

USING RULE-BASED TECHNIQUE IN DEVELOPING THE TOOL FOR
FINDING SUITABLE SOFTWARE METHODOLOGY

Mastura Hanafiah1, Zarinah Mohd Kasirun2

Department of Software Engineering,
Faculty of Computer Science and Information Technology, University Malaya

50603, Kuala Lumpur, Malaysia
Email:1masturahanafiah@yahoo.com, 2zarinahmk@um.edu.my

ABSTRACT

Software development methodology involves many activities and processes that are carried out when building a
software system. There are a lot of available methodologies; one should be suitable for a software project.
However, deciding which methodology to be applied requires some assessments on the project nature and
characteristics at the early project cycle. This research focuses on finding the relationship between software project
factors and methodologies, and further developing a tool that can help software practitioners in choosing the most
suitable methodology. Before the tool is developed, a review on several lifecycle models has been carried out in
order to examine the relevant software factors. Factors like project size, complexity, requirement stability, duration,
performance requirement, modularization, project team, and criticality have the main impact on some
methodologies. The relationship between methodologies and software factors is formulated using rule-based
approach, and managed properly by a sequence of steps; identifying the initial selection of input variables,
counterexamples of bad sub rules, pruning the variables, merging categories, and identifying hypothetical
examples. RETE algorithm has been chosen as the problem solving technique in managing the rules. The tool is
able to help software practitioners in early decision making process to use appropriate methodology in their
software project.

Keywords: Software development process, software engineering, software development methodology, software
project factors, RETE algorithm, rule-based implementation.

1.0 INTRODUCTION

The growing numbers of software applications today has resulted in many ways of techniques and approaches of
software engineering practices. Many software process methodologies have been criticized, revised and re-modeled
in order to fulfill the way a software development work. Software methodology is a formalized development
process that is used when building software which starts when the software is conceived until the software is in use.
The basic activities involved in building software are analyzing the requirements, designing, implementing,
validating and maintaining the system. Even though the process of developing software is similar from one
methodology to another, the approaches are rather different. This many approaches may lead to an unsuitable choice
of software development methodology. If inappropriate methodology is used, it may create many difficulties during
the development and maintenance period, and in addition, it can lead to software project failure.

However, there is no general software development technique powerful enough to handle all the variations of today
system [12]. Selecting a software development methodology is highly driven by many factors. Human factors,
technology factors, and application nature contributes to the choice of a software development process in a project.
Hughes emphasizes that methodologies and technologies to be used requires decision-making process, or project
analysis [6]. Thus, an assessment of the project is needed before making such decision. The characteristics of the
projects depend on the nature of individual project; therefore, each project requires its own analysis. This research
focuses on these main areas:

1. Identifying various methodologies in software development.
2. Identifying the critical factors that affect the choice of methodology.
3. Developing a tool (SUIT-Method) for selecting the most suitable software development process using

suitable problem solving methods in artificial intelligence field.
4. Evaluating the tool’s usability, functionality and quality

Malaysian Journal of Computer Science, Vol. 20(2), 2007

209

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

This paper is organized as follows. Section 2 presents the background of existing popular methodologies and the
identification of related software factors. Section 3 discusses about the possible approach to formulate the
relationship between software methodologies and software factors. Section 4 is the development of the tool using
rule-based approach. Section 5 discusses about the tool’s evaluation and results. Section 6 summarizes how the
research objectives being achieved, its contribution and future works.

2.0 SOFTWARE METHODOLOGIES AND SOFTWARE FACTORS

Until today, there are a lot of methodologies available in the area of software development. This research addresses
those that are the most common among software practitioners. The more common process models presented in the
survey of system development process models lies from these three approaches [16]: Adhoc Development,
Waterfall Model and Iterative Process. Process capabilities in Adhoc Development are unpredictable because the
software process is constantly changed or modified as the work progresses. Schedules, budgets, functionality,
product quality and performance are generally inconsistent. Waterfall Model, on the other hand, is more rigid and
unrealistic; however, it is still widely used. This is because Waterfall Model becomes the basis of the other process
models and it is suitable for certain project conditions. Iterative models are the solution to the linear waterfall
models because of its flexibility and faster results. Each iteration is a mini-Waterfall process where feedback from
one phase is used for the design in the next phase. Iterative models include Prototyping (Rapid Application
Development and Throwaway or Exploratory), Iterative and Incremental, Spiral Model and Rational Unified
Process. Agile has becoming popular these days because it offers lighter weight methodology. Abrahamsson et al.
describes agile process as people matter, less documentation is possible, communication is a critical issue, modeling
tools are not as useful and big up-front design is not required [17]. There are four agile methods have been analyzed
and identified to have clear distinction in four areas: team size, iteration length, iteration support and criticality; they
are Extreme Programming, Scrum, Crystal and Feature Driven Development [17].

Each methodology has its own characteristics; thus, each should be dependable on many different factors. Table 2-1
summarizes the main characteristics of the non-agile methodologies while Table 2-2 characterizes agile
methodologies in terms of team size, team distribution, iteration length and criticality.

Table 2-1: Software Lifecycle Analysis

Lifecycles Characteristics
Waterfall (WA) - each phase completes before next phase can begin.

- much formality, ceremony and detailed documentation.
- good when requirements are stable, well defined, and small.

Throwaway prototyping
(TP)

- explore new technologies and determining the applicability and
effectiveness before adopting such technology.
- good for proof-of-concept or research and development work

Evolutionary
prototyping (EP)

- suitable for larger system where the details are difficult to be
established.
- need a multi-competence skill of people
- modular and iterative
- suitable for highly interactive application with stylish user
interface.

Rapid Application
Development (RAD)

- requires sufficient human resources to create the right number
of teams.
- need committed developers and customers
- not for system with high performance issue.
- suitable only for low technical risks
- modularized for component reuse

Iterative and
Incremental (II)

- requirements are poorly defined or unstable
- when the technology is risky
- to build a reusable application framework
- staffing is unavailable for a complete implementation
- rate of requirement change in each iteration should be zero
- high risk in user interface but low risk in budget and schedule

Spiral (SP) - suitable for large-scale systems and software.

210
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

- use prototyping as a risk reduction mechanism
- need considerable risk assessment expertise
- high risk in any technical aspects (budget/schedule high,
quality high, performance high, new technology high, etc) at all
stages

Rational Unified Process
(RUP)

- support iterative and incremental development
- extensive documentation needed
- multiple roles needed, thus need enough resources

Table 2-2: Prescriptive Characteristics of Agile methods [1]

 Extreme
Programming
(XP)

Scrum
(SC)

Crystal (CR) Feature
Driven Dev.
(FDD)

Team Size 2-10 1-7 Variable Variable
Iteration Length 2 weeks 4 weeks < 4 months < 2 weeks
Distributed
Support

No Adaptable Yes Adaptable

System
Criticality

Adaptable Adaptable All types Adaptable

From these characteristics, several factors that have impact on methodology selection are identified. They are size,
complexity, requirement stability, duration, user interface requirement, performance requirement, criticality,
iterative and incremental behavior, modularity, proof of concept system, process and documentation requirement,
risk assessment, project team, iteration length, and sufficiency of resources.

3.0 THE RULE-BASED APPROACH

The process of determining the most suitable methodology for a software project cannot be avoided without a
decision making process in place. Considering the fact that the pattern of producing a methodology is based on
software factors, some suitable decision making techniques are analyzed. From the previous similar researches
[8][13][2], it can be concluded that the method that is mostly used in selecting a methodology is rule-based
approach. Other methods that are also analyzed are case-based reasoning and database system. Case-based
reasoning is excellent if there exists sufficient past similar cases. However, during the early assessment of this
research, similar cases could not be established because of lack of reliable data regarding software factors and
methodologies from real software industry [19]. Database system, on the other hand, is excellent at finding exact
matches, but they are poor at near or fuzzy matches. Moreover, the factors and methodologies that are evaluated in
this research cannot be stated with absolute confidence [19].

 Table 3-1 lists the characteristics of rule-based approach which make rule based implementation applicable for
SUIT-Method.

Table 3-1: Characteristics of Rule-Based Approach

Characteristics of Rule Based System Applicability to SUIT-Method
The algorithm involves significant
conditional branching or decision-making.

A lot of factors depends on the previous
factors, thus involves conditional branching
and decision making.

There are three or more conditions in the
rules exist (for example, a block with 3 or
more nested if-statements in pseudo-code).

More than three conditions are definitely
needed to justify suitable methodology.

The rules are likely to change over time due
to the nature of the application.

With feedback and evaluation, the rules are
likely to change in the future.

The performance requirements will
accommodate a rule engine solution.

Even though performance does not really
matter, it however increases the efficiency
of the system.

211
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

Because the rules involve a lot of factors and the resulting actions might depend on the previous conditions, the
rules can become more complicated to manage and maintain. Furthermore, some factors only applicable to some
methodologies, and some factors can only be combined with some other factors. Because of too many factors and
variables, some techniques suggested by Whalen and Schott are used when constructing a rule-based application
[14]. These techniques involve several steps:

1. Initial selection of input variables.
In order to deal with too many variables, a matrix between factors and methodologies has been constructed.
Those factors commonly appear in the methodologies are taken into account.

2. Counterexamples to bad sub rules.
Some factors cannot be combined with other factors, which can lead to bad sub rules. Thus, two categories
of rules are identified: rules for small size system with low complexity and high requirement stability, and
rules for system with at least medium size, complexity and low requirement stability.

3. Pruning variables
The factors that are identified earlier but do not make any difference are eliminated. These includes project
type and application domain.

4. Merging categories
Many categories can be formed to identify software methodology. It can be based on project size, or it can
be based on project type, etc. For this research purpose, only two categories are identified that will further
simplified the rules construction.

5. Hypothetical examples
The best starting point for a set of hypothetical examples is to look at the most extreme case. Thus, the rule
starts with identifying factors for system with small size, less complex and high requirement stability.

3.1 The Initial Rule Algorithm

A. Category 1: Rules for system with small size, low complexity and high requirement stability

Fig. 3-1 and 3-2 show the conditional branching for system with small size, low complexity and high requirement
stability. Fig. 3-1 concerns with system whose duration is less or equal than three months, while the other figure
concerns with system whose duration is more than three months. If the system is a proof of concept, the system will
suggest adapting Throwaway Prototyping at the beginning of the development cycle. If the duration is less than
three months, the potential candidate for this type of system is using Rapid Application Development; however, the
system must be properly modularized and has sufficient resources in order to complete it within the short time. If
these conditions are not met, then, the system checks whether it needs high user interface interaction or stylish user
interface. The suitable methodology that is suitable for this kind of system is Evolutionary Prototyping if the
performance is a main concern, otherwise the system can opt to Waterfall model where the short duration cycle is
not applicable anymore to the system. If the system does not need be completed within three months, the other
candidate for the system is Evolutionary Prototyping and Waterfall model. These two methodologies are chosen
because of the size and complexity of the system is fairly small and low, respectively. Other methodologies are
more suitable with larger and higher complexity systems. The questions are similar to those that presented for short
duration ones and it is clearly illustrated in Fig. 3-2. Evolutionary Prototyping is appropriate if the system is
properly modularized, having sufficient resources as well as needs high user interface interaction and high
performance requirement. If any of these conditions are not met, then it is more appropriate to use Waterfall model.
This model can work well for this category because of the stability of the requirement.

212
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

Fig. 3-1: Category 1 with Short Duration

Proof of
concept?

Duration
is short?

Properly
modularized

?

Sufficient
resource?

Y
Throwaway
Prototyping

N

Y

 High user
Iinteraction
?

N

Y

Y

Y

High
performance
requirement?

N N

Y

RAD

Evolutionary
Prototyping

N

Waterfall Throwaway
Prototyping

213
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

Fig. 3-2: Category 1 without Short Duration

B. Category 2: Rules for system with at least medium size, at least medium complexity and low requirement
stability

Fig. 3-3 illustrates the flow chart for Category 2 system, whose size is at least medium, complexity is at least
medium and requirement stability is fairly low. The system has priority to assess on the system’s agility to
determine whether the system has the potential to be implemented using Agile methodologies. The very first
question deals with iterative and incremental behavior. This behavior can be predicted in many ways. Some
customers even request that the system needs to be built iteratively and incrementally. This could be the case if the
system is modular enough, can be delivered independently, and whole system requirements cannot be captured
during the early project cycle. If it is not iterative and incremental, then definitely it is not suitable for agile
methods. If it is, then the next question asks about the agile attributes: self-organization team, team commitment,

Proof of
concept?

Duration
is short?

Properly
modularized?

Sufficient
resource?

Y

N

N

Y

Y

 High user
iinteraction
?

N

High
performance
requirement

Y N

Y

N

Throwaway
Prototyping

N

Evolutionary
Prototyping

Waterfall Evolutionary
Prototyping

214
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

adaptive and emergent, and collaborative and communicative working style. If the system has all of this attributes at
least at the medium level, then it can be said that the system is suitable for agile methods. To determine which agile
methods to be used, the project needs to answer another set of questions: team size, iteration length, team
distribution and criticality. This decision is based on Table 2-2. If the system is not suitable for agile methods, the
system displays another set of questions to determine for Rational Unified Process, Spiral, Iterative and Incremental
and Evolutionary Prototyping as shown in Fig. 3-3. If the system can be popularly modularized, the customer needs
a more defined process and documentation, and the project has sufficient resources, then the project can go for
Rational Unified Process. If, however, the project cannot be modularized properly, but performance is a main
concern then the project can use Evolutionary Prototyping, otherwise, the system checks whether the project might
have any kinds of risk. If the system has risk in user interface but not in other risks like budget, schedule,
technology, and quality, then the system may use Iterative and Incremental model. Spiral can be employed if the
project has risk in all areas.

215
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

Fig. 3-3: Category 2 Flow Chart

Iterative and
Incremental?

System
suitable for

Agile?

Properly
modularized

?

Defined process
and

documentation?

Sufficient
resource?

Performance
requirement

high?

High risk on
user interface

but low in
others?

High risk on
other type of

risk?

Y

N
Y

N

Y

N

Y

Determine Agile
methods based
on 4 attributes:
team size, team

distribution,
iteration length
and criticality

Rational
Unified
Process

Extreme
Programming

Crystal

SCRUM

Feature-
Driven

Development

Y

N

Evolutionary
Prototyping

Y

Spiral

N

Y

Iterative and
incremental

N

Y

N

216
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

3.2 Rule-Based Implementation

The implementation of the rule engine is adapted from a third part rule engine, Drools 3.0.1
(http://labs.jboss.com/portal/jbossrules). Its framework is shown in Fig. 3-4.

Fig. 3-4: Basic Rete Network [9]

Drools is a rule engine that uses the rule-based approach to implement an expert system. The conflict resolution
strategies employed in Drools are Salience and LIFO (last in, first out). Using Salience strategy, a rule can be given
priority values by giving a higher number than the other rules. Rules with higher salience will always be preferred.
In LIFO, a counter is given by the working memory, however, execution of the rules are arbitrary for those that
have the same value. Drools is chosen as the rule engine for SUIT-Method because it is open source, written in Java
and well documented. It also uses Rete algorithm and implements forward chaining mechanism. Drools uses
Production Rule System as the basis of its framework. It works by storing the rules in Production Memory and
asserting facts that the Inference Engine matches against the Working Memory. Facts are asserted into the Working
Memory where they may then be modified or retracted. If there are a large number of rules, a conflict may occur,
thus, the Agenda manages the execution order of these conflicting rules using Conflict Resolution strategy [9].

3.3 RETE Algorithm

The problem with most rule-based engine is because of the inefficiency of rule engine implementation [4].
Friedman-Hill describes that the percentage of facts that change per unit time in the working memory is fairly small.
This efficiency is caused by keeping a list of the rules and continuously cycling through the list, checking each
one’s left-hand-side against the working memory and executing the right-hand-side of any rules that apply. This
may lead to get the same results as the previous iteration.

To overcome this limitation, RETE Algorithm is created [3]. The key ideas of Rete algorithm are [1]:

1. If-then forward chaining rules can be reorganized for efficient pattern matching.
2. A decision tree is created that combines the patterns in all the rules of the knowledge base.
3. Comparisons of variable bindings across patterns must be checked in a relational database table that

‘remembers’ what partial matches have already been tested when the patterns have been determined that
matched with the facts.

4. Variable bindings are saved and reused, rather than recomputed.

RETE is data-driven where it compares the data in the working memory against the conditions of the rules and
determines which rules to fire. When matches are found, rules are triggered and fired, producing no assertions or
removing assertions. When new assertions are added, the loop through a rule set repeats [1]. The RETE algorithm is
implemented by building a network of nodes with each node represents the set of variable bindings that match an
assertion or a collection of assertions. According to Berwick, RETE algorithm works by moving assertions through
the graph, saving incremental match information as it goes, thus no rules reevaluation is necessary. This will
guarantee an optimal approach, as the engine knows which conditions might possibly change for each fact, and only
those that must be reevaluated.

217
Malaysian Journal of Computer Science, Vol. 20(2), 2007

http://labs.jboss.com/portal/jbossrules

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

4.0 SYSTEM DEVELOPMENT

SUIT-Method proposes to users a suitable software development methodology based on the user inputs, which are
the values of identified software project factors that match closest to their project. The system uses evolutionary
prototyping to build the system as it involves integration with another third party engine, Drools, which requires an
initial experimentation.

The functionality of the tool is described as use cases. Some relevant use cases for this system are Create Project
Information, Create Project Size, Create Project Complexity, Create Requirement Stability, Create Category 1
Project Details, Create Category 2 Project Details, View Suitable Methodology, Create Project Execution (its
successfulness of using such methodology).

The basic scenario of using this system is described as follows. The user will enter the project details, followed by
project size, complexity and requirement stability. Project size will be measured either by analogy or function
points, while complexity will be measured either by software complexity model, or using complexity level.
Requirements stability measurement can be achieved either by prediction, answering a set of questions or using
requirement stability index. From these three factors, the system determines whether the project falls under the first
category or the second category. The system then presents the relevant screen based on matched category. A set of
questions will be asked depending on the category before determining which methodology is appropriate for the
project. The system will display a review of the factors that have been entered. As the user satisfies with the entry,
the user proceeds to find the most suitable methodology. The system, using rule-based approach, finds the matching
rules and shows the results on screen. At any point of time, if a project has been created and a methodology has
been determined, the user can record the successfulness of using such methodology in the project. However, the
data collection for this project execution is not guaranteed because of the time gap during the project development
and project completion, and the user might not even remember to record the project execution after the project is
completed.

Since the system will be a web-based application, a three-tier architecture is used, where the presentation layer and
service layer run on a Tomcat 5.0 application server. MySQL database system serves as the persistence layer. The
framework of the system is based on the model-view-controller design pattern. The architecture is shown in Fig. 4-
1.

218
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

Fig. 4-1: Model View Controller [11]

This architecture uses a hybrid approach to serve dynamic content since it uses java servlets and JSP [11]. JSP is
used to generate the presentation layer and servlets act as the controller to process the request by creating necessary
beans or database retrieval as well as deciding which JSP page to forward the request to. There is no processing
logic inside JSP; it is simply responsible for retrieving any objects or beans that may have been created by the
servlet and presents the content to the screen.

This system takes advantage of object-oriented technology where UML is used as the diagram notation. The object
model used in this system is shown in Fig. 4-2. Each project may have size, complexity, requirement stability and
other factors. Methodology will be part of a project once it can be determined. The project can also have a project
execution reference once if it is determined. Each project represents the project attributes and execution which can
later be used for any statistical analysis.

Java is chosen as the main language for this system because of its simplicity, object-oriented support, platform
independent, safe, multithreaded, high performance, dynamically linked and garbage collected [5]. The IDE used
for this system is Eclipse 2.5 M6. Other than compiling java programs and running java classes, this IDE is able to
compile the rule as well as generate the RETE node. Some samples of the rules are shown below in Fig. 4-3.

219
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

Fig. 4-2: Overview of Suit-Method business object model

220
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

#created on: May 17, 2007
package com.mse.sdmsuit

#list any import classes here.
import com.mse.sdmsuit.project.ProjectDetails;
import java.util.ArrayList;

#declare any global variables here

rule "#1"
//#1 1
 when
 ProjectDetails(proofConcept == 1);
 retMeth : ArrayList();
 then
 retMeth.add("TP");
end

rule "#2"
//#2 1 3 1 -1 -1 RAD
 when
 ProjectDetails(duration == 1, modularity == 3, suffResource == 1,
UIReqLevel == -1, performance == -1);
 retMeth : ArrayList();
 then
 retMeth.add("RAD");
end

rule "#3"
//#3 1 3 0 -1 -1 EP

 when
 ProjectDetails(duration == 1, modularity == 3, suffResource == 0,
UIReqLevel == -1, performance == -1);
 retMeth : ArrayList();
 then
 retMeth.add("EP");
end

rule "#4"
//#4 1 1 -1 3 3 TP
 when
 ProjectDetails(duration == 1, modularity == 1, suffResource == -1,
UIReqLevel == 3, performance == 3);
 retMeth : ArrayList();
 then
 retMeth.add("TP");
end

 retMeth.add("TP");
end

Fig. 4-3: Sample of rules

5.0 RESULT AND DISCUSSION

The evaluation process involves users to use the system in real environment. The system is published for a month at
a web hosting company, AssortedInternet.com. At that period of time, the users were asked to use the system
themselves and fill up the feedback form at the end of their usage. Even though the system provides a feedback
screen in the website, a softcopy of the questionnaire was emailed to the participants for the full system evaluation.
The questionnaire form consists of several questions regarding the participant’s background, system’s usability,
functionality, quality, comment and suggestion. System usability is a measure of an executable software unit for its
ease of use, efficiency, effectiveness and satisfaction [15] [18]. System functionality questions deal with the
system’s main usage while the system quality is measured from the user’s experience of using the system. The user

221
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

rating on these three groups of questions were measure in 5 point scale: 1-poor, 2-fairly poor, 3- satisfactory, 4 –
fairly good and 5 – excellent.

Twenty five participants were selected who are working in software industry with at least two years of working
experience and have played major roles in software development. This ensures that the participants have sufficient
knowledge and experience to use the system and further giving dependable feedback answer. An e-mail was sent to
them to logon to http://www.goldenkidz.com/SUIT-Method/jsp/login.jsp and they were free to use the system and
answer the questionnaire at anytime within a week.

Twelve out of 25 people selected responded. 75% of them were holding major roles in software development either
as project managers, system analysts or software developers. With regards to working experience, 75% of them
already had working experience of more than two years in software industry which is sufficient enough to use
SUIT-Method and able to provide reliable feedback on the questionnaire. The strong background of the participants
is strengthened with 67% of them had involved in at least two software projects.

Table 5-1: System usability statistical values
Question Mean Mode Median Standard

deviation
The system is easy to use 3.00 3 3 0.74
The system is user friendly 2.83 3 3 0.39
All instruction are made clear and precise 3.00 3 3 0.60
The system requires fewest steps to accomplish its goal 3.67 4 4 0.49
The system is useful 3.50 3 3 0.80
The system helps me to make decision faster 3.17 3 3 0.72
The speed of the system is satisfying 3.75 4 4 0.75
I am satisfied with the system 3.17 3 3 0.39

Table 5-2: System functionality statistical values

Question Mean Mode Median Standard
deviation

Creating the project information (project details, size,
complexity, requirements stability)

3.00 3.00 3.00 0.60

Creating the project Category 1 and 2 details 2.92 3.00 3.00 0.29
The proposed methodology is feasible to my organization 2.58 2.00 2.00 0.67
The proposed methodology has enough description and
references

2.83 3.00 3.00 0.58

Table 5-3: System quality statistical values

Question Mean Mode Median Standard
deviation

The system is free of errors 3.17 3.00 3.00 0.72
Error messages given are sensible 3.25 3.00 3.00 0.45
All widgets behave as expected 3.25 3.00 3.00 0.45
The software is well documented 2.33 2.00 2.00 0.49

Table 5-1 until 5-3 show the statistical values for system usability, functionality and quality, respectively. Standard
deviations for all these attributes are fairly small, thus the data does not really spread out. This indicates that most of
the respondents have similar experiences and impression when using the system. Fig. 5-1 shows the overall findings
of the system. The figure shows that the system’s usability has the score of 3.26, the functionality has the score
2.83, while the quality has the score of 2.98. Since this system is the first prototype showed to the user, the system
of course has some flaw or imperfection in terms of its user interface, functionality, user instructions, and quality.
The system, therefore, needs to be improved in all areas with some of the enhancements have been included to the
delivered system. Some of the enhancements that are taken into consideration are the description on the terms used,
the structure on the factors and the scale used to measure each factor.

222
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Usability Functionality Quality

Overall Feedback Result

Mean

Standard
deviation

Fig. 5-1: Evaluation Feedback of SUIT-Method

6.0 CONCLUSION

SUIT-Method will be a beneficial tool to software projects at the early of project life cycle. The software
methodologies and software factors have been carefully analyzed in order to fulfill the needs of developing a
software project so that it is applicable to all level of software practitioners as well as software engineering students.
The use of rule-based implementation together with RETE algorithm has assisted the tool development using an
expert system approach. Further works may involve on enhancing the system in the area of rules management and
refinement and its representation.

REFERENCES

[1] R. Berwick. Rete, Language and Mind. http://www.ai.mit.edu/courses/6.0.34b/recitation6.pdf. 2003.

[2] D. Cohen, M. Lindvall, & P. Costa, A New DACS State-of-the-Art Report on Agile Methods. The DoD

Software TechNews, vol. , no. 1, pp. 13-16.

[3] A. E. Dilmann, Selecting an SDLC Methodology. PM Solutions Technology White Paper Series.

http://www.pmsolutions.com/pressroom/White%20Papers/sdlc_methodology.pdf. 2003.

[4] L. Forgy, 1982. Rete: A Fast Algorithm for Many Pattern/Many Object Pattern Match Problem. Artificial

Intelligent . vol. 19, no. 1 (Sept. 1982), 17-37.

[5] E. J. Friedman-Hill, The Rule Engine for the Java™ Platform. http://herzberg.ca.sandia.gov/jess/.

[6] E. R. Harold, Why Java’s Hot. http://www.cafeaulait.org/books/jdr/chapters/01.html. 2000.

[7] B. Hughes, Software Project Management (3rd ed.). McGraw-Hill Companies. 2002.

[8] S. Pfleeger, Software Engineering: Theory and Practice. (2nd ed.). New Jersey: Prentice Hall. 2001.

[9] R. S. Pressman, Software Engineering. A Practitioner’s Approach (5th ed.). New York: McGraw-Hill. 2001.

[10] M. Proctor, et al. Drools.
 http://labs.jboss.com/file-access/default/members/jbossrules/freezone/docs/3.0.4/html/index.html. 2005.

[11] G. Rudolph,. Some Guidelines for Deciding Whether to Use a Rules Engine.

http://www.jessrules.com/guidelines.shtml. 2003

[12] G. Seshadri, Understanding JavaServer Pages Model 2 Architecture: Exploring the MVC Design Pattern.

1999. http://www.javaworld.com/Understanding JavaServer Pages Model 2 architecture - Java World.htm.

[13] I. Sommerville, Software Engineering. England: Addison-Wesley. 1997.

[14] F. Vasquez, Selecting a Software Development Process. ACM Communication, pp. 209-217. 1994.

223
Malaysian Journal of Computer Science, Vol. 20(2), 2007

Using Rule-Based Technique in Developing the Tool For Finding Suitable Software Methodology pp. 209 - 224

224
Malaysian Journal of Computer Science, Vol. 20(2), 2007

[15] T. Whalen, & B. Schott, Beginners' Strategies In Example Based Expert Systems. Proceedings of the ACM
SIGART International Symposium on Methodologies for Intelligent Systems,pp. 65-73. 1986.

[16] IEEE Standard Glossary of Software Engineering Terminology. IEEE Standard 610.12-1990

[17] D. Green and A. DiCaterino, A Survey of System Development Process Models, Center for Technology in

Government; http://www.ctg.albany.edu/publications/reports/survey_of_sysdev, 1998.

[18] P. Abrahamsson, O. Salo, J. Raikonen, & J. Warsta. Agile Software Development Methods: Review and

Analysis. http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf. 2002.

[19] E. Frokjaer, M, Hertzum, & K. Hornbaek. Measuring Usability: Are Effectiveness, Efficiency, and

Satisfaction Really Correlated? Proceedings of the ACM CHI 2000 Conference on Human Factors in
Computing Systems (The Hague, Netherlands, April 1-6 2000), pp. 345-352.

[20] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems. San Francisco: Morgan

Kaufmann Publishers. 1997.

BIOGRAPHY

Mastura Hanafiah received her Masters of Software Engineering degree in 2007 from University of Malaya and
Bachelor of Science in Computer Science degree in Washington University in St. Louis, Missouri, USA. She has
been working with several software companies and has involved in many software development projects. Her
research focuses on software development process models.

Zarinah Mohd. Kasirun is a senior lecturer in Software Engineering at the Faculty of Computer Science and
Information Technology, University of Malaya. She teaches software engineering modules at both the
undergraduate and master levels. Her research areas include Requirements Engineering, Computer-Supported
Collaborative Learning, Object-Oriented Analysis and Design.

	3.1 The Initial Rule Algorithm
	3.2 Rule-Based Implementation
	3.3 RETE Algorithm

