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ABSTRACT 

 

The Software Capability Maturity Model (SW-CMM) has become a popular model for enhancing 

software development processes with the goal of developing high-quality software within budget 

and schedule. The software cost estimation model, COnstructive COst MOdel (COCOMO), in its 

last update (COCOMO II) has a set of seventeen cost drivers and a set of five scale factors. 

Process Maturity (PMAT) is one of the five scale factors and its ratings are based on SW-CMM. 

This paper investigates the impact of process maturity on software development Schedule (cycle 

time) by deriving a new set of COCOMO II’s PMAT rating values based on the most recent 

version of CMM, i.e. Capability Maturity Model Integration (CMMI). The precise data for the 

analysis were collected from the record of 40 historical projects which spanned the range of 

CMMI Levels, from Level 1 (Lower half and Upper half) to Level 4, where eight data points were 

collected from each level. The Ideal Scale Factor (ISF) method is applied in order to withhold the 

effect of the COCOMO II’s PMAT scale factor. All prediction accuracies evaluations were 

measured using PRED (.20). The study shows that the proposed model (with the new PMAT 

rating values) produced better schedule estimates as compared to the generic COCOMO II 

model’s schedule estimates. 

 

Keywords: Schedule estimation, scale factor, cost driver, COCOMO, SW-CMM, CMMI.  

 

 

1.0    INTRODUCTION 

Developing a software project with acceptable quality within budget and on planned schedule is 

the main goal of every software development firm. Schedule estimation has historically been and 

continues to be a major difficulty in managing software development projects [1].  Failure of the 

project mostly is attributed to failure to fulfill customers‟ quality expectations or the budget and 

schedule overrun. Over the last decades, several effort and schedule estimation models have been 

developed, and most of them have disappeared without any kind of rigorous evaluation. The 

reason might be that these models were not good and precise enough [2].  In fact, we should not 

forget that there is another important reason; the people who work in software development 

prefer to use their own estimation techniques rather than improving and applying the work of the 

others. According to [3], most companies have relied on experience and „„Price-to-win‟‟ 

strategies for getting past competitors to win projects. Despite the emergence of concepts like 

Software Capability Maturity Model (SW-CMM) one can never rely completely on experience 

based estimation in the software industry because of the rapidly changing technologies, which 

renders the experience-based estimates ineffective. Furthermore, price-to-win strategy is not very 
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favorable for most companies [3]. Hence, the need arises to come up with a more effective model 

to account for the schedule of developing software systems. A number of algorithmic models 

have been proposed as the basis for estimating the schedule of a software project. They are 

conceptually similar but use different parameter values. While most of those software models are 

proprietary, COCOMO II (our primary focus in this study) is a fully documented and widely 

accepted model, updated from original COCOMO 81 [4] till its most recent version, COCOMO 

II [5]. 

 

 

1.1 Problem Overview 

 

Accurate software effort and schedule estimation is important for effective project management 

such as budgeting, project planning and control. Software development schedule estimation has 

been a difficult task. The accuracy of a software effort and schedule estimation model has a direct 

and significant impact on the quality of the firm‟s software investment decisions [6]. 

Unfortunately, despite the large body of experience with effort and schedule estimation models 

(including COCOMO), the accuracy of these models is still far from being satisfactory [7]. 

Different software schedule estimation models have different inputs. The impact of these inputs 

may vary from one model to another. From the results of studies on the effect of process 

maturity's on software development project‟s cycle time, it seems reasonable to suggest that it is 

an important input to software effort and schedule estimation models. Despite the fact that the 

Software Engineering Institute at Carnegie Mellon University (CMU-SEI) has released the 

Capability Maturity Model Integration (CMMI), which is the updated version of the original 

CMM, COCOMO II still relies on SW-CMM to assess its PMAT scale factor. Many 

investigations, ideas, and methods have been proposed by researchers to enhance the predictive 

ability of COCOMO II model. To the best of our knowledge, studies that focus on the effects of 

CMMI-based software process improvement on COCOMO II‟s schedule estimation are missing 

in the literature. 

 

 

1.2 Research Hypothesis 

 

The hypothesis of the work presented here is that deriving a set of new PMAT values under the 

Capability Maturity Model Integration (CMMI), would improve the prediction power of the 

COCOMO II model in terms of its schedule estimation ability, and thus make it precisely 

applicable in software development organizations that are adopting CMMI. The rest of this 

research is organized as follows: Section 2 presents the definition of the COCOMO Model and 

surveys an overview of the CMM and CMMI-based Process Maturity; Section 3 presents a few 

researches that are related to this study; Section 4 describes the data gathering and data analysis 

methods. Section 5 presents the results and discussion, while Section 6 offers some conclusions 

of this study and presents recommended future works. 

 

 

2.0       BACKGROUND 

 

2.1 COCOMO II Model 
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The Constructive Cost Model (COCOMO), was originally published in 1981 (COCOMO 81) [4], 

and became one of most popular parametric cost estimation models of the 1980s. But in the 90s, 

COCOMO 81 faced a lot of difficulties and complications in estimating the costs of software that 

were developed to a new life cycle processes such as non-sequential and rapid development 

process models, reuse-driven approaches, and object-oriented approaches [8]. Thus, COCOMO II 

was published initially in the Annals of Software Engineering in 1995 with three sub models; an 

application-composition model, an early design model and a post-architecture model [8]. 

COCOMO II has, as an input, a set of seventeen effort multipliers (EM) or cost drivers which are 

used to adjust the nominal effort (PM) to reflect the software product being developed. The 

seventeen COCOMO II factors (cost drivers) are shown in Table 1 [5]. 

 

2.1.1 Effort Estimation 

 

The COCOMO II effort estimation model is formulated as in (1). This model is used for both 

Early Design and Post-Architecture models to estimate effort. The inputs are the Size of software 

development, a constant A, an exponent E, and a number of effort multipliers (EM). The number 

of effort multipliers depends on the model being used. 

 

 

 

where the constant A=2.94, and the exponent E will be described in the following section.  

 

 

2.1.2 Scale Factors 

 

A study accomplished by [9] presents the conclusion that the most critical input to the COCOMO 

II model is size, so, a good size estimate is very important for any good model estimation. Size in 

COCOMO II is treated as a special cost driver, so it has an exponential factor, E. The exponent E 

in (2) is an aggregation of five scale factors. All scale factors have rating levels. These rating 

levels are very low (VL), low (L), nominal (N), high (H), very high (VH) and extra high (XH). 

Each rating level has a weight, W, which is a quantitative value used in the COCOMO II model. 

The five COCOMO II scale factors are shown in Table 1 [5]: 

 

 

 

where B is a constant = 0.91. 

A & B are constant values devised by the COCOMO team by calibrating to the actual effort 

values for the 161 projects currently in COCOMO II database.  

 

 

2.1.3 Schedule Estimation 

Project Schedule months is the number of calendar months from the time the development begins 

through the time it is completed. Boehm et al. [5] have produced (3) to estimate the project 

scheduling months. It has denoted as Time to Develop, TDEV: 

 

(2)   

(1)   

(3)  
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where C = 3.67, PM is the Person-Months, and F, as stated in (4), is the schedule equation 

exponent derived from the five Scale Factors. 

 

 

 

where D= 0.28 and SF is the COCOMO II‟s scale factor. 

C & D are constant values devised by the COCOMO team by calibrating to the actual schedule 

values for the 161 projects currently in COCOMO II database.  

 

 

Table 1. COCOMO II Scale Factors and Cost Drivers. 

Scale Factors Cost Drivers 

Precedentedness 

(PREC) 

Required Software Reliability 

(RELY) 
Programmer Capability (PCAP). 

Data base size (DATA). Application Experience (APEX). 

Development 

Flexibility (FLEX) 

Developed for Reusability (RUSE). Platform Experience (PLEX). 

Documentation needs (DOCU). 
Language & Tool Experience 

(LTEX). 

Risk Resolution 

(RESL) 

Product Complexity (CPLX). Personnel Continuity (PCON). 

Execution Time Constraints 

(TIME). 
Use of Software Tools (TOOL). 

Team Cohesion 

(TEAM) 

Main storage Constraints (STOR). Multisite Development (SITE). 

Platform Volatility (PVOL). Development Schedule (SCED). 

Process Maturity 

(PMAT) 
Analyst Capability (ACAP). 

 

The procedure for determining PMAT – the factor of interest in this study - is organized around 

the Software Engineering Institute‟s Capability Maturity Model (SEI-CMM), Table 2 [5].  

 

 

Table 2. PMAT scale factor with its rating levels and values. 

PMAT 

Description 

CMM Level 

1  

(lower) 

CMM Level 

1 

 (upper) 

CMM  

Level 

2 

CMM 

 Level 

3 

CMM 

 Level 4 

CMM 

 Level 5 

Rating Levels Very Low Low Nominal High 
Very 

High 

Extra 

High 

Values 7.80 6.24 4.68 3.12 1.56 0.00 

 

According to [10], The CMM Level 1 (lower half) is for organizations that depend on “heroes” to 

do the task. They do not concentrate on repeatable processes. The CMM Level 1 (upper half) is 

for organizations that have adhered to most of the requirements that satisfy CMM Level 2. In the 

published definition of CMM, Level 1 (Lower half) and (Upper half) are grouped into Level 1. 

 

(4)   
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2.2 CMMI-based Process Maturity 

The Software Capability Maturity Model (SW-CMM) published by SEI is used to rate an 

organization‟s process maturity [11]. SW-CMM provides a number of requirements that all 

organizations can use in setting up the software processes used to control software product 

development. The SW-CMM specifies “what” should be in the software process rather than 

“when” or “for how long”. There are five levels of process maturity, Level 1 (lowest half) to 

Level 5 (highest). To be rated at a particular level, the organization should demonstrate 

capabilities in a set of Key Process Areas (KPA) associated with a specific SW-CMM level.  The 

capabilities demonstrated in moving from lower levels to higher levels are cumulative. For 

example, Level 3 organizations should show compliance with all KPAs in Level 2 and Level 3. 

The detailed information on SW-CMM Process Maturity is available in [11]. 

 

Since (SW-CMM) was released, it was applied to many areas; therefore, several capability 

maturity models have been provided. These included people CMM (P-CMM), system 

engineering CMM (SE-CMM), the software acquisition CMM (SA-CMM), and the integrated 

product development CMM (IPD-CMM) (EPIC, 1996).  As these models were built by different 

organizations, there were an overlapping in the application‟s scopes in addition to the lack of 

consistency in the terminology, assessment approach, and architecture. These problems led to the 

increase of time and cost to adopt multiple models. Therefore, the Software Engineering Institute, 

SEI, has released in 2000 the Capability Maturity Model Integration (CMMI) in order to integrate 

all existing capability maturity models. On August, 2000, (CMM) was replaced by a new process 

model, which is the Capability Maturity Model Integration (CMMI). The Capability Maturity 

Model Integration (CMMI) was created to reduce redundancy, to support product and process 

improvement, and to eliminate undesired inconsistency experienced by organizations that are 

using multiple models. The CMMI combines all relevant process models found in CMM into one 

product suite [12]. 

 

There are two representations of CMMI: continuous representation; and staged representation. 

The continuous representation focuses on the capability of process areas, while the staged 

representation focuses on the organizational maturity. This work concentrates in CMMI staged 

representation which is discussed briefly below. 

 

Like CMM, there are five maturity levels in CMMI, numbered through 1 to 5 in staged 

representation. Maturity levels are defined in terms of related specific and generic process areas 

and the achievement of their requirements. Achievement of specific and generic goals related to a 

process area determines the organization‟s maturity level. Refer to [12] for more details about 

CMMI. 

 

 

 

3.0      LITERATURE REVIEW 

In this research, we look at the literature from two different perspectives. One concentrates on the 

calibration and improvement of the COCOMO II model, while the other concentrates on the 

benefits of increasing maturity levels as well as the benefits of CMMI-based software process 
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improvement. Our work is a kind of combination between the previous two perspectives, i.e. we 

improved the schedule prediction power of the COCOMO II model by investigating the benefits 

of CMMI-based software process maturity. 

 

COCOMO II is being revised, updated, and calibrated to be more suitable for future estimation. 

There are several calibrations conducted on COCOMO II [13, 14, 15, 16, 17]. Also, numerous 

studies have been done to enhance the predictive power of the COCOMO model by adding or 

reducing some influencing factors or cost drivers [2, 18, 19, 20, 21, 22].   

 

Chulani et al. [13] reported a study with a regression tuning algorithm using the COCOMO 

project database producing estimates that are within 30% of the actual values, 69% of the time, 

while Clark [15] reported a study in which the Bayesian 38 tuning are within 30% of the actual 

values, 76% of the time after stratification by the organization.   Yahya et al. [22] improved the 

COCOMO II‟s predictive power by adding a set of 16 factors to the model and considered it as 

the most influential factors in their local environment; they claimed that their enhanced model 

has improved the COCOMO II‟s predictive power by 9% as compared to the generic COCOMO 

II. Chen et al. [19] concluded that the COCOMO II model can be improved via WRAPPER 

feature subset selection method developed by the data mining community. Using data sets from 

the PROMISE repository, they showed WRAPPER significantly and dramatically improves 

COCOMO II‟s predictive power. Huang et al. [23] have proposed a novel neuro-fuzzy 

Constructive Cost Model for software cost estimation. They claimed that the validation using 

industry project data shows that the model greatly improves estimation accuracy in comparison 

with the generic COCOMO model. Baik argued in [18] that disaggregation of the TOOL variable 

in COCOMIO II improves the prediction accuracy from 67% to 87%.  

 

On the other hand, much has been discussed on the benefits of increasing maturity levels as well 

as the benefits of CMMI-based software process improvements [10, 24, 25, 26, 27, 28, 29, 30]. 

 

By adopting the CMM, researchers have found that the control, predictability, and the 

effectiveness of the processes are importantly enhanced. According to [31], each CMM level 

enhance the quality of the product and generally reduces the development schedule. Manish and 

Kaushal [30] focused exclusively on CMM level 5 software projects from several organizations 

to investigate the effects of highly mature processes maturity on development effort, quality, and 

schedule. Based on historical data projects from 37 CMM level 5 of four organizations and by 

using a linear regression model, they found that high process maturity levels, as indicated by the 

rating of CMM level 5, reduce the impacts of most factors that previously were believed to affect 

the software development effort, quality, and schedule such as personnel capability, requirements 

volatility, and requirements specifications. They also claimed that the only factor found to be 

important in determining effort, schedule, and quality was the software size. On the average, their 

developed models estimated effort and schedule around 12% percent and defects to about 49% of 

the actual, across organizations. In general, their results indicated that some of the biggest 

advantages from high levels of organizational process maturity come from the obvious reduction 

in variance of software development outcomes that were previously caused by some factors other 

than size of the software. 

 

In order to investigate the impact of the Process Maturity on software development effort, and 

based on CMM with the aid of 161-project sample, Clark [10] isolated the effects on the effort of 
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the process maturity versus effects of other factors, concluding that an increase of one process 

maturity level can reduce development effort by 4% to 11%, but this reduction seemed like a 

generalization across all five levels of CMM process maturity, i.e. the percentage of effort 

reduction is not the same among all levels. Despite the fact that several researches and case 

studies have shown many benefits of enhancing organizational process maturity by using 

different assessment approaches [29], [23], [32], none has attempted to isolate individual factors 

that affects productivity as shown by Clark when he isolated the effects of process maturity on 

effort versus other factors. Nevertheless, they indicated that increasing organizational maturity 

levels will generally have some considerable effects.   

 

Donald et al. [26] have conducted an empirical research to find out the relationship between 

quality of the products, organizational process maturity, development effort, and project‟s 

schedule for a set of 30 software products in IT firms. Their findings indicated that process 

maturity has an effect in reducing software development schedule and effort. Diaz and Sligo [31] 

reported that the process maturity level also has some effects on software development schedule 

by indicating how software process improvement helped Motorola. Based on some 

measurements, Motorola‟s software development schedule was around eight times faster at CMM 

level 5 than at CMM level 1.  

 

Despite numerous studies on the performance assessment results of CMM-based software process 

maturity and its impact on software development effort and schedule, there is still very limited 

works on the overall CMMI-based software process maturity [33]. Unlike previous studies in the 

literature that addressed the benefits of CMMI-based software process maturity and, [33] in terms 

of six dimensions of the performance assessment considered the performance assessment for both 

tangible and intangible benefits of CMMI adoption. They presented the results of performance 

assessment of the CMMI-based Software process improvement based on an empirical study from 

18 software firms in Taiwan, which have already obtained CMMI maturity level 2 and 3 

certifications. They argued that their empirical study revealed that the CMMI-based software 

process improvement has a positive effect on the six performance dimensions in their 

investigated software firms. However, the gained benefits were in “Lighten the load of project 

members”, “Improve product usability”, “Improve product efficiency”, “Improve product 

portability”, “Increase bargain power” and “Reduce the project effort and schedule”. 

 

Another study conducted by [29] reported some great quantitative evidence that Capability 

Maturity Model Integration (CMMI)-based software process improvement can give a higher 

quality products and better project performance with lower cost and decreased project schedule. 

The reported results were drawn from a set of 12 cases from 11 independent firms. Since the 

performance results provided by [29] are limited, [28] continued the assessment performance of 

CMMI-based software process improvement. Results are drawn from a variety of small and huge 

organizations around the world. They reported that most of their results come from higher 

maturity organizations, but some notable enhancements also have been achieved by lower 

maturity organizations. Great quantitative results obtained for all six performance categories 

discussed in [28] including software cost and schedule. 

 

Table 3 summarizes the benefits and impact of CMMI-based software process improvements 

from Schedule perspective from a sample of organizations. 
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Table 3: Summary of benefits and impact of CMMI adoption–Schedule [28] 

# Results Organization 

1 
On-time delivery remained well over 90 percent, moving from 

97% to 99%, with a slight improvement as the organization moved 

from SW-CMM maturity level 3 to CMMI maturity level 5 

IBM Australia 

Application 

Management Services 

2 
70 to 80 percent reduction in average slippage of project delivery 

dates as the organization achieved CMMI maturity level 2 
JP Morgan Chase 

3 
Average days variance from development plan reduced from 

approximately 130 days to less than 20 days one year after 

reaching CMMI maturity level 2 

NCR 

4 
Met every schedule milestone (25 in a row) on time, with high 

quality and customer satisfaction in a CMMI maturity level 5 

organization 

Northrop Grumman IT, 

Defense Enterprise 

Solutions 

5 
Substantially improved schedule variance over three causal 

analysis and resolution cycles in a CMMI maturity level 5 

organization with PSP-trained engineers 

Northrop Grumman IT, 

Defense Enterprise 

Solutions 

6 
Schedule variance improved from approximately 25 percent to 15 

percent as the organization moved from SW-CMM maturity level 

3 to CMMI maturity level 5 

Reuters 

7 
On-time deliveries improved from 79 percent to 89 percent as the 

organization moved from SW-CMM maturity level 3 toward 

CMMI maturity level 4 

Systematic Software 

Engineering 

8 
Schedule variation decline by 63 percent as the organization 

moved from SW-CMM maturity level 4 to CMMI maturity level 5 
The Boeing Company 

 

4.0      RESEARCH METHODOLOGY  

The primary data collection tool was a questionnaire that has been used in order to collect 

historical data from individual projects, i.e. each questionnaire should be applied only on one 

project. The questionnaire is based on "COCOMO II Cost Estimation Questionnaire" which was 

prepared in the Center of Software Engineering at University of Southern California, for 

COCOMO II‟s annual updating [34]. 

 

 

4.1 Data Collection Procedure 

 

Out of the 75 questionnaires distributed to over 20 software development organizations, 56 

questionnaires were returned. Some questionnaires could not be verified with project managers or 

senior project staff, so, 16 questionnaires were rejected and eliminated from this study. Therefore, 

40 questionnaires were analyzed. The returned datasets were from various fields such as banking, 

insurance, communication, simulation, web development, etc. The questionnaires were 

distributed to software organizations that have already achieved one of the CMMI levels, and 

spanned the range of its levels, from Level 1 (lower half) to Level 4, i.e. 8 data points were 

collected from each level. For each project, there was a meeting with the project manager or team 

leader who would be filling out the forms, in order to clarify each question to ensure that it was 

well understood and each manager would answer consistently. 
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4.2 Data Analysis 

 

Once the questionnaires were returned, they were checked for consistency and went through a 

data validation process, based on some constraints determined in [5]. 

In fact, for each questionnaire, there are five aspects that would be extracted and computed: 

1. A set of seventeen COCOMO II's cost drivers. To deal with these seventeen cost drivers, 

we computed their multiplication. A sample of the cost drivers is shown in Table 4. 

2. A set of five exponential scale factors. To deal with these five scale factors, we computed 

their summation. A sample of these scale factors is shown in Table 5 (excluding the last 

row). 

3. Actual effort in Person-Months (PM), (see Table 6). 

4. Actual schedule in calendar months, (see Table 6). 

5. The size of the project. We collected the project size as a thousand source lines of code 

(KSLOC), which is the baseline size in COCOMO II. 

 

Equation (1) was applied to predict the effort using COCOMO II. We also applied (3) to predict 

the project‟s scheduling months (TDEV) using COCOMO II. At the end of this analysis, we got 

the estimated effort and scheduling months for the generic COCOMO II as well as the actual 

effort and schedule for the current project. 

To derive the new PMAT values, we computed Ideal Scale Factor (ISF) (See the next section). 

 

 

4.3 Ideal Scale Factor (ISF) Analysis on PMAT  

Boehm [4] described a method to normalize contaminating impacts of individual cost driver 

attributes in order to have a clearer picture of that cost driver‟s contribution. Since we have a 

relatively similar situation, i.e. we need to normalize contaminating effects of a scale factor (in 

our case, PMAT) rather than a cost driver. Therefore, in our context, we defined that: 

 

For the given project P, compute the estimated development effort using the COCOMO II 

estimation procedure, with one exception: do not include the value for the Scale Factor Attribute 

(SFA) being analyzed. Call this estimate PM (P,SFA). Then the ideal Scale Factor, ISF(P, SFA), 

for this project/scale-factor combination is defined as the value which, if used in COCOMO II, 

would make the estimated development effort for the project equal to its actual development 

effort PM(P, Actual). i.e. 

 

 

where 

• ISF (P, PMAT): the Ideal Scale Factor on PMAT for project P. 

• PM (P, Actual): the actual development effort for the project P. 

• PM (P, PMAT): COCOMO II estimate excluding the PMAT scale factor. 

• PM: Person-Months. 

 

 

4.3.1 Steps for ISF-PMAT Analysis 

ISF (P, PMAT) = PM (P, Actual) / PM (P, PMAT)                                                    (5) 
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We performed the following steps to complete the ISF-PMAT analysis on our datasets: 

1. Compute the PM(P, SFA), by using the following equation: 

 

 

 

Where A is a model constant, EM is a set of seventeen effort multipliers (see Table 1), and 

 

 

 

 

where B is a` model constant, and SF_But_PMAT refers to scale factors except PMAT, including 

PREC, FLEX, RESL, and TEAM. 

2. Compute the ISF (P, SFA) by using (5). 

3. Group ISF (P, SFA) by the current CMM PMAT rating (i.e. VL, L, N, H, VH). 

4. Compute the mean value for each group as ISF-PMAT value for that rating.  

This step involves the computation of the mean value of ISF-PMAT for each CMM rating 

level. At the end of this stage, we estimated the scheduling months using the new derived 

PMAT values. 

 

4.4 Evaluation of the Prediction Accuracy 

The focus of this paper is on the degree to which the model‟s estimated effort measured in 

Person-Month (PMes) matches the actual effort (PMact). If the model is perfect (this is rare) then 

for any project, PMes = PMact. A common criterion for the evaluation of cost estimation models 

is the Relative Error (RE) or the Magnitude of Relative Error (MRE), which are defined as: 

 


 

 

 

The RE and MRE values are calculated for each project whose effort is predicted. Another 

criterion that is commonly used is the percentage of predictions that fall within P % of the actual, 

denoted as PRED (P) [35], 

 

 

K is the number of projects where MRE is less than or equal to P, and N is the number of 

projects. Our proposed model is evaluated at PRED (.20), which is done by counting the number 

of MRE in the equation that are less than or equal to .20 and dividing by the number of projects. 

 

Table 4 through Table 8 show a sample of the calculated data, which represents one project from 

our forty datasets. 

 

Table 4. COCOMO II cost drivers with their effort multipliers. 

Cost Driver Value Cost Driver Value 

RELY 0.92 PCAP 0.88 

(11) 
 

PRED (P) = K / N 

(10) 

 

PRED (P) = K / N 

(6)   

(7)   

(8) RE= (PMes - PMact)/PMact 
 

(9)

 

) 

MRE= │(PMes – PMact)│/ PMact 
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DATA 1.28 PCON 0.9 

RUSE 1 APEX 0.81 

DOCU 1 SCED 1 

TIME 1.11 LTEX 0.84 

STOR 1.05 TOOL 0.78 

PVOL 0.87 SITE 0.86 

ACAP 0.71 
PLEX 0.85 

CPLX 1.34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0      RESULTS AND DISCUSSION 

After applying our methodology to the forty datasets, a new set of PMAT rating values under 

CMMI has been derived as in Table 9. 

 

Table 9. The new PMAT rating values. 

PMAT Description 

CMMI 

Level 1 

 (lower) 

CMMI 

Level 1 

 (upper) 

CMMI 

Level 

2 

CMMI 

Level 3 

CMMI 

Level 4 

CMMI 

Level 5 

Rating Levels Very Low Low Nominal High Very High Extra High 

New PMAT Values 7.55 5.71 3.81 2.08 1.03 0.00 

 

 

 

 

 

 

 

 

Table 8. Estimated Effort and schedule with new 

PMAT values. 

Description value 

∑ scale factors with ISF-PMAT 13.49 

Estimated Effort with ISF-PMAT 153.32 

Magnitude Relative Error (Effort)= 0.20 

Estimated Schedule 18.45 

Magnitude Relative Error (Schedule)= 0.05 

 

Table 5: Scale Factors and their values. 

Scale Factor Value 

PREC 3.72 

FLEX 2.03 

RESL 2.83 

TEAM 1.10 

PMAT 4.68 

New PMAT 3.81 

 

Table 6. The actual time, effort, size, and the cost 

driver‟s multiplication. 

Description Value 

Actual Time 16.4 

Actual Effort 127.66 

Size (KSLOC) = 95 

П Cost Drivers, EM = 0.448 

 

Table 7. Estimated Effort and schedule by 

generic COCOMO II model. 

Description Value 

∑Scale Factors, SF = 14.36 

Estimated Effort, PM = 166.98 

Magnitude Relative Error (Effort)= 0.31 

Estimated Schedule 18.08 

Magnitude Relative Error (Schedule)= 0.10 
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The black dotted line in Fig. 1 shows the current PMAT scale factor values used in COCOMO II. 

The gray line shows the new PMAT values derived from the ISF-PMAT analysis using our forty 

datasets. The VERY LOW ratings for PMAT decreased slightly from 7.80 to 7.55, while the 

LOW ratings decreased from 6.24 to 5.71. Since VERY LOW and Low rating levels in 

COCOMO II‟s PMAT are categorized under CMMI Level 1, i.e. few number of process areas 

(PA) are assigned to this level, and success still depends on individual effort. Therefore, Level 1 

companies still need much effort to accomplish their projects, particularly for CMMI Level 1 

(lower half) companies that rely on “heroes” to do the jobs and do not show any compliance that 

would satisfy subsequent levels. Another observation is that NOMINAL and HIGH rating levels 

(CMMI Level 2 and Level 3) demonstrate a relatively obvious reduction in PMAT values, which 

appears as a deviation in the gray line in Fig. 1. 

 

Our underlying explanation behind this reduction might be due to the major additions and 

refinements that have occurred at CMMI maturity Level 2 and 3. As an example, going from 

seven Key Process Areas in SW-CMM Level 3, to 14 Process Areas in CMMI Level 3 (which 

include additional goals and practices), resulting in the drop of just two PAs. These additions and 

refinements in maturity Levels 2 and 3 reflect their significance and definitely will reduce the 

cycle time required to develop the software systems in CMMI Maturity Level 2 and 3 

organizations. 
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In Fig. 2, X axis represents the 8 projects used in CMMI Level 3 organization in our study, 

whereas Y axis represents the Scheduling months. Each project (in X axis) has three columns: the 

left one (Black column) represents the actual schedule, the middle one (White gray column) 

represents the generic COCOMO II schedule estimation, and the right one (Dark gray column) 

represents the schedule estimation for the proposed COCOMO II model with new ISF-PMAT 

values. The figure demonstrates how the proposed model (with ISF-PMAT) has succeeded to 

give an estimated schedule which is closer to the actual schedule than generic COCOMO II 

estimations. This case is not absolute, i.e. in some little cases like in CMMI Level 1 (Lower and 

Upper) and Level 2 datasets, the estimated schedule by the generic COCOMO II were relatively 

closer to the actual schedule than the proposed model‟s estimation. The reason is due to some 

data anomalies, especially for low levels companies that do not have reliable and precise 

documentations for their historical projects.  

 

As shown in Fig. 2, there are slight consistent overestimations for most of the projects. According 

to [36], a software estimation model can still be consistent if it provides uniform misestimating 

(i.e. underestimating or overestimating) for a set of projects.  Since the proposed model presented 

here is uniformly overestimated the schedule for most of the 8 projects, so it could still be a 

consistent model. 

 

 

 

 

Fig. 2. Actual and estimated schedule in both Generic COCOMO II and 

COCOMO II with ISF-PMAT. 
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5.1 Model Accuracy with ISF Results 

 

After applying the derived ISF-PMAT values back to our forty datasets, improvement in the 

model‟s accuracy has been realized. This improvement is shown in Table 10. 

 

Table 10. Accuracy analysis results. 

CMMI 

Level 

PRED (.20) 
Improvement 

Generic COCOMO II COCOMO II with New PMAT Values 

Level 1 (Lower) 75% 88% 13% 
Level 1 (Upper) 63% 75% 12% 

Level 2 38% 75% 37% 
Level 3 38% 88% 50% 
Level 4 63% 88% 25% 

 

Table 10 shows that by applying the ISF-PMAT values into our forty datasets that had been 

collected from CMMI organizations, the accuracy level - PRED (.20) - in all maturity levels 

increased by 13%, 12%, 37%, 50%, and 25% respectively. As we mentioned and justified earlier, 

Table 10 shows that Level 3 has the highest percentage of improvement, and the lowest 

percentage of improvement assigned to Level 1 with its extensions, Lower and Upper halves. 

 

 

6.0     CONCLUSION AND FUTURE WORKS 

Accurate software development cost estimation is very important in the budgeting, project 

planning and effective control of project management. Different software cost estimation models 

have different inputs. One of the most important inputs to software cost estimation models 

(including COCOMO) is Process Maturity (PMAT). This study shows that the current values for 

the COCOMO II PMAT scale factor do not adequately reflect the impact of CMMI-based 

process maturity on the development schedule. Therefore, by using the Ideal Scale Factor method 

(ISF) and with the aid of our forty datasets, we have derived new PMAT values that better reflect 

the impact of CMMI-based process maturity on software development schedule. The new values 

resulted in an improvement on COCOMO II model accuracies in terms of PRED (.20) by 13% 

for CMMI Level one (Lower half), 12% for CMMI Level one (Upper half), 37% for CMMI 

Level two, 50% for CMMI Level three, and 38% for CMMI Level four organizations. 

 

A number of opportunities exist for future work in the area of CMMI-Based process maturity 

using COCOMO II. Firstly, the amount of datasets allocated to each CMMI maturity level could 

be expanded to get a clearer picture of the impact of CMMI-based process maturity on software 

development schedule. Secondly, locally calibrating the proposed model parameters to a 

particular organization; this requires collecting data from more than 10 projects belonging to the 

same organization. Finally, unlike SW-CMM, CMMI has two different representations; Staged 

and Continuous. Most IT organizations are adopting the Staged representation which is 

structurally different from the Continuous one. This study focused on the organizations that are 

adopting Staged representation. Therefore, we recommend collecting data from CMMI 

organizations that are adopting CMMI‟s Continuous representation in future in order to derive 

new PMAT rating values from Continuous representation perspective. 
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