

33
Malaysian Journal of Computer Science, Vol. 21(1), 2008

PIR WITH P-CACHE: A NEW PRIVATE INFORMATION RETRIEVAL PROTOCOL WITH
IMPROVED PERFORMANCE

Dr. Abu Sayed Md. Latiful Hoque1 and Gahangir Hossain2

1Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh.

Email: asmlatifulhoque@cse.buet.ac.bd
2Department of Computer Science and Engineering,

Chittagong University of Engineering and Technology (CUET), Chittagong-4349, Bangladesh.
Email: gahangir@gmail.com

ABSTRACT

The increasing model of e-commerce infrastructure opens the door for secure transaction of information over the
Net, keeping some records private as users’ choice within a few seconds. A client, while frequently retrieving his
records, seldom wishes to hide the identity of the records to the database server. Private Information Retrieval
(PIR) protocols allow users to retrieve information from a database while keeping their query private. Existing
protocols have pros and cons in terms of communication and computational complexity. In some PIRs the
computational complexity is reduced to O(1), and optimal, but still holds the high communication complexity O(Ns)
as there is a huge amount of communication needed to satisfy the query. In our research a new PIR, namely PIR
with P-cache, is introduced, based on the concept of database caching technology. In an average case, whenever a
client requests a query in the system, there is a high probability to satisfy it from the P-cache instead of accessing
the main database server that contains a huge amount of records. Our protocol outperforms the existing protocols
in terms of both communication and computational complexity for queries supporting from P-cache and hence an
improved performance.

Keywords: PIR, P-cache, Database Caching, Hashing.

1.0 INTRODUCTION

As online transaction is increases day by day, the use of secured online software with database access and
information retrieval is also ever-increasing. Private Information Retrieval (PIR), a protocol that allows the user to
retrieve information from a database server while hiding the identity of the record retrieved by the user, meets the
requirements of the next generation e-commerce applications. Some applications of the PIR are patent databases,
pharmaceutical databases, media databases, digital library, e-voting system, ethical hacking, bioinformatics, secret
sharing etc.

It is a big challenge to create database with efficient PIR protocols that can ensure a good or at least acceptable
response time. The main costs of PIR protocols are the communication and computational cost during query
processing. A number of research works have been performed in recent years to reduce both the costs. Chor et al.
[1] states two fundamental assumptions for PIR. Firstly, PIR is impossible unless we consider sending the entire
database to the client as a solution; that is communication complexity is proven to the total size of the database.
Secondly, in order to answer a query, the entire database must be read. In this case, the computational complexity is
equal to the searching time on the whole database. On the other hand, it is a violation of user privacy if some
records in the server are not read by client while processing.

To solve the existing problems and to improve the performance of a PIR, the database caching technology is used in
our proposed PIR with P-cache. Existing technology requires preprocessing and off-line communication to improve
performance. The use of P-cache technology requires a little preprocessing and offline communication and achieves
reasonable performance in most cases.

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

34
Malaysian Journal of Computer Science, Vol. 21(1), 2008

The rest of the paper is organized as follows: In section 2, a review of the research in existing PIR protocols and
their pros and cons are discussed. Section 3 describes the proposed PIR with P-cache technique. Details of P-cache
management and its operational policies are also described. The analysis of P-cache performance is given in Section
4. In Section 5, the experimental work that has been carried out and the discussions on the experiment are
explained. Finally in Section 6, conclusion of PIR with P-cache model and future works are discussed.

2.0 LITERATURE REVIEW

The main problem of PIR is to reduce the communication complexity of PIR protocols. Following the seminal work
of Chor et al. [1], sequences of improvements have been achieved. Kushilevitz et al. [2] introduced the theoretical
PIR following the basic concept of Chor and generated the special types of theory for the PIR simulation. The
concept is compact as all theories are associated in the server side, only the designer knows about the special theory
used. Development of such cryptographic policy with the IR system is a bit harder, thus implementation in real life
was not possible. Cachin et al. [3], introduced another new PIR, namely computational PIR that depends completely
on computational cryptography and RSA algorithm. This PIR updates the communication complexity from O(Ns) to
poly logarithmic range. In this PIR, computational complexity is high O(Ns), as a server has to process each record
in order to process a query. Asonov et al. [4] overcomes the limitation of computational complexity and introduced
the first PIR practically implemented via third party Secure Coprocessor (SC or SCOP for example IBM 4758 SC).
Its major demerit is the preprocessing complexity, and thus, the communication complexity is not reduced from
O(Ns). The communication complexity is conditionally reduced by the PIR with preprocessing and offline
communication developed by Lipma [5] which is effective for offline communication and a large number of
queries. Analyzing the merits and demerits of the previous PIRs Asonov [6] introduced the Almost Optimal PIR
with the SC. Although, depending on the SC this PIR reduces the complexities and Optimal in a sense but suffers
another high complexity for preprocessing (quadratic in Ns).

In spite of the large amount of research work done by many researchers in the field of Private Information Retrieval
[7], [8], [9], [10], [11], [12], [13] the most important question that has been raised is to reduce the communication
complexity or exclude the preprocessing overload are still far from resolution. The burning problem is to understand
whether PIR protocols involving constant number of servers require polynomial (or poly logarithmic) amount of
communication. Harder et al [14] provides the guidelines of designing database caching and Buhmann and Klein
[15] examined the performance of a database cache. Young and Yung [16] explained the implementation
techniques of a PIR protocol in their writing “Cryptovirology”.

3.0 PIR WITH P-CACHE ARCHITECTURE

The word P-cache stands for private cache and is simply a secure cache. It is a database cache that includes the
cryptographic policy. In database caching techniques, P-cache stores recently accessed query results in order to
satisfy the same future requests effectively, in the shortest time possible. The P-cache account holds the index value
of the recently accessed queries of a particular client protected by the client’s private key. Detailed of the P-cache
structure using hash index and its performance analysis are explained later on.

This section describes the detail analytical model of PIR with P-cache and its basic components, system
architecture, working principle, and complexities. The system is designed for single server environment.

3.1 Proposed System Architecture

The main ideas underlying this concept are the following. A user who searches for a record he already retrieved,
has to repeat the search procedure and solve the same problems he encountered in recent access. From the concept
of database caching, it is observed that the recently accessed queries from the main database are stored in the cache
to improve the retrieving performance. This research introduces a caching technology and analyzes its performance
improvement. A functional block diagram of P-cache with database server is shown in Fig.1.

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

35
Malaysian Journal of Computer Science, Vol. 21(1), 2008

Fig.1: Functional block diagram of PIR with P-Cache

According to this protocol, before participating in the retrieving process, a client must create a valid account called
P-cache account that can be accessible by his private key. Whenever the client retrieves first record from the
database server the system index it within the cache using the hash key indexing. In retrieving second or next
records the client applies query in his own P-cache account without reentering his private key. If the searching is not
successful in P-cache, the client applies the algorithm of PIR with preprocessing and offline communication as
shown in the algorithm below. After a certain period the complexity for retrieving any record reduces dramatically,
occurring majority hits and a few minor misses in the cache account searches.

The main modules in PIR with P-cache protocol are the query generator module, P-cache account creation module,
main database access module, response retriever module and P-cache management module as shown in the Fig.1. If
the client is a valid new user, he is allowed to create a P-cache account using P-cache account creation module that
accepts the private key of the client to access. Firstly, the client sends his request via query generator program. This
algorithm generates the private key and corresponding query in an acceptable format to the database server. The
database administrator returns the P-cache account of the corresponding registered client to his site by the main
database access module. If the client is not satisfied he has an option to apply his SQL operation in the database
server using the module. The requested record is then sent to the client. The client then directly retrieves it using his
private key.

The P-cache Index module is mainly to hash indexing the P-cache. The LRU algorithm is also used for updating the
query index. The Internal Architecture of a P-cache is shown in Fig.2.

PIR with P-Cache

Query Generator

Database Accessing
Module

Response Retriever
Decryption

P-cache
Management Module

Query “q”
Private Key
+ Query “q”

Database

Server

P-Cache

CLIENT
DBA

Sends P-cache
Account OR
Entire DB in
encrypted form

Expected
Record in
encrypted form
OR
P-cache
Account

E(r)

 r

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

36
Malaysian Journal of Computer Science, Vol. 21(1), 2008

3.2 Detailed Description of P-cache Data Structure

The general structure of P-cache is an indexed structure that contains the indexes in hashed form of the relation with
the attributes tagged as Attribute1, Attribute2…Attributen as well as QueryID and status bit specified in the Fig.2.
QueryID stores the hash index value of the corresponding query. This update operation in the P-cache depends on
the status of the status bit indicated from the main database. Status bit 0 indicates that the query result is valid and
no database update has been performed. The database and the P-cache are synchronized such that any update in the
database changes the corresponding status bit in the P-cache from 0 to 1. The details of the P-cache management
module are given in Fig.3.

Algorithm 1 : PIR with P-Cache

Inputs: Query Q for expected record Ri, Request
for P-cache account (if it is created earlier)
Output: P-cache account with expected records of
CLIENT’s access.
Begin:
1. Requests for Cache account to the SERVER :

 IF there is no account:
 Call P-
Cache_Account_Creation ()
 Return; // for Creating a new
cache account.
 2. SERVER Checks the Validity and sends
CLIENT’s P-

Algorithm 4 : Query_Generator

Input: Query from the CLIENT side.
Output: Private Key and Query in encrypted form
to the database SERVER
Query_Generator()
Begin:
1. Initialization: PrivateKey New_Key;
 i 1 // query
index
2. Call RSA any cryptographic algorithm for Private
Key generation.
3. FOR i=1 to N DO
 Begin

Fig.2: P-cache architecture and management

Relation Statu
s

Bit

query-
ID

hash

Attrib
ute1

Attribute2 Attribute
3

Attribut
e4

CustInfo 0 11 10005 Md. Kalim
Uddin

VISA 123-
093-987

VoterInfo 0 18 303 Md.
Sakhautullah

Ratanpur Rupgang

---- ---- ---- ---- ---- ---- ---
--- --- --- --- --- --- ---

Relation of P-cache

 P-Cache

P-CACHE MANAGEMENT

Select name,
Credit_Card_Type CrardNo
From custInfo
Where CustID = “10005”

 Select name, Village,
UP_OR_Words
From VoterInfo
Where VoterID = “303”

CLIENT’S QUERY
INTERFACE

Private
Key:

Main

Database Database Access Module

P-Cache
Access
Module

P-Cache
Index

 Module

Q1 Q2

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

37
Malaysian Journal of Computer Science, Vol. 21(1), 2008

 Cache account.

 3. Use Private Key and accesses the account by
 Query_Generator()
 Apply different Queries into the P-cache
Account:
 3.1 FOR each Query DO
 Begin:
 3.1.1. IF the Query is successful.
//Best Case
 Call P-Cache_Management() and
Return.
 // Update the P-Cache.
 3.1.2. ELSE Call
Main_Database_Access ();
 Return.
 End.
 4. Call Response_Retriever()
 //CLIENT retrieves his record. Worst
Case
 Call P-Cache_Management() and
Return.
End.

Algorithm 2: P-Cache_Account_Creation
Input: Request for P-cache Account.
Output: P-cache account protected with private
keys and password.
Begin:
 1. Ask the SERVER to checks CLIENT’s
validity.
 2. SERVER allows the valid new user to make
his account.
 3. CLIENT assigns Username and Password or
any other cryptographic options to create his
account and send it to the SERVER.
 4. The system applies the Cryptographic logic to
hide the identity.

 SERVER just holds the accounts.
End.

Algorithm 3 : Main_Database_Access
// PIR with preprocessing and offline
communication
Input: Users Query and Private Key
Output: Encrypted Record
Main_Database_Access()
Begin:
 1. Checks the Private Key.
 // homomorphic encryption or other
encryption technique
 2. Encrypts the whole database.
 3. Send the whole encrypted database (once)
to CLIENT’s access.
 4. CLIENT Search for the record in the
encrypted hash indexed database.
End.

 Consider Queryi to be processed.
 Use RSA Algorithm. // Private Key
 I=i+1;
 End.
 4. Return the encrypted Unicode value to the
server.
End.

Algorithm 5 : P-Cache_Management

Input: P-Cache with initially np = 0 index. // np =
Number of instantaneous records in P-cache. Nmax
= Maximum allowable records for the P-Cache.
Output: Hash indexed and Updated P-Cache.
P-Cache_Management()
Begin:

1. Initialization: np 0;
2. FOR np != Nmax DO

 Begin:
 2.1 Apply hash indexing to index
corresponding database
 record retrieved by the CLIENT.
 2.2 Put the index values in a circular queue
structure.
 End.

3. Apply LRU (Least Recently Used
Algorithm) in the queue for update.

End.

Algorithm 6 : Response_Retriever

Input: The Encrypted Record E(Ri).
Output: Clients Expected record.
Response_Retriever()
Begin:
 1. CLIENT sends the private key and encrypted
record.
 2. Apply the symmetric cryptographic logic of
decryption.
 D(E (Ri)) = Ri // SERVER removes his
encryption.
 3. Send the appropriate record to the CLIENT.
End.

Fig.3: Algorithm of P-cache management

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

38
Malaysian Journal of Computer Science, Vol. 21(1), 2008

 h(query)
b1

Useable
Buckets

b2

b3

. .

. .

. .
bn

bn+1
 Reserved
 for
 chaining

b2

3.2.1 Internal Structure and Operations

P-cache data structure contains a set of hash indexed buckets, the unit of storage, typically a disk block, that can
store one or more records. Let k denotes the set of all search key values, and let B denotes the set of all bucket
addresses. A hash function h(Ki) is a function from Ki to B. To insert a record with search key Ki, we compute
h(Ki), then search the bucket with the address. In case of hash collision, the values are put in the same bucket. The
maximum number of same hash values in a particular bucket can occupy is implemented by hash chaining to reduce
the collision. In case of bucket overflow, reserved buckets are used to store the additional records. It is analyzed that
sometime the reserved buckets may not contain sufficient room to allow the new values inserted by the user, in
which case, the replacement policy is used.

In order to query the P-cache, we perform a lookup on search key value Ki. We simply compute h(Ki), then search
the corresponding bucket with the address. In case of update, we compute the hash value of the record to be updated
h(Ki), then search the corresponding bucket for that record and update the record from the bucket.

We consider two types of clustering: user oriented clustering and query oriented clustering. In user oriented
clustering, buckets are accessed by the user ID. This structure is more secured and no user can access the encrypted
data of others despite having some overheads for indexing redundant records. Different users may perform the same
query. The records are redundant in the P-cache hence the utilization of the P-cache is reduced. On the other hand,
query oriented structure, that is proposed in this research (as shown in Fig.4) has better storage utilization of PIR
protocol.

Fig.4: Single table hash file organized with clustering on query.

Here, bi stands for bucket of records in the cache. A sample hash (query) in the VoterInfo schema hash(Select * ,
From VoterInfo, where VoterId = “AAA”;) --> bi. Let us consider, the total number of users participating in the
retrieving process is N and total number of queries are Q. So the cache size QNKS p ××≡ where K is a
constant. The size of a bucket in the P-cache is Sb and P-cache size is Sp. Then total number of buckets nb is

calculated as,
)(

)(

b

p
b Ssizebucket

Ssizecachep
n

−
= . Again let us consider the average number of records for ith query is rqi

and the record size is Sr. Thus, the space required for ith query = rqi S r × So, the caching size required for m

number of queries is, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×= ∑

=

qm

i
qirp rSS

1
.

P-cache

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

39
Malaysian Journal of Computer Science, Vol. 21(1), 2008

Again, let us consider the size of a record is Sr, the numbers of queries for user i is nui, the numbers of records

returned for jth query of user i = rj. Thus, the cache size for ith user = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

uin

i
jr rS

1

 and the total cache size Spu =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑
==

uin

i
j

n

i
r rS

11

3.2.2 Algorithm for Bucket management in P-cache

In order to design an algorithm for bucket management, let us consider bi as the ith bucket for allocation, hmax is the
maximum allowable value, rqi is the number of records returned in query qi, Sr is the size of a record, Sb be the size
of a bucket, Sused(qi) be the used space of query qi, Sunused(qi) is the unused space of query qi, Sreserved is the space
reserved for allocation, br is the reserved bucket for allocation and bempty is the empty buckets with sufficient
unused space. The algorithm Bucket_used_space_calculation in Fig.5 calculates the used space in the bucket. The
used space in a bucket is calculated by the size of a record multiplying with total records stored in the bucket for the
corresponding queries. Then the unused or free space of the corresponding bucket can be calculated by subtracting
the total size used by the queries from the full bucket size. Finally, the total unused space in the cache is calculated
by summing up all empty spaces in the buckets used by different users. In order to insert a query record in the p-
cache, the records are first encrypted by an encryption algorithm. The status bit of corresponding query is then reset.
This is also shown by another algorithm namely Insert query_result with Insert_record module in Fig. 5. The hash
value is inserted as a queryID into the main relation of the cache in order to establish the relationship with cache
index structure. Insertion of queries in the bucket is also explained by another algorithm. The Algorithm
Query_unique calculates the number of unique queries in the cache.

Algorithm: Bucket_used_space_calculation
Bucket_used_space_calculation (Sb, ri)
Begin
 Sui empty
 For each record in the query qi do
 For each attribute in the record ri do
 Sa The size used by each attribute in
a record.
 // calculating allocated records size
 Sri Sri + Sa // Sri is the size of the
record ri

 Sui Sui + Sri // used space in the bucket
 //Sb (unused) Sb – Sui // used space in the
bucket
Return Sb (used)
End

Algorithm: Insert query_result
Insert query_result(ui)
Begin
 bi hash(ui)
 Result set of records (randomly
generated)
 For i=1 to rj
 Call Insert_record (ui, j)
End

Procedure: Insert_record (ui, j)
Begin
 Encrypt_record(ui,j) // Applying encryption
algorithm
 Reset status bit
 query_ID hash(query)
 Add query_ID
 //put encrypted attribute value to
corresponding location.
End

Algorithm: Query_unique
Query_unique (qi, UserID)
Begin
 For each user by UserID in the p-cache do
 For each query qi of user j do
 queryID qi // Assigns a unique id for each
query.
 Index the queries in the Binary Search.
 // to eliminate the redundant
queries.
 End for
End for
Count (Number of elements in the BST) // counts
the total number of unique queries.
End

Fig.5: Algorithm for bucket management

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

40
Malaysian Journal of Computer Science, Vol. 21(1), 2008

3.2.3 Calculating P-cache Utilization

The P-cache utilization is calculated as the ratio of total used space with respect to total space of the p-cache.

Utilization = Total used space/ Total space =
p

n

i
pu

S

S
p

∑
=1 .

Let us consider in a certain period, the number of useable bucket is = Pu%. The number of reserved bucket is
therefore = (100-Pu) %. The effective utilization is then experimented by randomly choosing values to reserve the
buckets. It is observed that a useable space of 80% or more supports better utilization. 80% for reserve bucket acts
as the threshold value for the utilization. A graph, utilization versus Pu shows the significance of a threshold value
selection for the P-cache structure.

A structure of a P-cache is considered as the arrangement of useable and reserved buckets that stores number of
records returned for queries q1, q2, q3….qui indexed by hash(query) is shown in Fig.6. hash(query) ith bucket:
represents the hash values are stored in the ith buckets accordingly.

 useable buckets reserved buckets

Fig.6: Structure of a block with useable and reserved buckets.

4.0 ANALYSIS OF P-CACHE PERFORMANCE

P-cache performance is analyzed calculating the utilization of memory space and query redundancy in an
experimental data set.

4.1 Complexity Analysis of the Protocol

The complexity analysis of the protocol specifies its applicability in real life. By definition, a communication
complexity O(Ns) means only Ns records must be communicated between Server and the Client. There is a huge
increase in the amount of communication needed for first PIR protocol. The user or client needs to communicate
O(Ns) bits instead of O(log Ns) in the usual non-private scheme. But in case of PIR with P-cache, there is a minor
dependency for a query to transfer data from main database server to cache as the user can retrieve his expected
records from the cache directly. The communication complexity is the number of data transferred between database
server and client for retrieving a query. It seems to be unique and optimal using the cache concept as the majority of
the queries is satisfied from the cache instead of database server. Computational Complexity is the complexity
caused for processing records in order to answer the query. In PIR with P-cache the complexity are analyzed as in
two cases:

Case-1: Query is satisfied from P-Cache.

A small number of records namely np << Ns. has to be processed by the system. So the computational complexity is
O(np) which is near to O(1). As the P-cache is hash-indexed and all queries are satisfied from cache, the
communication complexity is O(1).

Case-2: Query is not satisfied from P-Cache.

The communication complexity is equal to O(np) + O(Ns) = O(Ns). The computational complexity is therefore
O(np+Ns) as the system has to process all records in the cache and the main database server.

bucket for ith
query

j=1
j=2

…

j= ?

q1Sr
q2Sr

if bucket is full

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

41
Malaysian Journal of Computer Science, Vol. 21(1), 2008

5. RESULTS AND DISCUSSIONS

This section discusses the experimental setup for the simulation and the corresponding results.

5.1 Experimental Setup and Query response time calculation

The PIR with P-cache is implemented over C++ compiler running on 1.7 GHz Pentium IV processor with 512MB
memory. The operating system is Microsoft XP. The dataset is stored in Microsoft SQL Server 2000 on the same
hardware configuration. The protocol is tested in randomly generated three schemas (StdInfo joined with books in
Digital Library System, CustInfo joined with products in PIR based Electronic Payment System, and VoterInfo in
e-Voting System). In case of different schemas in main database and P-cache the performance of the protocol is
recorded as like Table 1. The bar diagrams (Fig.7) shows the comparative performance of the two protocols for two
specific queries. Whether the query is satisfied from P-cache it is shown in Fig.8. The operation is performed in two
queries Q1 and Q2:

Q1: hash(Select name, Credit_Card_Type, CardNo; From custInfo;Where CustID = “10005”)
Q2: hash(Select name, Village, UP_OR_Words; From VoterInfo;Where VoterID = “303”)

Table1: Query response time for different protocols along with PIR with P-Cache

Query

 Query Response Time (ms)

Computational PIR
PIR Preprocessing

and off-line
communication

Almost
Optimal

PIR with P-Cache
Query satisfied
from P-Cache

Q1 23220 3812 2023 3823

Q2 32920 2294.30 3214 2295

Q1 23221 3811 2032 0.0102

Q2 32920 2294 3215 0.011

Q1 24228 3812 2031 0.009

Q2 32924 2294 3216 0.013

20

Fig.7: Query response time comparison for
different PIR protocols.

Fig.8: Query response time comparison for different
PIR protocols. Query satisfied from p-cache

5.2 P-cache utilization for hash(query) indexing

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

42
Malaysian Journal of Computer Science, Vol. 21(1), 2008

Total utilization of the cache can be calculated by merging the used spaces in the buckets of the cache divided by its
total space. In the experiment the numbers of useable buckets varied from 90% to 60% and the number of reserved
buckets varied from 10% to 40% accordingly. It shows relatively better performance then the hash(userID)
utilization as there is no chance for the same query to be redundant in hash(query) indexing. It is also impossible
for a userID to be redundant. Thus the query oriented clustering of the P-cache performs better in the case of
memory utilization. Finally the graph in Fig.9 shows cache utilization of the hash(query) indexing. In Fig.10
number of unique queries versus query redundancy is shown.

Number of queries vs. Query Redundancy

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

Number of Queries N
R

ed
un

da
nc

y

Fig.9: P-cache utilization for hash(qi) indexing

Fig.10: Number of unique queries vs. redundancy

In Table.2, complexities of different PIR protocols with the proposed “PIR with P-cache” are summarized. The
comparison shows that PIR with P-cache performs better for large number of redundant queries. In worse case,
whenever the record is not satisfied by the P-cache, the proposed system has to use PIR with preprocessing and
offline communication to retrieve the expected record from the main database server.

Table.2: Pros and Cons in terms of complexities of PIR protocols with PIR with P-cache.

PIRs Pros Cons

Theoretical PIR Compact concept Relatively hard to develop

Computational PIR Ccomm= polynomial time and
updated to poly logarithmic time. No
Pre processing

Ccomp = O(Ns).

Hardware Based PIR Ccomm = O(1) No Pre-Processing Ccomp = O(Ns).

PIR with preprocessing
and offline
communication

Ccomp = O(1) Ccomm = O(Ns) Pre-processing
required

Almost Optimal PIR Ccomp = O(1)

Ccomm = O(1) Assumed

Pre-processing High. Complexity
Quadratic in N

PIR with P-cache Ccomp = O(1)

Ccomm = O(1) for app. 80% queries

Pre-processing required for app.
20% queries

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

43
Malaysian Journal of Computer Science, Vol. 21(1), 2008

6.0 CONCLUSION AND FURTHER RESEARCH

We have presented a new PIR protocol with database caching technique, namely P-cache that significantly
improves the performance in terms of computational and communication complexities over the existing PIR
protocols. The computational complexity improves from O(Ns) to O(1) and the communication complexity
improves from O(Ns) to O(ns) in average case, where, Ns and ns are the size of the main database server and the size
of the P-cache in terms of total number of records respectively.

We have considered two types of clustering for P-cache structure: user oriented and query oriented. It is
experimentally justified that query oriented clustering supports better utilization than the user oriented clustering as
the user oriented clustering suffers from data redundancy in the P-cache.

In PIR with P-cache, as each user is assigned a separate cache account with cryptographic policy, it ensures a new
isolated security system that is independent of the database server. Hence, the system hides the identity of the user
or the records retrieved by him to the database server perfectly.

The protocol is independent of preprocessing in average case. But in the worst case, there is a minor dependency of
the main database access. Hence, the computational complexity rises to O(Ns+ns) ≈ O(Ns) and the communication
complexity also rises to O(Ns)+O(ns) ≈ O(Ns).

This work is simulated on a centralized system. Future work is aimed for multi server (k-server) or web application
server in distributed environment.

REFERENCES

[1] B. Chor, O. Goldreich, E. Kushelevitz and M. Sudan, “Private Information Retrieval,” Journal of the ACM,

Vol. 45, pp. 965-982, 1998.

[2] E. Kushilevitz and R. Ostrovsky, “Replication is Not Needed: Single Database Private Information
Retrieval,” In 38th Annual Symposium of Foundations of Computer Science, IEEE Computer Society,
Miami Branch, Florida, pp. 364-373, October 20-22, 1997.

[3] C. Cachin, S. Micali, and M. Stadler, “Computationally Private Information Retrieval with Polylogarithmic
communication,” in Advances in Cryptology- EUROCRIPT’99, Vol. 1592, Prague, Czech Republic.
Springer Verlag, pp. 402-414, May 1999.

[4] D. Asonov, J. Christoph and J. C. Freytag, “Private Information Retrieval,” in the proceedings of the 1st
Workshop on Privacy Enhancing Technologies San Francisco, USA, pp. 26-37, April 2001.

[5] H. Lipmaa and S. Laur, “On Security of Sub-linear Oblivious Transfer,” in Technical Report 2004,
International Association for Cryptologic Research, Vol. 63, pp. 10-35, February 25, 2004.

[6] D. Asonov, J. Christoph and J. C. Freytag, “Almost Optimal Private Information Retrieval,” in the
proceedings of the 2nd Workshop on Privacy Enhancing Technologies San Francisco, USA, pp. 56-72,
April 2002.

[7] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala, “Using Probabilistic
I/O Automata to Analyze an Oblivious Transfer Protocol,” in CSAIL, MIT, Vol. 1001, pp. 12-24, 2005.

[8] H. Lipmaa, “An Oblivious Transfer Protocol With Log-Squared Communication,” in the 8th Information
Security Conference, Singapore, Vol. 3650, pp. 314-328, September 20-23, 2005.

[9] G. Semeraro, F. Abbattista, N. Fanizzi and S. Ferilli, “Intelligent Information Retrieval in a Digital Library
Service,” in COGITO Project IST-1999-13347, pp. 123-146, March 2003.

PIR With P-Cache: A New Private Information Retrieval Protocol with Improved Performance pp. 33 - 44

44
Malaysian Journal of Computer Science, Vol. 21(1), 2008

[10] D.Woodruff and S.Yekhanin, “A Geometric Approach to Information Theoretic Private Information
Retrieval,” in Proc. of the 43rd IEEE Symposium on Foundation of Computer Science, Berlin, pp. 261-10,
June 2004.

[11] S.W. Smith and D.Safford, “Practical Private Information Retrieval with Secure Co-processor,” in
Technical report, IBM research Division, T.J. Watson Research Center, pp. 26-39, July 2000.

[12] A. Iliev and S. Smith, “Private Information Storage with Logarithmic Space Secure Hardware,” in
Advances in Cryptology EUROCRIPT05, pp. 55-68, December 2005.

[13] S. W. Smith and D.Safford, “Practical Server Privacy with Secure Co-processor,” in IBM Systems Journal,
Vol. 40, no. 3, pp. 11-23, 2005.

[14] T. Harder and A. Buhman, “Value Complete, Column Complete, Predicate Complete-Magic words Driving
the design of Cache groups”, in The VLDB Journal, Vol. DOI 10.10007/S1007/s 00778-006, pp. 0035-
0039, January 2007.

[15] A. Buhmann and J. Klein, “Examining the Performance of a Constrain-Based Database Cache,” in ADBIS,
Varna, F.J. Curry House of scientist, Bulgaria, 2007.

[16] A.L. Young and M.M. Yung, “An Implementation of Tagged Private Information Retrieval,” in Chapter-8,
Cryptovirology, Ver. 2.1, 2005-2006.

BIOGRAPHY

Dr. Abu Sayed Md. Latiful Hoque received his PhD in the field of Computer & Information Science from
University of Strathclyde, Glasgow, UK in 2003 with Commonwealth Academic Staff Award. He obtained M.Sc. in
Computer Science & Engineering and B.Sc. in Electrical & Electronic Engineering from Bangladesh University of
Engineering & Technology (BUET) in 1997 and 1986 respectively. He has been working as a faculty member in the
Department of Computer Science & Engineering at BUET since 1990 and currently his position is an Associate
Professor. He is a Fellow of Institute of Engineers Bangladesh (IEB) and Bangladesh Computer Society. His
research interest includes Data Warehouse, Data Mining, Information Retrieval and Compression in Database
Systems.

Gahangir Hossain received his B.Sc. Engineering in Electronics and Computer Science from Shahjalal University
of Science & Technology (SUST), Sylhet, Bangladesh in 2000, and completed his M.Sc. Engineering in Computer
Science & Engineering in 2008 from Bangladesh University of Engineering & Technology (BUET), Bangladesh.
He is a member of Institute of Engineers Bangladesh (IEB) and currently working as an Assistant Professor of
Chittagong University of Engineering & Technology, Chittagong, in Computer Science & Engineering Department.
His research interest includes Human Computer Interaction, Information Retrieval, Software Engineering, Machine
Learning, Natural Language Processing and Bioinformatics.

