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ABSTRACT 

Support Vector Machines(SVMs) have become more popular than other algorithms for pattern classification. The 

learning phase of a SVM involves exploring the subset of informative training examples (i.e. support vectors) that 

makes up a decision boundary. Those support vectors tend to lie close to the learned boundary. In view of nearest 

neighbor property, the neighbors of a support vector become more heterogeneous than those of a non-support vector. 

In this paper, we propose a data selection method that is based on the geometrical analysis of the relationship between 

nearest neighbors and boundary examples. With real-world problems, we evaluate the proposed data selection method 

in terms of generalization performance, data reduction rate, training time and the number of support vectors. The 

results show that the proposed method achieves a drastic reduction of both training data size and training time without 

significant impairment to generalization performance compared to the standard SVM.  

 

Keywords: Support Vector Machine, Nearest Neighbor Rule, Tomek Link, Data Selection. 

 

1.0 INTRODUCTION 

 

Classification algorithm is to find an inductive rule from pre-classified data, which can predict the class of an example 
without known class as one among several classes. As one of the popular classification algorithms, Support Vector 

Machine(SVM) has gained wide acceptance due to its solid statistical foundation and reported good generalization 

performance in many applications [1, 2]. Training a SVM necessitates solving a constraint quadratic problem that 

requires large memory and large training time proportional to the number of training data. The efficiency of SVM 

depends on the number of support vectors during both the training and prediction phases. It has been analytically 

studied that as the number of training examples increase, the number of support vectors also increase [3]. The 

computational burden of standard SVM solvers is very largely determined by the amount of memory required to store 

the active part of the kernel matrix. The training time increases dramatically due to the repeated kernel computations if 
the memory requirement exceeds the available memory. The number of support vectors imposes a penalty on the 

prediction phase because the computation of the decision function requires a time proportional to the number of 

support vectors. Thus, the time complexity of SVM training and testing becomes a real challenge when the training 

size is made up of thousands of data or more [4].  

 

In applying a SVM, the training process has       time and       space complexities, where n is the size of 
training dataset. These complexities may become very critical as the number of training data increases. On the other 

hand, the decision function of SVM depends only on a small set of support vectors. If we select a subset of training 

data which includes latent support vectors, we will model the same decision function by solving the quadratic problem 

for the reduced set of examples. The mentioned complexity depends on how to select training examples that are likely 

to be support vectors. 

 

Data selection techniques for SVM learning have been studied for making the number of training examples 
controllable for intending not to decrease generalization capability. The key concern of this approach is that a fraction 

of training data might become a decision-boundary consistent set:- the decision boundary learned by the selected data 

is alike to that by the entire training data [5]. The time complexity of a SVM can be shortened by the reduced training 

set from the given training data under consideration of a little loss of generalization performance with the entire set of 

training data. These data selection methods are based on sampling, nearest neighbor rule, and clustering. Sampling 

based methods are adapted to reduce the training set, but cannot provide a way to select the training points around the 
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decision boundary [6,7,8]. 

Nearest neighbor property provides a hint on more informative examples by using the fact that training examples 

around a decision boundary tends to have more heterogeneous neighbors in their class labels. The SMOTE (Synthetic 

Minority Over-sampling Technique) rule adds synthetic data to the minority class according to nearest neighbor rule 

[9]. The study reported that the SMOTE+SVM outperforms the sampling+SVM in the various tests [6]. The Neighbor 

Property based Pattern Selection(NPPS) algorithm chooses only the samples around separation boundary by defining 

neighbor entropy and neighbor match based on k-nearest neighbor algorithm[10]. In applying the NPPS, the number 

of selected examples depends on k, entropy, and matched ratio. The FCNN(Fast Condensed Nearest Neighbor) 

computes a training set consistent subset from the original set using nearest neighbor property [11]. This algorithm 

uses the selection criterion that is guided by the decision boundary. Through various experiments, the FCNN+SVM is 

well scalable on large problems and outperforms the results of other condensed nearest neighbor algorithms in terms 
of data reduction and accuracy [5]. 

 

The confidence measure and Tomek link are used to select boundary points for SVM learning. The confidence 

measure of an example counts the number of homogeneous data within a sphere that is as large as possible [12]. If the 

confidence measure of an example is large, it is not likely to be around a boundary. The Tomek link often exists around 

the convex hull of the two classes. The optimal hyperplane bisects the line segment of positive and negative examples 

in a Tomek link. These data selection algorithms also use nearest neighbor property and can control the number of 

selected data.  

 

The combination of edge detection and clustering method reduces a training size. An edge detection method points out 

the set of boundary examples and the k-means clustering algorithm adds more examples to preserve the original 
distribution of a problem [13]. Like the NPPS, the number of selected examples is controlled by k.  

 

In this paper, we propose a data selection technique for SVM. The proposed technique is motivated by the two 

characteristics of SVM:- kernel mapping and large margin classifier. Through kernel methods, a SVM detects hidden 

regularities in the selected feature space and thus a data selection technique can be modeled in the feature space, not in 

the input space. The training phase of large margin classifier decides a small subset of training samples that only play 

significant role in constructing a decision function. Heterogeneous class samples tend to be placed around the decision 

hyperplane. These samples are selected through analyzing the neighborhood of a training data. Therefore, like the 

previous studies, we use nearest neighbor algorithm in order to provide an efficient way to reduce the training set by 

filtering out meaningless patterns.  

 
The rest of this paper is organized as follows. In Section 2, we give a brief overview of kernel methods, large margin 

classifiers and implementations of SVM. Section 3 presents the proposed method that selects the subset of training 

examples for training a SVM. In Section 4, we report the experimental results on several real-world datasets. The 

results are compared to those of SVM and NPPS in terms of missclassification rate, data reduction rate, training time 

and the number of support vectors. Concluding remarks are provided in Section 5.  

 

2.0 RELATED BACKGROUND 

 

This section briefly discusses the mathematical background of kernel methods and large margin classifiers to 

implement a SVM for classification. With no loss of generality, we only consider a two-class classification problem. 

Assume that a classification problem 
( )

{(x , ) | x ,  1,  1, 2, , }
i d

i i
P y R y i n     . Each 

( )x i
exists over input space 

   and its class is a positive example if        and a negative example if       .  

2.1 Kernel Methods 

Kernel methods are used to map training examples into new high-dimensional feature data so that the set of feature 

data is used for finding regularities that are not detectable in the original space. A classifier is applied to find a set of 

classifying rules from the mapped examples in the feature space. This approach lessens the learning complexity of a 

classification task and make the simple classifiers more practical in learning predictive rules [13]. This is the key 

principle of SVM learning in the case that a training set is not linearly separable. We transform the problem P into the 

new problem 
( ) ( )

{( (x ), ) | (x ) ,  1,  1, 2, , }
new i i d

i i
P y R y i n        by D ( )D d  dimensional feature mapping  .  
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1 2 1 2
: x ( , , , )   (x) ( (x), (x), , (x))

t t

d D
x x x              (1) 

Here, (x) is the corresponding vector in 
d

R  and (x)
j

   is an arbitrary linear or nonlinear function from the 

input space to the higher dimensional feature space. The (x) makes the input vectors congregated more compactly 

in the feature space but the computation cost is expensive. Under mapping  , the norm distance between      and 

     denotes as  
( ) ( ) ( ) ( )

( (x ), (x )) || (x ) (x ) ||
i j i j

d      .                                   (2) 

 

A kernel function K of      and      is the inner product          and         in a feature space.  

 
( ) ( ) ( ) ( )(x ,x ) (x ), (x )i j i jK                 (3) 

 

The use of kernel methods makes the problem complexity simplified by transforming the examples into the high 

dimensional data and, further more, can make use of infinite dimensions[1,14]. An appropriate choice of kernel 

function corresponds to an inner product of training data over input space and the computation of 

                      is computed without explicit mapping     . The popular kernels are linear, polynomial, 

radial basis, and sigmoid functions shown in Table  1. The square of norm distance (2) is expressed with inner product 

and kernel function (4).  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

( (x ), (x )) ( (x ), (x )) 2 ( (x ), (x )) ( (x ), (x ))
i j i i i j j j

d K K K                          (4) 

 

According to Mercer’s theorem, the kernel or Gram matrix                  
   

 must be positive semi-definite or 

has nonnegative eigenvalues [1,13,14]. Also, the kernel matrix must be symmetric.  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( (x ), (x )) (x ), (x ) (x ), (x ) ( (x ), (x ))
i j i j j i j i

K K                   (5) 

It may imply a kernel nearest neighbor algorithm since we compute kernel norm distance and apply standard nearest 

neighbor algorithm in a kernel-based feature space. In [15], the kernel nearest neighbor algorithm degenerates to 

standard nearest neighbor algorithm when we use a kernel method. Therefore, all results of nearest neighbor algorithm 

can be considered as specific results of kernel nearest neighbor algorithm. This can expect that the results of kernel 

nearest neighbor algorithm are always no worse than those of standard nearest neighbor algorithm through a kernel 
method. In this paper, a kernel nearest neighbor rule is devised to pick up training data around a decision boundary. A 

pair of examples seems to be near a decision boundary if their norm distance is relatively small and their class labels 

are different.  

Table 1: The examples of kernel functions with their own adjustable parameters 

Kernel Expression Parameter 

Linear ( ) ( ) ( ) ( )
(x , x ) x , x

i j i j
K    - 

Polynomial ( ) ( ) ( ) ( )
(x , x ) ( x , x )

i j i j d
K c     c, d 

Radial basis 

( ) ( )

( ) ( )

2

2

||x x
(x , x ) exp(

- ||
)

i j

i j
K


     

Sigmoid 
( ) ( ) ( ) ( )

(x , x ) tanh( x , x )
i j i j

K c      , c 

 

2.2 Large Margin Classifiers 

A SVM tries to learn a linear function for new problem      changed from P. The learned function becomes a 

hyperplane which separates a feature data into one of two classes. The learned hyperplane separates the data with the 

maximum margin in the feature space   . Given a hyperplane (w,b) and a test data x, the linear decision function f(x) 
predicts the class of x  
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f(x) =< w, Φ (x) > +b        (6) 

 

where w is normal to the hyperplane and b is a bias. The test data x is a positive data if (x) 0f  or a a negative data 

otherwise. If the problem is linearly separable over the feature space, then there exists a hyperplane w, (x) 0  

such that the distance ( )( )i

iy f x to ( )x i from the hyperplane is greater than 0. 

 

For a hyperplane (w, )b such that (x) w, (x) 0f b     , all pairs ( w, )b  for R  are the same hyperplane. 

The hyperplane is rescaled so that the distance to the closest example from the hyperplane should be 1. Then, each 
( )(x , )i

iy P satisfies 
( )(x ) 0i

iy f  . The geometric margin i  of 
( )(x , )i

iy  is the distance to the hyperplane in 

which the minimum distance is at least 
1

|| w ||
.  

(i)1
( w, (x ) )

|| w ||
i iy b                                                                              (7) 

 

Therefore, the SVM problem is to model the separating hyperplane with the large margin. The solution is 

accomplished by minimizing || w ||  under the distance constraints and formulated as the primal quadratic 

optimization problem (8).  

2

( , )

( )

1
min || w ||

2

. (x ) 1,  

w b

i

is t y f i 

                                             (8) 

 

When newP  is not linearly separable due to class overlapping or noisy data, SVM allows for example dependent loss. 

By introducing a slack variable i  for each training data ( )x i and relaxing distance constraints  

 
( ) ( )(x ) ( w, (x ) ) 1 ,   and 0i i

i i i iy f y b i                           (9) 

 

the primal problem (8) is modified as (10).  

2

(w, )

( )

1
min || w ||

2

(x ) 1
.

0,  

b

i

i i

i

C

y f
s t

i









 

 

                                                    (10) 

The parameter C is a positive penalty constant that controls the trade-off between large margins and margin violations. 

The slack variable i  is the loss of 
( )x i

 that measures how much its distance constraint is satisfied and allowed to be 

non-separable in finding a solution. Using the Lagrange multiplier method, the dual quadratic programming (11) of 

(10) is preferred to find a solution due to simplified constraints and implicit feature mapping.  

 

( ) ( )

α
1 1 1

1

1
max (x ), (x )

2

. 0,  0 ,  

n n n
i j

i i i j j

i i j

n

i i i

i

y y

s t y C i

  

 

  



    

   

 



                         (11) 

 
The constraints of (11) are much more simplified than those of (10) and easier to handle. By simply replacing the inner 

product of (11) with a certain kernel function (3), a SVM can implicitly map the training data ( )x i  to the feature data 

(x) in DR . According to the Karush-Kuhn-Tucker(KKT) optimality condition, the solution of (11) groups the 

training examples into one of three categories depending on :- non-support vector, ordinary support vector, and error 

support vectors.  



Near-boundary data selection for fast support vector machines. pp 23-37  

 

27 

Malaysian Journal of Computer Science.  Vol. 25(1), 2012 

 

( )

( )

( )

 0      (x ) 1  ( non-support vector )

0    (x ) 1  ( support vector )

         (x ) 1  ( error support vector ) 

  i

i i

i

i i

i

i i

y f

C y f

C y f







  

   

  

 

 

Non-support vectors have no influence in building the decision function. The ( )x i ’s( 0i  ), lies either on the margin 

or inside the margin area. The ( )x i ’s( i C  ) lie on the opposite class area. Only the ordinary and error support 

vectors build the decision boundary. The weight vector and bias (w, )b is computed with support vectors.  

 
( )

0

w (x )

i

i

i i
y






                                                            (12) 

  

The bias b is estimated with a pair of 
( )(x , 1)i   and ( )(x , 1)j   such that 0 ,i j C   .  

( ) ( )1
 = - (<w, (x ) <w, (x ) )

2

i i
b                                                 (13) 

   

Knowing the parameter (w, )b , the decision function (6) of a test example x  becomes  

 
( )

0

(x) (x ,x) .
i

i

i i
f y K b






                                                   (14) 

     

2.3 Implementation Issues of SVMs 

Training a SVM classifier is equal to solve the dual problem (11) under the constraints. The most straightforward way 

to train a SVM is to feed to a quadratic programming(QP) solver. Standard QP solvers, such as CPLEX, LOQO, 

LINDO, MINOS, and Matlab QP solver, are used for finding the optimal solution [16]. For the large-scale data, these 

standard solvers are unlikely to find the solution due to the limitation of large memory and enormous training time. In 

order to overcome this difficulty, various approaches have been studied by utilizing the sparsity of the SVM solution 

and the KKT optimality conditions.  

 
The chunking strategy [17] make use of the sparseness of a SVM solution and a generic QP solver. It begins to learn a 

SVM with an arbitrary subset or chunk of data. The algorithm continues to learn a SVM of a new chunk consisting of 

the support vectors from the previous chunk and some of the non-chunked data violating the KKT conditions. This 

procedure is iterated until the entire set of nonzero Lagrange multipliers are identified. Even though this approach is 

applicable for large-scale data, it requires a QP optimizer to solve the smaller QP problems in sequence. 

 
The decomposition algorithm [18,19] breaks a large problem into a series of smaller QP subproblems and finds the 

solution of the subproblems. The algorithm solves a sequence of QP subproblems that always contain at least one 

training example violating the KKT conditions. Consequently, each learning step keeps the size of the QP subproblem 

fixed and updates one training example for the next iteration. The decomposition approach is effective for training 

large-scale problem and benefits from fast learning, compared to the chunking algorithm. However a QP solver is still 

required for implementing this algorithm. 

 

The key idea of Sequential Minimal Optimization(SMO) [20] is that a QP subproblem of size two is solved 

analytically without a QP solver. Various heuristics are based on the KKT conditions to choose two training examples 

to jointly optimize at each iteration [16]. Through experiments, the SMO algorithm allows to be several order of 

magnitude faster and to exhibit better scaling properties than the classical chunking algorithm. 
 

According to the KKT optimality condition, the learned hyperplane depends only on the small set of support vectors. 

The number of support vectors is much smaller than the total number of training examples. In most cases, support 

vectors lie either on the margin or inside the margin area. A SVM model will be learned fast if the set of training 

examples consists only of examples that might become support vectors. The decision hyperplane will be similar to or 

the same as the learned boundary with the whole training set. In theory, the QP solver seeks to identify the support 
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vectors from the given training examples. The support vectors are the training examples around the learning 

hyperplane and more likely to be misclassified. If there exist a computational way to select training examples which 

might be support vectors, then the speed of SVM training can be improved without degrading the generalization 

performance. Even though the number of the reduced training set is larger than that of the set of desired support 

vectors, the SVM training speed will be significantly improved since the algorithm scales quadratically to the number 

of examples on many problem. In the next section, we propose a data reduction method that selects a subset of training 

examples for fast SVM training. 

 

3.0 DATA SELECTION FOR TRAINING SVMs 

 

The proposed data selection strategy is based on the geometrical analysis that a SVM learns an optimal hyperplane 
bisecting the two convex sets so that the margin distances of the closest positive and negative examples to the decision 

boundary are equidistant. Support vectors tend to be the training examples closer to the decision boundary. Even 

though the final decision function is not built until a SVM finishes learning, the neighborhood property can be utilized 

to select training samples around a decision boundary. The nearest neighbor members of a training example are easily 

computed for any distance metric. 

 
The neighbors of boundary or noisy samples are much more heterogeneous than those of centered samples. Tomek 

links have been employed in order to improve the learning performance by removing noisy or borderline data [12, 20, 

21]. Tomek links are pairs of samples with different classes. In a 2-class classification, the simple modification of 

nearest neighbor algorithm can implement a Tomek link detection method. If the classes of an example and its neareat 

neighbor are different, the pair will be a Tomek link.  

 

The consideration of Tomek links and distance metric leads to the data selection algorithm. The algorithm is based on 

set operations and shown in Fig 1. Given a training set T=(X,Y) and a kernel mapping K     , the algorithm returns the 

selected subset S by using the distance matrix and the set of Tomek links. The distance matrix d     ,  and class vector 

Y is looked up for Tomek links set in ascending order. Let H be a set of Tomek link pairs         where        
     . The shorter pairs of H become more informative than the longer pairs in consideration of boundary examples. 

The nearest neighbors of examples in T are checked for the reduced training set S only including boundary points. 

Boundary points are inferred from closest pairs with different class labels. 

 

SelectExamples(X[1:n],Y[1:n],K(∙,∙)) initializes the set S of class members of the shortest distance        . The 

iterative step tests whether the nearest neighbors of the next pair in H are augmented to S and continues until all 

members of T are checked. The boolean variable V[p] is marked by visited if the p-th example is tested. 

The detail operations of the data selection algorithm are geometrically described in Fig 2. A circle belongs to one class 

and a square belongs to the other class. The hollowed points are selected as the members of S by the previous iterations. 

The decision boundary is drawn by dotted line and a Tomek link pair is connected with solid line. The neighbors    

and    are the nearest neighbors of p and q and marked with the dashed arrows. The next pair (p,q) of H and the 

neighbors    and    are examined for being new candidates of S if p or q   S. According to which neighbor of p or q 

is a member of S or not in S, the possible case can be one of three conditions:- q   S and     S, q   S and     , or 

     and     . When q is in S and     S, the neighbor    is much closer than q because    is preselected as a 

member of S. When q is in S and     , the class label of    is the same as that of p, the distances to p and    from 

q is compared in order to pick up a near sample to the decision boundary. If               , then    is a new 

member of S because this point is much closer than p to the decision boundary. Otherwise, the algorithm selects p as a 
member of S. The distance measure provides a way to select which of Tomek link members or their neighbors are 

closer to the decision boundary. If    and    are not in S, the algorithm simply selects the closer point of p or q by 

comparing the distances         and        .  
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Fig. 1. Data selection algorithm for SVM learning 

In the iteration step, the algorithm finds the nearest neighbors    and    of pi and qi for           . If ip S , the 

algorithm sets the indices of ,  ,   and p qp q n n . The nearest neighbors    and    are checked for their membership in 

S.  

 

When q S and pn S (Fig 2 (a)), the algorithm skips this case after assigning visited to V[p] . If q S and    

 (Fig 2 (b)), the algorithm chooses the closer point of p and np from q. The point p is added to S if                

or     otherwise. If the class labels of nearest neighbors are the same but not in S, then it is considered that p or q is 

farther away from the boundary but their closest members can become alternatives for new members in S. However, if 

   is not in S, the distance from    to q is checked for closeness to the boundary. In the case of      and    

 (Fig 2 (c)), the algorithm adds         to S if                  or         otherwise. When    and    are in 

S, the algorithm does not check this case because    and    are more informative than p and q. Except these three 

cases, other possible cases do not happen because only ordered Tomek links pairs are checked as new members in S. 

The algorithm terminstes after all members in T are checked. 

                                           

SelectExamples                       {X and Y are the training examples and classes. 

       is a kernel function. This functions returns the set S of indexes on the selected 

examples in X and Y.} 
                            = None 

Calculate the kernel matrix                by Equation (4) 

Compute Tomek ordering                                 such that             
and                        for all i and j,      

repeat 
  for all each            do 

                                     

                                    

    if      then 

                        

    end if 

    if     and      then 

           = visited 

    end if 

    if     and      and                then 

                           

    else 

                             

    end if 

    if      and      and                  then 

                                    

    else 

                                    

    end if 

  end for 

until                  
return S 
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Fig. 2. The possible cases for selecting boundary examples 

When applying the data selection algorithm for classification problem P, we take the three steps. Firstly, we utilize a 

kernel method with necessary parameter settings for P. Secondly, a new problem      is made by selecting the 

training set S with the algorithm                           . Finally, we model and evaluate a linear decision 

function of a  SVM on      with the same kernel function at the first step. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 3. The simulation results of nearest neighbor and SVM with an artificial problem 

Fig 3 shows the learning effect on an artificial problem in the plane. The artificial problem consists of 150 samples 

with 118 negatives and 32 positives generated by random numbers. The proposed algorithm selects the 26 

examples(17%) which have the equal number of positives and negatives. Fig 3 (a) and (b) are the simulation results of 

nearest neighbor algorithm without and with data selection. The modeled decision boundaries are different and there 

exit some missclassified examples. Fig 3 (c) and (d) are the decision boundaries that a SVM learns with C=300 and 

chooses a RBF kernel with 
2 0.5  . The support vectors are highlighted with the decision boundary. The SVM 

model of the reduced data set constructs the same decision boundary as that of the original problem. Also, their 

numbers of support vectors are exactly same. There are 7 support vectors in which 3 positives and 4 negatives are 

chosen. The result of nearest neighbor algorithm has 4 points predicted wrong but the SVM correctly classifies all 
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points. In both cases, the class boundary of SVM is smoother and more accurate than that of nearest neighbor 

algorithm. 

 

4.0 EXPERIMENTAL RESULTS 

In this section, we show the experimental results on various real-world problems [19, 22]. The problem size varies 

from a few hundreds to ten thousands. Each task uses a radial basis kernel with 
2 0.5   and the performance 

metrics are measured through a 5-fold cross-validation way. The metrics is classification error, data reduction rate, the 

number of iterations and the number of support vectors. Table 2 describes all the selected problems in terms of data 

size and the number of attributes. The problems are processed for having two classes through merging or extracting 

some class examples. The penalty parameter C is 0.5, 1, 5, 10, 100. LIBSVM is chosen as the implementation of the 
SVM algorithm [22]. The results of our learning approach are compared to those of SVMs with the original problems. 

In order to show the efficiency of a data selection approach in SVM learning, we test the NPPS algorithm [10] for the 

same tasks. The value k of nearest neighbors is 3(NPPS-3) and 5(NPPS-5). 

Table 2: The selected problems in the experiments 

Problem 
Size 

# Features 
Training Testing 

Breast Cancer(BC) 546 137 10 

Australian(AU) 551 139 14 

Pima(PI) 614 154 8 

Liver Disorder(LD) 276 69 6 

Ionosphere(IO) 280 71 34 

Vowel(VO) 528 462 10 

Letter-BG(BG) 759 425 16 
Car Evaluation(CE) 1,382 346 6 

Mushroom(MU) 6,498 1,626 112 

Adult5a(AU) 6,414 26,147 123 

Svmguide1(SV) 3,089 4,000 4 

Web4a(WE) 7,366 4,383 300 

Shuttle(SH) 14,500 43,500 9 

 

Table 3 presents the misclassification errors in training and testing. In most of the selected problems, the error results 

of the proposed approach are competitive to those of the SVM. In Fig 4 and 5, the proposed approach outperforms the 

NPPS-3 and NPPS-5 except Australian, Pima, and Adult5a. The training error of SVM is more accurate than that of 

the data selection approaches in Australian and Inosphere. With Breast Cancer, Australian, Svmguide1 and Shuttle, 

the testing error of SVM is higher than that of the data selection methods (Fig 5). Comparing the results of the NPPS 
method, the NPPS-3 might not select enough near-boundary samples to learn a SVM decision function. When the 

NPPS applies to Mushroom, the algorithm cannot  construct a reduced training set for SVM. This is because the 

NPPS could not select any examples in the data selection step which is shown in Table 4. 

Table 3: Misclassification error in training and testing 

Problem 
Training Testing 

SVM NPPS-3 NPPS-5 Proposed SVM NPPS-3 NPPS-5 Proposed 

Breast Cancer(BC) 0.03 0.11 0.12 0.03 0.05 0.31 0.13 0.08 

Australian(AU) 0.11 0.26 0.22 0.28 0.14 0.14 0.15 0.24 

Pima(PI) 0.22 0.26 0.26 0.32 0.24 0.22 0.21 0.24 

Liver Disorder(LD) 0.27 0.31 0.26 0.22 0.26 0.34 0.26 0.05 

Ionosphere(IO) 0.05 0.00 0.00 0.03 0.08 0.30 0.23 0.10 

Vowel(VO) 0.09 0.25 0.01 0.10 0.09 0.64 0.27 0.09 

Letter-BG(BG) 0.02 0.21 0.03 0.01 0.03 0.33 0.11 0.02 
Car Evaluation(CE) 0.01 0.05 0.04 0.02 0.03 0.11 0.11 0.03 

Mushroom(MU) 0.00 - - 0.00 0.00 - - 0.00 

Adult5a(AU) 0.13 0.19 0.20 0.27 0.16 0.16 0.16 0.15 

Svmguide1(SV) 0.03 0.34 0.26 0.06 0.04 0.40 0.09 0.15 

Web4a(WE) 0.01 0.04 0.05 0.01 0.01 0.04 0.05 0.01 

Shuttle(SH) 0.07 0.35 0.28 0.03 0.03 0.34 0.28 0.13 
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Fig. 4. Misclassification error in training 

 
Fig. 5. Misclassification error in testing 

Table 4 and 5 analyze the effects of data reduction and learning time. Fig 6 and 7 show their ratios in proportion to 
those results in SVMs. The reduction rate is estimated by the number of selected samples over the original training size. 

The reduction rate of the proposed approach varies from at least 2.6% (Web4a) to at most 56.2% (Liver Disorder). 

This is an evidence that a great number of examples can be removed from the original problems, but the SVM learning 

might make up for a little loss of the generalization capability of the whole training set (Fig 4 and 5). In most problems, 

the reduction rate of the proposed data selection algorithm is between that of NPPS-3 and that of NPPS-5. The rate of 

NPPS-5 is higher than that of NPPS-3, depending on the number k of neighbors.  
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Table 4: Comparisons of the numbers of selected examples 

Problem SVM 
NPPS-3 NPPS-5 Proposed 

No % No % No % 

Breast Cancer(BC) 546.0 54.8 10.0 123.5 22.6 60.0 11.0 

Australian(AU) 551.0 152.0 27.6 278.8 50.6 163.4 29.7 

Pima(PI) 614.0 304.6 49.6 433.8 70.7 254.6 41.5 

Liver Disorder(LD) 276.0 199.0 72.1 246.4 89.3 155.2 56.2 

Ionosphere(IO) 280.0 40.8 14.6 62.8 22.4 72.2 25.8 

Vowel(VO) 528.0 8.6  1.6 52.0 9.8 184.0 34.8 

Letter-BG(BG) 759.0 23.6  3.1 54.0 7.1 265.6 35.0 

Car Evaluation(CE) 1,382.0 296.4 21.4 480.8 34.8 663.2 48.0 

Mushroom(MU) 6,498.0 - - - - 2779.0 42.8 
Adult5a(AU) 6,414.0 1,584.6 24.7 2,338.4 36.5 1571.0 24.5 

Svmguide1(SV) 3,089.0 333.0 10.8 441.0 14.1 1183.4 38.3 

Web4a(WE) 7,366.0 181.4  2.5 298.6 4.1 190.6 2.6 

Shuttle(SH) 14,500.0 22.0    0.2 34.6 0.2 1842.8 12.7 

 
Fig. 6. Data selection ratio 

Table 5 and Fig 7 presents the total of iterations and the relative rates of the data selection approaches to the SVM 

learning. The learning time can be estimated by the number of iterations. In the data selection approaches, the number 

of iterations becomes relatively small compared to that of a SVM. Comparing Table 4 and Table 5, the data selection 
approach helps to curtail the SVM learning time. In most experiments, a large number of iterations are reduced. The 

proposed method takes 2 times as long as the SVM for Letter and the NPPS-5 takes 3 times for Vowel. Generally a 

data selection method can speed up the training process by reducing the time complexity of a given training set and 

thus, the time taken for the whole learning process might be smaller than that by a standard SVM. Let ns be the size of 

the selected examples. The time complexity for the data selection and a SVM is 
2 3( )sO n n , where the cost of the data 

selection approach is and the cost of the SVM  is 
3( )sO n . The value ns depends on the characteristics of the training 

set,  but usually it holds that ns <<n, with ns corresponding to a small part of the whole trainging set.  
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Table 5: Trainingns of the number of iterations 

Problem SVM 
NPPS-3 NPPS-5 Proposed 

No % No % No % 

Breast Cancer(BC) 153.7 29.8 19.4 74.4 48.4 59.8 38.9 

Australian(AU) 681.4 174.6 25.6 278.8 40.9 181.8 26.7 

Pima(PI) 493.8 274 55.5 433.8 87.8 332.4 67.3 

Liver Disorder(LD) 246.6 183.2 74.3 317.8 128.9 147.6 59.9 

Ionosphere(IO) 602.2 94.6 15.7 121 20.1 282.6 46.9 

Vowel(VO) 116.6 5.0 4.3 363.4 311.7 56.4 48.4 

Letter-BG(BG) 404.6 33.4 8.3 362.8 89.7 870.2 215.1 

Car Evaluation(CE) 806.0 398.2 49.4 523.8 65.0 698.8 86.7 

Mushroom(MU) 3,691.0 - - - - 2,003.6 54.3 
Adult5a(AU) 26,727.2 11,122.6 41.6 162,14.2 60.7 316.0 1.2 

Svmguide1(SV) 414.6 168.0 40.5 252.0 60.8 249.4 60.2 

Web4a(WE) 4,500.0 528.8 11.8 925.8 20.6 522.8 11.6 

Shuttle(SH) 980.2 23.4 2.4 55.4 5.7 393.6 40.2 

 

 
Fig. 7. Iteration ratio in SVM learning 

Table 6 shows the rate that a selected sample becomes a support vector. The rate of the number of selected data over 
the training size is much higher than in the results of the SVM in Fig 8. In SVM learning, a data selection approach can 

make to increase the rate that a selected data becomes a support vector and speeds up a SVM learning by reducing a 

significant amount of training data. In both the NPPS and the proposed approach, the rate of being support vector is 

higher than that of the SVM. Comparing to the rate of the NPPS, the proposed method scores high in Breast Cancer, 

Pima, Liver Disorder, Adults5a, Web4a. By directly comparing these rates, we are unable to provide a significant 

difference between the proposed method and the NPPS. The comparative studies on these methods need to be done for 

practical problems. Considering the NPPS method, the rate of the NPPS-5 is higher than that of the NPPS-3 because 

the number of nearest neighbors is large. 
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Table 6: Comparisons of the numbers of support vectors 

 Problem 
  SVM   NPPS-3   NPPS-5   Proposed 

No %  No %  No %  No  % 

Breast Cancer(BC) 49.6 9.1  19.0 34.7  30.6 24.8  29.6 49.3  

Australian(AU) 189.0 34.3  90.8 59.7  136.6 49.0  96.4 59.0  

Pima(PI) 335.4 54.6  210.6 69.1  278.2 64.1  234.2 92.0  

Liver Disorder(LD) 223.2 80.9  169.2 85.0  194.2 78.8  139.4 89.8  

Ionosphere(IO) 52.2 18.6  16.6 40.7  21.4 34.1  32.8 45.4  

Vowel(VO) 83.6 15.8  6.6 76.7  22.4 43.1  47.4 25.8  

Letter-BG(BG) 132.8 17.5  21.8 92.4  28.6 53.0  45.2 17.0  

Car Evaluation(CE) 300.0 21.7  197.4 66.6  268 55.7  265.2 40.0  

Mushroom(MU) 287.6 4.4  - -  -  - 203.2 7.3  
Adult5a(AU) 2,103.8 32.8  1,010 63.7  14,36.4 61.4  1,288.0 82.0  

Svmguide1(SV) 631.8 20.5  248.0 74.5  382 86.6  386.4 32.7  

Web4a(WE) 307.6 4.2  1,03.4 57.0  126.8 42.5  148.4 77.9  

Shuttle(SH) 1,532.6 10.6  16.8 76.4  21.6 62.4  484.6 26.3  

 
Fig. 8. Ratio on the number of selected support vectors 

 

5.0 CONCLUSIONS 

 

This paper presents a data selection method for SVM training. The proposed data selection is based on Tomek links 
and distance measure. Tomek link is a pair with different classes and can be found by modifying the 1-nearest 

neighbor algorithm. Distance measure is considered in feature space, not in input space, and used for choosing more 

informative points by analyzing the relationships between Tomek link pairs and their distances. According to the 

geometrical relationship between Tomek link pairs and neighbors, the possible cases are checked for reconstructing 

the original training set into a new problem, lessening the time complexity of the given problem. The proposed data 

selection method was tested on several real-world problems in order to analyze its effectiveness in terms of 

generalization performance, data reduction rate, learning time. Specifically, we compared the SVM results with the 

entire training set and the reduced dataset. From our experiments, the significant data reduction was accomplished 

with a little loss of generalization performance, compared to the results of the SVM. This experimental evidence 

substantiates that a SVM model depends on the small subset of training examples and also the use of a data selection 

method would be effective in aiming at fast SVM learning. The data reduction technique provides the benefits of SVM 
training and testing due to the low learning complexity. As for the further works, there might be the comparative study 

on a significant difference between the proposed algorithm and others. In addition, the data selection approach is able 

to balance the equal number of examples per class for the skewed classes. 
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