
 Multilingual Data Management In Database Environment pp 44-63

44
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

MULTILINGUAL DATA MANAGEMENT IN DATABASE
ENVIRONMENT

 Abu Sayed Md. Latiful Hoque1 and Mohammad Shamsul Arefin2

1Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh.

Email: asmlatifulhoque@cse.buet.ac.bd
2Department of Computer Science and Engineering,

Chittagong University of Engineering and Technology (CUET), Chittagong-4349, Bangladesh.
Email: sarefin_406@yahoo.com

ABSTRACT

Global E-Commerce and E-Governance programs have brought into sharp focus for the need of
database systems to store and manipulate data efficiently in a suite of multiple languages. While
existing database systems provide some means of storing and querying multilingual data, they
suffer from redundancy proportional to the number of language support. In this paper, we
propose a system for multilingual data management in distributed environment that stores data
in information theoretic way in encoded form with minimum redundancy. Query operation can
be performed from the encoded data only and the result is obtained by decompressing it using
the corresponding language dictionaries for text data or without dictionary for other data. The
system has been evaluated by both syntactic data and real data obtained from a real life schema.
We have compared the performance of our system with existing systems. Our system
outperformed the existing systems in terms of both space and time.

Keywords: Multilingual Data Management, database environment, data dictionary, lexeme,
query

1.0 INTRODUCTION

Efficient storage and query processing of data spanning multiple natural languages are of crucial
importance in today’s globalized world [1, 2, 3]. As Internet has become a primary medium for
information access and commerce, multilingual data management [4, 5] in database environment
can be treated as a vital issue for the availability of information in the native language of the
Internet users. Survey results indicate that the demographics of the Internet are steadily
becoming multilingual. The non-native English speaking users of the Internet has grown from
about half in mid-90’s, to about two-thirds now and it is assumed that the majority of the Internet
information will be multilingual by 2010 [6]. It has been found that a user is likely to stay twice
as long at a site and four-times more likely to buy a product or consume a service, if the
information is presented in their native language [7]. Hence, it is important that the information
systems support efficient handling of multilingual data.

Research results [8] show that significant performance degradation occurs when handling
multilingual data using current database systems. An efficient Multilingual Data Management
System (MDMS) is necessary to overcome the limitations of multilingual data handling
capability of the existing database systems and for better searching and browsing capabilities in
different languages, accessing information stored in different languages, accelerating
globalization of businesses and implementing e-Commerce and e-Governance.

 Multilingual Data Management In Database Environment pp 44-63

45
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

We have to consider generally three main considerations for MDMS. Firstly, there should be a
technique by which the data will be represented in a language-independent way. Secondly, an
efficient translator is needed for performing translation among languages. Thirdly, an efficient
mechanism is required to perform different types of multilingual operations in a distributed
database environment [9]. These are the crucial issues in multilingual data management.

This paper presents a system to store multilingual data in a language independent way such that
database evolution is easier. Queries can be performed using a translator-based approach. In this
approach when information in a specific language is provided, the translator will generate its
corresponding information in the target language. Schema evolution which is difficult in the
existing systems, is simple and easier in this system to maintain database consistency. Query
performance is also significantly faster.

2.0 LITERATURE REVIEW

While a rich body of literature on multilingual information processing exists in the Natural
Language Processing [10] and Information Retrieval [11, 12] communities, there is
comparatively very little in the database context. In database literature, the multilingual data
management issues may be classified as solutions for specific languages, data integration
solutions or proprietary solutions.

A database system for handling Arabic data is presented in [13]. This work presents specific
issues and solutions for storing, indexing, querying and presenting Arabic language data, in an
object oriented way. A database system has been presented for storing and query processing
ideographic Chinese, Japanese and Korean (CJK) data in [14], where the authors primarily focus
on the definition of resources needed for handling ideographic scripts in database systems.
Though both these papers address issues specific to the languages concerned (Arabic and CJK
languages respectively), neither of them propose solutions for multilingual data management for
interchange of information among users of different languages.

The Federated Multilingual Database system (FEMUS) [15] can integrate data from different
data models and the associated query languages. But the limitation of this system is that it does
not address issues in integrating data from different natural languages. A multilingual query-
processing framework for sharing lexical resources is discussed in [16]. The main focus of this
work is on improving the efficiency of administration of multilingual resources in database
environment. But it does not provide any guideline for multilingual query processing.

The Look-Alike-Sound-Alike [17] and EROS [18] are two application specific multilingual data
management systems. These systems support multilingual data for specific domain but do not
address general-purpose multilingual data management issues. The commercial database systems
[19, 20, 21] provided multilingual support to some extent but not the full functionalities of
MDMS. These commercial database systems support Unicode 3.01 standard for storing
multilingual data. But main limitation of these systems is that they do not provide any
mechanism of querying over multiple languages.

3.0 MULTILINGUAL DATA MANAGEMENT: SYSTEM DESIGN AND
 ARCHITECTURE

 Multilingual Data Management In Database Environment pp 44-63

46
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

The system architecture for the multilingual data management comprises two main modules:
management module and storage module. The management module is responsible for
performing inter-language mapping and querying. It consists of two sub modules: query
execution and translation. The storage module manages the storage of the encoded database and
data dictionaries. The overall system architecture is shown in Fig.1. The single directional
arrows represent the direction of next sub-module to be executed in a module whereas bi-
directional arrows represent the relationship among the sub-modules for processing. The
relationships among the sub-modules are also shown in Fig.1.

3.1 Management Module

Management module consists of two sub-modules: query execution and translation.

3.1.1 Query Execution

The query execution module consists of a group of sub-modules that are related to process a
query. These sub-modules are -query manager sub-module, query input / response sub-module,
parse query sub-module, search dictionaries sub-module, dictionary-to-DB mapping sub-module,
and DB-to-dictionary mapping sub-module as shown in Fig.1. Query manager sub-module
performs the task of retrieving the query results to the clients.

Fig.1: System architecture for multilingual data management

Client 2

Translator

 Query Execution

Storage

Query Input / Response Parse query

Search Dictionaries Dictionary-to-DB-
Mapping

DB-to-Dictionary Mapping

Storage of
Encoded Database

Storage of
Dictionaries

Management Module

Client 1

Query Manager

Client 3 Client n

Multilingual Clients

 Multilingual Data Management In Database Environment pp 44-63

47
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

Query input / response sub-module takes the query expression from the query manager and
returns the query result to the query manager. Parse query sub-module identifies the important
information in the query i.e. for which purpose query is generated. Appropriate dictionaries can
be selected, when necessary using search dictionaries sub-module. Dictionary-to-DB-mapping
sub-module performs the tasks of linking between data dictionaries and database so that
retrieving of information from the database can be done easily. DB-to-dictionary-mapping sub-
module is used to perform reverse mapping. This sub-module helps to get the appropriate
information for the client.

3.1.2 Translation

In multilingual translation, a record provided in specific language is translated in the target
language with the help of a translator. Fig. 2 shows the multilingual translation procedure.

 Fig. 2: Multilingual translation procedure

From the Fig. 2, it is observed that R is a record in language L1, which contains n numeric
attributes n1, ---, nn, a alphanumeric attributes a1, --, am and t text attributes t1, --, to. For translating
the record R in language L2 we need to encode R with the help of a translator. The translation of
numeric and alphanumeric and data can be done by providing character-by-character mapping
among languages while the translation of text data requires the involvement of data dictionaries.
Considering the above factors the algorithm for multilingual translation is as shown below.

Algorithm MullTranslator (Record R){
// R is a record in operation which contains n numeric attributes,
// a alphanumeric attributes and t text attributes. Numeric and alphanumeric
//attributes will be handled directly and text attributes will be handled with the
//help of dictionaries.
for each record R do {

find numeric attributes n, alphanumeric attributes a and text attributes t

for n and a call AlphanumericTranslator (n, a);
for t call Addlexeme (t);

From above algorithm, it is observed that Mulltranslator algorithm takes a record R as its
argument and calls AlphanumericTranslator for numeric and alphanumeric attributes and
Addlexeme for text attributes. AlphanumericTranslator takes numeric attribute n and

 Multilingual Data Management In Database Environment pp 44-63

48
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

alphanumeric attribute a of record R as its argument and performs direct mapping with the
database. The algorithm inserts numeric data in binary format and alphanumeric data in ASCII
format. The algorithm for translating numeric and alphanumeric data is given below.

Algorithm AlphanumericTranslator (n, a) {
// This algorithm takes numeric attributes n and alphanumeric attributes a of a
//record R as an argument and perform direct mapping with the database.
 for each character c in each value of n or in each value of a in R do
 Search appropriate character wise mapping between database storage
 language and desired language.

Addlexeme algorithm takes text attributes t of the record R as its argument and performs
translation among languages with the help of domain dictionaries. The algorithm first searches
the corresponding domain dictionary for the existence of the text item in the dictionary. If the
item exists in the dictionary the Addlexeme algorithm does not insert the item in the dictionary.
Otherwise the algorithm inserts the item in the corresponding dictionary with its translated
values in other languages.

So, there is only one entry of a specific text item in the domain dictionary. The Addlexeme,
algorithm for addition of lexeme is given below.

Algorithm Addlexeme (text t) {
// This algorithm takes text attributes t of a record R as an argument and
//perform mapping with the database with the help of codes.
for each t do
 search corresponding dictionary
for each data item x in each t do
 search for all x in the corresponding dictionary {
 if found (x)
 return corresponding code
 Else
 add x in the dictionary with its translated value in other languages and
 return corresponding code

3.2 Storage
Data stored in the database tables are generally text, numeric or alphanumeric. In practice most
of the data is numeric and alphanumeric. Consider the relation student with attributes studentid,
name, status, age and city. As an example, consider the storage of student relation in English and
the native language Bangla. Table 1 and Table 2 show these two relations.

Table 1: Student_english: Storage of student records in English

studentid Name status age City
0304001 Abdullah Married 32 Dhaka
0405006 Abdur Rahman Unmarried 28 Lakshmipur
0605002 Mushfuk Married 30 Dhaka

 Multilingual Data Management In Database Environment pp 44-63

49
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

Table 2: Student_bangla: Storage of student records in Bangla

Conventional database systems store relations for each language. So data redundancy is
proportional to the number of language support. In the proposed system, a single encoded table is
used to store a multilingual table irrespective of the number of languages support. Table 3 is the
encoded representation of the tables (Table 1 and Table 2) in English and Bangla.

Table 3: Encoded database storing multilingual data

studentid name status age city
0304001 1 (01) 1 (0) 32 1 (01)

0405006 2 (10) 2(1) 28 2 (10)

0605002 3 (11) 1 (0) 30 1 (01)

To create the encoded representation, we have three considerations: all numeric fields are
represented directly in binary format; all alphanumeric fields are represented in character data
and text fields are represented in dictionary encoding method. In Table 1 and Table 2, age is a
numeric field that has the binary representation with minimum number of bits in the encoded
table (Table 3). StudentID is an alphanumeric field that has been represented as ASCII character
data. The other fields e.g. name, status and city are text fields and encoded using the
corresponding domain dictionaries as shown in Table 4, 5 and 6.

The dictionaries are created by storing only the unique values of the corresponding domain. The
property of the dictionary is that if any lexeme is stored in the dictionary, it returns a unique code
and vice versa i.e. code ← encode (lexeme) and lexeme← decode (code). Table 4 shows the
dictionary of name attribute with language 1 as English and language 2 as Bangla. There are
three name instances in English and the corresponding values in Bangla in the following column.

 Multilingual Data Management In Database Environment pp 44-63

50
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

So, in the name field of the encoded table code 1 will represent Abdullah or . Similarly,
Abdur Rahman or and Mushfik or will be represented using code 2 and 3
respectively in the encoded table (Table 3). Similarly, Table 5 and Table 6 show the dictionaries
for status and city attributes respectively. The code corresponding to a data item stored in
different languages (here in English and Bangla) will represent that data in the encoded table. So,
the storage in the encoded table is independent of the number of language support.

3.3 Operations in Multilingual Database

Different operations such as multilingual query, insertion, deletion and update can be performed
in the developed system efficiently. The following subsections describe the procedures for
different multilingual operations.

3.3.1 Analysis of Multilingual Query Procedure

Multilingual query should be executed efficiently so that correct tuples are retrieved from the
database. The algorithm for multilingual query processing is given below.

Algorithm MulQuery (A, B) {
// A and B are the set of attributes involve in query execution and query response
// respectively. Both A and B can contain numeric, alphanumeric and text attributes.
 for each A do
 {
 find numeric attributes An, alphanumeric attributes Aa and text attributes At from A
 for An and Aa call AlphanumericTranslator (An ,A a) to search database.

for At call Addlexeme (At) and use returned codes to search database.
 }
 for each B do
 {
 find numeric attributes Bn, alphanumeric attributes Ba and text attributes Bt from B

 for Bn and Ba
 call AlphanumericTranslator (Bn,Ba) to return numeric and alphanumeric data
 from the database.
for Bt,
 call Addlexeme (Bt) and use codes to return text data from the database.

Consider the information of some students has been stored in an information theoretic approach
in the multilingual database. Student record includes student ID, name, status, age and city.
Name, status and city of students have been stored using dictionary encoding method and student
ID and age have been stored directly in the encoded DB. Now for retrieving students’ records
living in Dhaka city in English by a client the following is the query to be executed.

select st.sudenttid,st.age, N.english, S.english ,C.english
from student as st, Dname as N, Dstatus as S, Dcity as C
where C.english = ‘Dhaka’ and st.city = C.city and st.name = N.name
and st.status = S.status

In the above query, Dname, Dstatus and Dcity are the domain dictionaries for name, status and

 Multilingual Data Management In Database Environment pp 44-63

51
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

city and student is the name of the encoded table. For executing the above query, algorithm
MulQuery, first searches the dictionary Dcity for city attribute by calling Addlexeme algorithm.
Addlexeme algorithm returns the code corresponding to Dhaka. This code will be checked in the
city field of the encoded table student. Then all the matching records corresponding to the code
for Dhaka will be retrieved from the database. After retrieving the records from the database, the
text data i.e. name, status and city will be returned using DB-to-dictionary mapping and the
numeric and alphanumeric data studentid and age will be returned directly to the client using
AlphanumericTranslator in English.

3.3.2 Analysis of Multilingual Insertion Procedure

In multilingual insertion, care has to be taken for handling the dictionaries properly. Otherwise,
data redundancy and inconsistency in the dictionary can be occurred. Also mapping among data
dictionaries and database must be handled carefully for removing difficulties in accessing data
from the encoded database. The algorithm for multilingual insertion is given below.

Algorithm MulInsertion (R){
// R is the record to be inserted which contains Rn numeric, Ra alphanumeric
// and Rt text attributes.
{
 for each R find Rn, Ra and Rt
 for all Rn and Ra call AlphanumericTranslator (Rn,R a)
 for all Rt call Addlexeme (Rt)

Now, consider that a client wants to insert the record shown in Table 7 in English.

Table 7: Record to be inserted
StudentID Name Status Age City

0706005 Rahim Unmarried 35 Lakshmipur

For inserting the record shown in Table 7, the client has to execute the following SQL
statements.

insert into student (studentid, name, status, age, city)
select ‘0706005’, N.name, S.status ,35, C.city
from Dname as N, Dstatus as S, Dcity as C
where N.english = ‘Rahim’ and S.status = ‘unmarried’
 and C.city = ‘Lakshmipur’

For inserting the record shown in Table 7, MulInsertion algorithm first identifies studentid as
alphanumeric attribute, age as numeric attribute, name, status and city as text attributes. As
studentid is an alphanumeric value and age is a numeric value they will be directly stored in the
database with the help of AlphanumericTranslator. As name, status and city are text attributes
the dictionaries Dname, Dstatus and Dcity corresponding to name, status and city attributes will
be searched first. As dictionary Dname does not contain the name Rahim, Rahim will be inserted
in the dictionary with its translated value in other languages. A code (here code 5) will be
generated at the time of insertion, which will be used to represent Rahim in the database. But

 Multilingual Data Management In Database Environment pp 44-63

52
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

dictionaries Dstatus and Dcity contain the value unmarried and Lakshmipur respectively. So,
status and city information will not be inserted in the dictionary. We just pick the codes
corresponding to status and city i.e. code 2 and 2 respectively from dictionaries Dstatus and
Dcity respectively. So, the record will be represented in the encoded table as shown in Table 8.

Table 8: Record in the encoded table
StudentId Name Status Age City

0706005 5 2 35 2

3.3.3 Analysis of Multilingual Deletion Procedure

To delete records from the database we will have to search the records first. The algorithm
shown below performs the task of multilingual deletion.

Algorithm MulDeletion (R) {
//Delete record R, which contains numeric, alphanumeric and text attributes.
 Call MulQuery (A, B) to search for R
 check the constraints applied and perform deletion from the database not from
 the dictionary.

From the above algorithm, it has been observed that deletion will be performed from the encoded
database, not from the dictionary. This is because dictionary information might be needed in
future for different types of multilingual operations.

3.3.4 Analysis of Multilingual Update Procedure

Multilingual update procedure involves querying the records. After retrieving the records update
operation will be performed. The algorithm for multilingual update is given below.

Algorithm MulUpdate (R) {
// R is the record to be updated which contains numeric, alphanumeric
// and text attributes.
for each R, call MulQuery (A, B) for retrieving R

if the value to be updated is text then
call Addlexeme (t)

if the value to be updated is numeric and alphanumeric then
 call AlphanumericTranslator (n, a)

Multilingual update operation is more time consuming than other operations. The MulUpdate
algorithm first checks the existence of the text data in the corresponding domain dictionaries
with which replacement will be made. This is because if the data in the dictionary further
insertion of this data in the dictionary will create data duplication. But if it is not in the dictionary
we have to insert it in the dictionary with its translated value and code. This code will replace the
corresponding code in the compressed database. As in translator-based approach numeric and
alphanumeric data is directly inserted in the database, we will replace the numeric and
alphanumeric value directly without the involvement of dictionaries.

 Multilingual Data Management In Database Environment pp 44-63

53
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

3.3.5 Use of Two-Phase Commit Protocol

Two ensure the integrity of data proposed multilingual system follows the ACID properties of
the transactions. ACID properties state that all the sites in which a transaction T executed must
agree on the final outcome of the execution and execution of a transaction T in isolation
preserves the consistency of the database. T must commit at all sites or it must abort at all sites.
To ensure that our system always follows ACID properties we have used two-phase commit
protocol. In this proposed multilingual system, the dictionaries and encoded DB will always be
consistent after the execution of any transaction at any site.

3.3.6 Mapping between Database and Data Dictionaries

For efficient handling of multilingual data, proper mapping between dictionaries and database is
a crucial factor. Forward mapping or dictionary-to-DB mapping is needed when we want to store
something in the database. Forward mapping should be handled in such a way that there will be
no ambiguity in the database or dictionaries. For this purpose, care has to be taken so that
appropriate code is selected and it is placed in the appropriate field of the database. On the other
hand, backward mapping of DB-to-dictionary mapping is needed at the time of retrieving
information. In backward mapping selection of appropriate values in appropriate language from
the dictionaries based on codes should be done accurately and efficiently.

3.3.7 Complexity Analysis

The multilingual data management system developed has two parts for the time concern; one for
searching and storing the necessary information in the dictionary and another is for dictionary
and database mapping at the time of different operations. For complexity analyses of the
developed multilingual system consider the following.
Size of each block so that the block entirely fits in memory = Bs
Number of blocks needed to store each of n dictionaries = Db
Number of blocks needed to store encoded table = Eb
Hash function that maps each tuple of a dictionary in any of Db blocks = h
Let the multilingual operation is based on N attributes that consists of S text attributes and
remaining numeric and alphanumeric attributes. Therefore, the complexity can be calculated as
follows:
Worst case:
Worst case query complexity occurs when all the attributes involved in query are text attributes
and values in the encoded table are in different blocks.
So, in such situation maximum block transfer corresponding to a query = N + Eb
Here, Eb is the total number of block transfer of the encoded table.
Best case:
Best case query complexity occurs when all the attributes involved in query are numeric /
alphanumeric attributes and values in the encoded table is in the same block.
So, in such situation maximum block transfer corresponding to a query = 1
Average case:
Average case query complexity occurs when number of attributes involved in query are both
numeric/alphanumeric and text attributes and values in the encoded table is obtained by
accessing fewer blocks. So, in such cases maximum block transfer corresponding to a query that
includes S text attributes = S + Ef . Here, Ef means number of block transfer corresponding to
encoded table.

 Multilingual Data Management In Database Environment pp 44-63

54
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

4.0 RESULTS AND DISCUSSIONS

This section discusses the experimental setup for the simulation and the corresponding results.

4.1 Experimental Setup
The multilingual data management system has been developed on a machine having the
operating system Windows XP, 2.4 GHz Pentium IV Processor with 512 MB memory. The
system was implemented in JDK 1.6 in the front and in Oracle 9i DBMS in the back-end for
storing the database, data dictionaries and related information.

For measuring the performance of the proposed multilingual system, we have considered two
schemas student schema and library schema. A data generation program has generated data
items of student schema. Hundred thousand records were randomly generated for different
students under departments of public universities. Library schema is chosen from the central
library of Chittagong University of Engineering and Technology (CUET), Bangladesh. This
schema is used in CUET for maintaining books information in English. Data items of library
schema are real data.

4.2 Space Requirement Calculation

The developed system has been implemented with six single dictionaries and one encoded table
for each of the student and library schema. The dictionaries for student schema are for storing
name, status, city, faculty name, department name and university name and the dictionaries for
library schema are for storing book title, book author, book type, edition place, publisher and
edition source. Each of these dictionaries has three fields for storing information in English,
Bangla and auto incremented code for mapping dictionary to encoded DB.

In the proposed system, storage is needed for storing text data in the dictionaries. Also storage is
needed for storing code corresponding to text data and numeric/alphanumeric data in the
encoded table. On the other hand storage of existing systems includes the storage of information
separately in each language.

Table 9: Comparative storage requirement of the developed systems and existing systems

No. of
records to

store

Student Schema Library Schema

Storage
requirement in
our system in

MB

Storage
requirement in

existing
systems in MB

Storage
requirement in
our system in

MB

Storage
requirement in

existing
systems in MB

1000 0.484 0.801 0.689 1.0872
5000 1.989 4.005 3.086 5.436

10000 3.01 8.01 3.563 10.872
20000 4.721 16.022 4.516 21.744
40000 7.813 32.042 6.424 43.488
60000 10.901 48.065 8.331 65.232
80000 13.991 64.087 10.238 86.976
100000 15.631 81.108 12.146 108.72
200000 23.833 160.218 21.682 217.44

The storage requirement for different number of records shown in Table 9 for existing systems is
obtained by summing up the storage required in English and Bangla. Using the data of Table 9,
we have obtained the graph as shown in Fig. 3. The graph in Fig. 3 shows the comparative
storage requirement for student schema and library schema.

 Multilingual Data Management In Database Environment pp 44-63

55
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

Comparative storage requirement of the developed system and
existing systems

0

50

100

150

200

250

1000 5000 10000 20000 40000 60000 80000 100000 200000
Number of records

St
or

ag
e

R
eq

ui
re

m
en

ts
 in

 M
B

 student schema in the developed multilingual system

 student schema in the existing systems

 library schema in the developed multilingual system

library schema in the existing systems

Fig. 3: Comparative storage requirement of the developed multilingual system

From Fig 3, it is observed that the rate of increase of storage requirement with the increase of
number of records is significantly higher in existing systems compared to our system. This is
because in the our multilingual system when dictionaries are converged there is no further entry
in the dictionary and the storage of the compressed database is independent of the number of
language support. But in existing systems it is necessary to insert records separately in each
language.

4.3 Multilingual Translation Performance

For measuring the efficiency of the translator, we have applied the developed translator on
different numeric, alphanumeric and text data of student schema and library schema. We have
randomly chosen one thousand records of both student schema and library schema and found the
translation accuracy of the proposed multilingual system. We have found the accuracy of the
translator as shown in Table 10.

From the information of Table 10, we have found that the developed translator performs accurate
translation of numeric and alphanumeric data and sufficient translation of text data. Also it is
observed that translation of text items in case of real data set is better than random generated data
set.

 Multilingual Data Management In Database Environment pp 44-63

56
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

Table 10: Translation accuracy of the developed translator

No. of
records

Student schema Library schema

Text
translation
accuracy

(%)

Numeric /
alphanumeric

translation
accuracy (%)

Text translation
accuracy (%)

Numeric /
alphanumeric

translation
accuracy (%)

100 76 100 73 100

200 71 100 76 100

300 73 100 75 100

400 68 100 73 100

500 77 100 78 100

600 74 100 83 100

700 71 100 88 100

800 75 100 76 100

900 72 100 80 100

1000 76 100 82 100

This is because in real data set all the entries are valid and understandable. From our experiment
we have obtained the result corresponding to translation time as shown in Fig. 4.

Translation performance of the developed translator

0

1000

2000

3000

4000

5000

1000 2000 5000 20000 50000 100000

Number of records

Tr
an

sl
at

io
n

tim
e

in
 m

in
ut

es

 Student schema

Library Schema

Fig. 4: Translation time requirement of the developed translator

4.4 Multilingual Query Performance

Query performance in our MDMS has been measured by combining the dictionary search time
and database search time. For getting accurate performance, we have generated same query on
different size of the database and different queries on same dataset. In our experiment, we have
considered ten different criterions for performing query operation, which are given below:

• Q1: Query based on text fields and returned values are also text fields.
• Q2: Query based on numeric/alphanumeric fields and returned values are also numeric /

alphanumeric fields.
• Q3: Query based on text fields and returned values are numeric/alphanumeric fields.
• Q4: Query based on numeric/alphanumeric fields and returned values are text fields.
• Q5: Query based on both text and numeric/alphanumeric fields and returned values are

text fields.

 Multilingual Data Management In Database Environment pp 44-63

57
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

• Q6: Query based on both text and numeric/alphanumeric fields and returned values are
numeric/alphanumeric fields.

• Q7: Query based on text fields and returned values are text and numeric/alphanumeric
fields.

• Q8: Query based on numeric/alphanumeric fields and returned values are text and
numeric/alphanumeric fields.

• Q9: Query based on both text and numeric/alphanumeric fields and returned values are
text and numeric/alphanumeric fields with less text attributes than numeric/alphanumeric
attributes involved in query.

• Q10: Query based on both text and numeric/alphanumeric fields and returned values are
text and numeric/alphanumeric fields with more text attributes than
numeric/alphanumeric attributes involved in query.

We have considered different text and numeric/alphanumeric fields for the experiment in both
student schema and library schema. Using the above query conditions in both English and
Bangla on different database size and averaging the result obtained in each language, we have
obtained the query time for both student schema and library schema as shown in Table 11 and
Table 12

Table 11: Query time in milliseconds on student schema

No. of
records Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Average
query
time

1000 2458 230 1163 1418 2775 1066.5 2246.5 1320.5 1780.5 2358 1682

5000 3914 273 2529 2952.5 4326.5 2265 3523.5 2393.5 3768.5 4132 3008

10000 4558.5 375 3515 3974 5278 2854.5 4804.5 3169.5 4314.5 4643.5 3749

20000 6661.5 723.5 4792 5182.5 6952 3671 5786.5 4326.5 6157.5 6541.5 5079

40000 8486.5 1159 5603 5935.5 8731 4495 6582 4913 7245.5 7877 6103

60000 9397 1420 6603 7025.5 9287.5 5304.5 7952.5 5652.5 8378 8742 6976

80000 10825.5 1601 7369 7979 12152.5 6044.5 8822 6446.5 9980 10427.5 8165

100000 12200.5 1777 7974.5 8440 13707.5 6899 9734.5 7502 10841 11334 9041

Table 12: Average query time in milliseconds on library schema

No. of
records Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Average
query
time

1000 2287 231 1100 1383.5 2686 940.5 2177.5 1279 1704.5 2265 1605

5000 3788 278 2483 2880.5 4317.5 2255.5 3530 2343 3706 4089.5 2967

10000 4529 392.5 3569.5 4000 5205 2737.5 4737 3172.5 4289 4246 3688

20000 6631 705.5 4871.5 5093.5 6862 3666 5776 4232 6050.5 6516.5 5040

40000 8369.5 1160 5671.5 6017 8794 4451.5 6603.5 4890 7325 7969.5 6125

60000 9449 1410 6660.5 7124 9276.5 5382 7864 5704.5 8358.5 8715 6994

 Multilingual Data Management In Database Environment pp 44-63

58
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

80000 10704.5 1491.5 7420.5 8077 12375 6185 8889.5 6366.5 10088 10266 8186

100000 12317.5 1841.5 8172 8321 13669.5 6852 9525 7469 10660 10741.5 8957

For comparative performance analysis of multilingual query of the developed MDMS, we have
first calculated the average query time as shown in Table 11 and Table 12 and compared this
time with the time obtained using same queries (used earlier in the developed MDMS) separately
in English and Bangla database on same record size (as used in the developed MDMS) and then
averaging the query result obtained separately in English and Bangla. From the experiment, we
have obtained the comparative query performance of the developed MDMS and existing systems
as shown in Fig. 5.

Comparative query performance of the developed system and
the existing systems

0

2000

4000

6000

8000

10000

12000

1000 5000 10000 20000 40000 60000 80000 100000

Number of records

Q
ue

ry
 ti

m
e

in
 m

ill
is

ec
on

ds

Query time in ms in our sy stem f or student schema

Query time in ms in existing sy stem f or student schema

Query time in ms in our sy stem f or library schema

Query time in ms in existing sy stem library schema

Fig. 5: Comparative multilingual query performance

From Fig. 5, it is observed that multilingual query performance of the developed system is
slightly better than the query time of the existing systems. This is because in the developed
multilingual system, we need to perform query operation in a single encoded database and the
query operation is independent of language selection. But in existing systems we have to use
redundant record sets and query operation need to be performed separately from language
dependent databases separately to retrieve same data in different languages.

4.5 Multilingual Insertion Performance

For the experimental purpose of insertion, we have considered the matter of random record
generation. In this approach when we insert a record it will insert eight text fields, which
includes name, father’s name, mother’s name, city, marital status, department, faculty and
university and seven numeric and alphanumeric fields, which includes student id, course id,

 Multilingual Data Management In Database Environment pp 44-63

59
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

level, term, average marks obtained in a specific term and merit position. From our experiment
we have obtained the graph shown in Fig. 6.

Multilingual Insertion Performance

0

500

1000

1500

2000

2500

1000 2000 5000 20000 50000 100000
NUmber of records to be inserted

Ti
m

es
 in

 m
in

ut
es Insertion Time

Fig. 6: Multilingual insertion performance

From the graph shown in Fig. 6, it can be considered that if the number of text fields to be
inserted increases the insertion time also increases.

4.6 Multilingual Deletion Performance

For the deletion we have to search the record first. In the experiment we have search the records
to be deleted using numeric/alphanumeric attributes, as searching using numeric/alphanumeric
attributes require less time. From the experiment, we have found the information as shown in
Fig.7 while performing multilingual deletion operation.

Fig. 7: Multilingual deletion performance

From the Fig. 7, it has been observed that deletion is not so much time consuming with the
variation of records. This is because we performed search for tuples to be deleted based on
numeric/alphanumeric attributes and deleted tuples directly from the database without
involvement of dictionaries.

4.7 Multilingual Update Performance

Update performance is measured by summing up the time required to perform query operation to
retrieve the data to be updated and the time required to insert the new data. In our developed
MDMS, we have retrieved data to be updated using query based on studentid for student schema
and subjectcode for library schema. For measuring update performance in the developed

Multilingual Deletion Performance

0

500

1000

1500

2000

2500

3000

3500

4000

1000 2000 5000 10000 20000 40000 60000 80000 100000

Number of records

D
el
et

io
n

tim
e

in
 m

illi
se

co
nd

s

Deletion Time

 Multilingual Data Management In Database Environment pp 44-63

60
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

MDMS, we have generated same update operation on different size of the data set in both
English and Bangla.

In our experiment, we have considered five different conditions for performing update operation,
which are given below.

• U1: Updated values are text data already in the dictionary.
• U2: Updated values are text data not in the dictionary.
• U3: Updated values are numeric/alphanumeric values.
• U4: Updated values involve text data and numeric/alphanumeric data with text data in the

dictionary.
• U5: Updated values involve text data and numeric/alphanumeric data with text data not in

the dictionary.

We have also considered different fields to be updated. Considering conditions and number of
fields to be updated, we have obtained the result as shown in Table 13.

Table 13: Update time in milliseconds on different number of records in student schema and

library schema

No.
 of

Records

Student Schema Library Schema

U1 U2 U3 U4 U5
Average
update

time
U1 U2 U3 U4 U5

Average
update

time
1000 1695 2391 448 1439 2162 1627 1524 2278 403 1384 2012 1520

5000 3915 4781 815 3050 4461 3404 3819 4562 709 2835 4528 3290

10000 5481 6335 1068 4637 5987 4701 5423 6412 958 4682 5944 4683

20000 7126 8036 1197 6138 7824 6064 6981 7836 1120 6045 7819 5960

40000 8235 9148 1352 7935 9058 7145 8151 9125 1273 7889 9025 7092

60000 9227 11520 1473 8944 10869 8406 9113 10521 1365 8812 10726 8107

80000 11243 12782 2268 10543 12065 9780 10983 12659 2178 10223 11954 9599

100000 12198 14936 2504 11087 14684 11081 11025 14561 2518 11034 14869 10801

From Table 13, it is observed that in the developed MDMS maximum update time required when
updated values is not in the dictionaries and minimum update time required when update is
performed on numeric or alphanumeric data. This is because if updated values are not in the
dictionaries, we have to insert the items in the dictionaries first and then we have to make
replacement in the encoded DB with the new generated codes. On the other hand if the updated
values are numeric or alphanumeric data, we can update the values directly from the encoded DB
without the involvement of dictionaries.

For comparative update performance analysis we have done the following:

• Calculated the average update time considering different update conditions on same
number of records (as shown in Table 13).

• Calculated the average update time on different size of records considering different
update conditions.

 Multilingual Data Management In Database Environment pp 44-63

61
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

• Compared the time obtained in the developed MDMS with the time obtained by
performing same update operation separately in English and Bangla database on the same
record size and the summing up the update result obtained in English and Bangla.

From our experiment we have obtained comparative update performance as shown in Fig. 8.

Comparative update performance of the developed MDMS and existing
systems

0

3000

6000

9000

12000

15000

18000

21000

24000

1000 5000 10000 20000 40000 60000 80000 100000
Number of records

U
pd

at
e

tim
e

in
 m

illi
se

co
nd

s

Update time in student schema our system

Update time in student schema in existing systems

Update time in library schemain our system

Update time in library schema in existing systems

Fig. 8: Comparative update performance of the developed system

From Fig. 8, it has been observed that the developed MDMS required less update time for any
update operation compared with the update operations performed in the existing systems. This is
because in our system we need to perform update operation on a single encoded database. But in
existing systems we have to use redundant databases and update operation need to be performed
in each of the databases separately for keeping consistency of information stored in different
languages.

5. CONCLUSION

Storage of multilingual data and support of dynamic update is a problem for conventional
Database Management Systems. While existing database systems provide some means of storing
and querying multilingual data, they suffer from redundancy proportional to the number of
language support. In this paper, we have proposed a translator-based approach for handling
multilingual data that stores data in information theoretic way with minimum redundancy. We
have developed algorithms for insertion of multilingual data into a single non-redundant
database, querying and update in the database. The algorithms have been evaluated by syntactic
data sets generated by a data generation program and real data sets as well. We have compared
the performance of our system with the existing systems. Our system outperforms the existing
multilingual systems in terms of both space and time.

We have implemented the system for two languages: English and Bangla. In this system, data
has been stored in a central server and clients can perform different operations in the database
dynamically in a distributed environment. Schema evolution in the developed MDMS is simple

 Multilingual Data Management In Database Environment pp 44-63

62
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

and easier to maintain the database consistency because of a single encoded database. These
tasks are difficult in the existing systems due to redundant databases. Query performance in the
proposed system is more efficient than the existing systems. Though we have considered Bangla
and English languages for the experimental purpose, the system can adapt other languages with
the addition of the corresponding language translator only.

REFERENCES

[1] C. Ordonez, “Optimizing Recursive Queries in SQL”, Proceedings of the ACM SIGMOD

 International Conference on Management of Data, pp 834-839, 2005.
[2] W. Chung, Y. Zhang, Z. Huang, G. Wang, T. H. Ong and T. H. Chen, “Internet

Searching and Browsing in a Multilingual World: An Experiment on the Chinese
Business Intelligence Portal ”, Journal of the American Society for Information Science
and Technology, Vol. 55, No. 9, pp 818-831, 2004.

[3] A. Kumaran, P. Chowdary and J. Haritsa “On pushing multilingual query operators into
relational engines”, Proceedings of 22nd IEEE International Conference on Data
Engineering (ICDE), Atlanta, USA, April 2006.

[4] F. Gey, A. Chen, M. Buckland and R. Larson, “Translingual vocabulary mapping for
multilingual information access”, Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Tampere,
Finland, pp 455-456, August 2002.

[5] J. Marlow, P. Clough, J. C. Recuero and J. Artiles, “Exploring the Effects of Language
Skills on Multilingual Web Search”, In Proceedings of the 30th European Conference on
IR Research (ECIR'08), Glasgow, UK, April 2008.

[6] The Computer Scope Ltd., Dublin, Ireland. http://www.NUA.ie/Surveys
[7] A. Kumaran and J. R. Haritsa, “On the Costs of Multilingualism in Database Systems”,

Proceedings of 29th Very Large Databases Conference, Berlin, Germany, pp 105-116,
September 2003.

[8] A. Kumaran,., “Multilingual information processing on relational database architectures”,
Ph.D Thesis, Department of Computer Science and Automation, Indian Institute of
Science, Bangalore, India, December 2005.

[9] A. Silberschatz, H. F. Korth, and S. Sudarshan, “Database systems concepts”, Fourth
Edition, Tata McGraw Hill, pp 709 – 730, 2002.

[10] The Association for Computational Linguistics. http://www.aclweb.org
[11] Special Interest Group in Information Retrieval (ACM SIGIR). http://www.acm.org/sigir.
[12] P. Pingali and V. Varma, “Multi-lingual Indexing Support for CLIR using Language

Modeling”, Bulletin of the Technical Committee on Data Engineering, IEEE Computer
Society, Vol. 30, No. 1, pp 57-72, March 2007

[13] R. King and A. Morfeq, “Bayan: An Arabic Text Database Management System”,
Proceedings of the 1990 ACM SIGMOD International Conference on Management of
Data, Vol. 19, Issue. 2, pp 12-23, 1990.

[14] C. Lu, and K. Lee, “A Multilingual Database Management System for Ideographic
Languages”, Chinese University of Hong Kong Technical Report, 1992.

[15] M. Andersson, Y. Dupont, S. Spaccapietra, K. Yetongnon, M. Tresch and H. Ye,
“FEMUS: A Federated Multilingual Database System”, Advanced Database Systems,
Springer-Verlag, Vol. 359, pp 359-380, 1993.

[16] C. Yip, B. Kao and D. Cheung, “A Framework for the Support of Multilingual
Computing Environments”, Technical Report, University of Hong Kong, 1997.

 Multilingual Data Management In Database Environment pp 44-63

63
 Malaysian Journal of Computer Science, Vol. 22(1), 2009

[17] B. Lambert, K. Chang and S. Lin, “Descriptive Analysis of the Drug Name Lexicon”
Drug Information Journal, Vol. 35 No. 1, 2001.

[18] The EROS System.http://merovingio.c2rmf.cnrs.fr/eros/eros.xhtml
[19] IBM Corporation, Armonk, New York. http://www.ibm.com
[20] Microsoft Corporation, Redmond, Washington. http://www.microsoft.com.
[21] Oracle Corporation, Redwood Shores, California. http://www.oracle.com.

BIOGRAPHY

Dr. Abu Sayed Md. Latiful Hoque received his PhD in the field of Computer & Information
Science from University of Strathclyde, Glasgow, UK in 2003 with Commonwealth Academic
Staff Award. He obtained M.Sc. in Computer Science & Engineering and B.Sc. in Electrical &
Electronic Engineering from Bangladesh University of Engineering & Technology (BUET) in
1997 and 1986 respectively. He has been working as a faculty member in the Department of
Computer Science & Engineering of BUET since 1990 and currently his position is an Associate
Professor. He is a Fellow of Institute of Engineers Bangladesh (IEB) and Bangladesh Computer
Society. His research interest includes Data Warehouse, Data Mining, Information Retrieval and
Compression in DatabaseSystems.

Mohammad Shamsul Arefin received his B.Sc. Engineering in Computer Science and
Engineering from Khulna University, Khulna, Bangladesh in 2002, and completed his M.Sc.
Engineering in Computer Science & Engineering in 2008 from Bangladesh University of
Engineering & Technology (BUET), Bangladesh. He is a member of Institute of Engineers
Bangladesh (IEB) and currently working as an Assistant Professor of Chittagong University of
Engineering & Technology, Chittagong, in Computer Science & Engineering Department. His
research interest includes Data Management, Semantic Web, Machine Learning, Natural
Language Processing and Object Oriented System Design.

