM / MI-SS) 

N Instances n R
+
 R

-
 VC Best Performance 

25 RandAI (100) 6 21 0 0-21 MM, MI-SS 

25 RandAI(150) 17 109 44 34-119 MM, MI-SS 

25 RandAI(200) 25 194 131 89-336 MM, MI-SS 

25 RandAI(500) 25 325 0 89-236 MM 

39 XLOLIB(150) 39 347 433 249-531 MM, MI-SS 

39 XLOLIB(250) 39 467 313 249-531 MM, MI-SS 

 

Table 7. Wilcoxon test results for 600 seconds of time limit (Memetic algorithm versus MI-SS) 

Execution time limit of 600 seconds (MM / MI-SS) 

N Instances n R
+
 R

-
 VC Best Performance 

25 RandAI (100) 1 1 0 NA NA 

25 RandAI(150) 2 2 1 NA NA 

25 RandAI(200) 14 51 54 21-84 MM, MI-SS 

25 RandAI(500) 25 57 268 89-236 MI-SS 

39 XLOLIB(150) 37 591 112 221-482 MM 

39 XLOLIB(250) 39 418 362 249-531 MM, MI-SS 
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7.0 CONCLUSIONS AND FUTURE WORK 

 

In this paper, the linear ordering problem is approached. This is an NP-hard relevant problem that has been solved 

using several metaheuristics. We propose to improve the best Scatter Search solution of the state of the art for LOP, 

using a modified structure that incorporates multiple local searches. The core idea of our approach consists of 

achieving a better balance of intensification and diversification of the metaheuristic, using local search algorithms 

with different levels of intensification. 

 
An experimental study was carried out using the most challenging sets of instances. The performance of the 

proposed Scatter Search algorithm (MI-SS) and the best of the state-of-the-art algorithms for LOP (SS, TS, and 

MM) were compared. The experimental results show that MI-SS clearly outperforms the Scatter Search and Tabu 
Search algorithms. 

 

Currently, the Memetic algorithm is considered the best of the state-of-the-art algorithm solution for LOP. It is 

worth noticing that, regarding overall performance, the proposed Scatter Search algorithm outperforms the Memetic 

algorithm when a time limit of 600 seconds is used. It achieves a reduction of 71 % in the average percentage error, 

an increase of 2.89% in the number of best-known-solutions found, and finds 53 new best-known solutions. A 

Wilcoxon statistical hypothesis test shows that MI-SS has virtually the same performance as the Memetic algorithm. 

This performance improvement is due to a larger diversification capacity that MI-SS seems to have as a result of the 

combination of multiple local searches incorporated into MI-SS. 

 

We are currently applying the proposed approach to improve the balance of intensification and diversification of a 
GRASP solution for LOP. 

 

Table 8. New best-known solutions obtained by the MI-SS algorithm in 600 seconds 
 Instances New Best   Instances New Best 

 RandA1 (100)   XLOLIB (150) 

1 N-t1d150.04 234510  1 N-stabu2_150 4327571 

 RandA1(200)  2 N-t70d11xn_150 5825692 

2 N-t1d200.01 410992  3 N-t75d11xx_150 9643994 

3 N-t1d200.04 410105  4 N-tiw56r67_150 2057074 

4 N-t1d200.08 408883   XLOLIB (250) 

5 N-t1d200.13 409270  5 N-be75tot_250 30984685 

6 N-t1d200.15 409073  6 N-stabu2_250 11509729 

7 N-t1d200.18 407728  7 N-stabu3_250 11906623 

8 N-t1d200.25 406476  8 N-t59d11xx_250 3842366 

 RandA1(500)  9 N-t59f11xx_250 3994038 

9 N-t1d500.01 2404308  10 N-t65f11xx_250 8410169 

10 N-t1d500.04 2414801  11 N-t70b11xx_250 25405187 

11 N-t1d500.06 2400280  12 N-t70d11xx_250 16043521 

12 N-t1d500.08 2414152  13 N-t70f11xx_250 13589177 

13 N-t1d500.09 2407035  14 N-t70l11xx_250 1113154 

14 N-t1d500.10 2406593  15 N-t75d11xx_250 25038262 

15 N-t1d500.11 2416484  16 N-t75k11xx_250 4094205 

16 N-t1d500.12 2403299  17 N-t75n11xx_250 4525472 

17 N-t1d500.14 2410932  18 N-tiw56n54_250 2099294 

18 N-t1d500.15 2412056  19 N-tiw56n62_250 4143436 

19 N-t1d500.16 2416692  20 N-tiw56n67_250 6326150 

20 N-t1d500.17 2401928  21 N-tiw56n72_250 11151289 

21 N-t1d500.19 2404662  22 N-tiw56r54_250 2387755 

22 N-t1d500.20 2415076  23 N-tiw56r67_250 5292693 

23 N-t1d500.22 2408392  24 N-tiw56r72_250 7452411 

24 N-t1d500.23 2408978   Special 

25 N-t1d500.24 2403497  1 N-atp134 1797 

26 N-t1d500.25 2406618  2 N-atp163 2075 

    3 N-atp452 2711 
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