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ABSTRACT 

Parallel and distributed data warehouse architectures have been evolved to support online queries on massive data 
in a short time. Unfortunately, the emergence of e-application has been creating extremely high volume of data that 
reaches to terabyte threshold. The conventional data warehouse management system is costlier in terms of storage 
space and processing speed and sometimes it is unable to handle such huge amount of data. As a result, there is a 
crucial need for the new algorithms and techniques to store and manipulate these data. In this paper, we have 
presented a compression-based distributed data warehouse architecture – ‘DMBVA’ for storage of warehouse data, 
and support online queries efficiently. We have achieved a factor of 25-30 compression compared to SQL server 
data warehouse. The main computational component of data warehouse is the generation and querying on the data 
cube. Our algorithm – ‘PCVDC’ generates data cube directly from the compressed form of data in parallel. The 
reduction in the size of data cube is a factor of 30-45 compared to existing methods.  The response time has also 
been significantly improved. These improvements are achieved by eliminating the suffix and prefix redundancy, 
virtual nature of the data cube, direct addressability of compressed form of data and parallel computation. 
Experimental evaluation shows the improved performance over the existing systems. 
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1.0 INTRODUCTION 

Data Warehouse is a subject oriented, integrated, non-volatile and time-variant collection of massive data in 
support of management’s decisions. Today’s warehouses are approaching several terabytes of data with a broader 
mix of query types, which are not supported by the conventional archiving of data. As a result, this increased data 
put a number of strains on physical resources, IT aspects and management spectrum. Performance can be improved 
using compression based distributed warehouse. In contrast, several distributed warehouse architectures have been 
put forward without the application of compression methods. Integrating these two technologies, our work exhibits 
a complete solution to a compression based distributed data warehouse management in a parallel environment, 
which is the first part of our contribution, and we named it as ‘Distributed Multi-Block Vector Architecture 
(DMBVA)’. 

Next, Data cube construction requires computation of aggregations on all possible combinations of each dimension 
attribute. Pre-computation of this data cube is very critical to improve the query performance of data warehouse. 
However, as the data warehouse size grows, this pre-computation becomes a significant performance bottleneck, 
because the required computation cost grows exponentially with the increase of dimensions. Hence, this paper 
demonstrates virtual data cube construction directly from the compressed and distributed data warehouse in parallel 
on a shared nothing multiprocessor system. We named it as ‘Parallel Construction of Virtual Data Cube (PCVDC)’. 
Additionally optimization techniques are applied onto the data cube for better performance. 

We have developed a three-tier data warehouse architecture as shown in Fig. 1. In tier one, data is collected from 
the external source of operational data, which are then extracted, transformed, refreshed, and loaded into the data 
warehouse server. Next with the intension of compressing the warehouse data, we have designed a Distributed 
Multi-Block Vector Architecture (DMBVA) in tier two to store the relational schema in a compressed and 
distributed format. In tier three, we have generated the data cube directly from the compressed vector in parallel. 
This procedure is named as PCVDC and it belongs to the main focus of our work. To achieve the optimal result in 
terms of storage space and construction time of data cube, prefix and suffix redundancy are eliminated. Finally the 
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clients do their queries from the virtual data cube with the help of the query manager, which is synchronized by the 
application server. 

Analysis

Query/Reporting

Data Mining

 
Fig. 1: Overall system architecture 

The rest of this paper is organized as follows: Section 2 describes different related work, their utility and drawbacks. 
Section 3 depicts our compressed relational architecture – DMBVA, with detailed analysis of its components – 
domain dictionary, compressed vector and index structure. Then the PCVDC algorithm with the data cube file 
format, their detailed analysis and evaluation is exposed in Section 4. The optimization for data cube creation and 
storage is presented in Section 5. In Section 6, experimental outcome is discussed, where various comparisons are 
made on the basis of storage space, construction and query response time against other work. Finally conclusion and 
future work is delivered in Section 7. 
 
 
2.0 RELATED WORK 
 
Some of the aspects of creating, maintaining, and querying a distributed and parallel data warehouse are outlined in 
[1]. Teradata’s parallel processing architecture [2] possesses distinct advantages for highly complex, large scale data 
warehouse. Cost optimization for distributed data warehouse is addressed in [3] which is based on a weighted sum 
of query and maintenance costs. WHIP architecture [4] performs identification, transformation and incremental 
integration of distributed heterogeneous data. SAND Technology [5] proposed new architecture of data warehouse 
that reduces storage requirements and therefore costs. Agent-Based Warehouse [6] architecture put forward a great 
contribution for seamless integration of new data. None of these works addresses the use of compression in storage 
and querying warehouse data. 

Alternatively, research on database compression put a great role on performance improvement.  A dictionary based 
compression technique HIBASE model [7] is further extended by the three-layer architecture [8] for sparsely 
populated and XML data. Migrating a multi terabyte archive from object to relational database is depicted in [9]. 
CMBVS [10] disk based compression technique handle terabyte level database.  

Data cube computation algorithm mostly based on sorting and hashing techniques. PipeSort, Overlap and 
MemoryCube [11] are sort based where as Pipehash [11] is hashing based algorithm. Since sorting a terabyte sized 
data warehouse takes a huge computation time, our approach is based on hashing technique. Dwarf [12] and 
PrefixCube [13] separately present compact data cube structures and addresses the issues of prefix and suffix 
redundancy, but their structures store the lexemes of the dimension attributes which occupy massive space. On the 
contrary, in our approach, prefix and suffix redundancy is automatically abolished for the absence of lexemes. 
Recently, different fast parallel methods are developed for constructing data cubes [14, 15] based on partitioning 
and efficient parallel merge procedure with a cost of lexeme storage. This merge cost is much higher in case of very 
large scale data warehouse.  
 
 
3.0 DISTRIBUTED MULTI-BLOCK VECTOR ARCHITECTURE 
 
With the intension of compressing the warehouse data, we apply our Distributed Multi-Block Vector Architecture 
(DMBVA) to store the relational schema in a compressed and distributed format. DMVBA is an extended 
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modification of CMBVS [4]. Here for successful storage management, the relational warehouse is compressed and 
distributed over multiple column servers as shown in Fig. 2. Each column server is associated with a domain 
dictionary, a large compressed vector and an index structure. Application server stores the measure attributes and 
synchronizes among those column servers.  

 

Fig. 2: General architecture of distributed compressed data warehouse containing a fact table 
of four dimensional attributes 'ABCD' and one measure attribute 'M'. 

 
3.1 Domain Dictionary 

The domain dictionary consists of set of lexemes with corresponding token values. It is updated dynamically 
whenever facing a new lexeme. We have created disk-based multiple part dictionaries to accommodate huge 
quantities of lexemes, where some parts resides in the memory and others are in the disk, which are fetched on 
demand basis. There are two main operations in the dictionary. (i) getToken(lexeme): this operation return the token 
of the given lexeme. If the lexeme is not present in dictionary, then add it there and return the corresponding new 
token. (ii) getLexme(token):  it returns the corresponding lexeme of the token. The size of the resultant dictionary in 
the ith column server is: . Where, Cii LC × i = cardinality of domain attribute, Li = average length of lexeme, I = 

index structure storage size. To search the dictionary hashing technique is applied, where the time cost is ( )1O  . 

3.2 Compressed Vector 

A compressed vector represents a single column of relational database. Here only the tokens of the corresponding 
lexemes are stored and hence compressed.  As the main memory is limited, so each vector is partitioned into blocks, 
each block is partitioned into machine words, and a certain number of blocks reside in memory, the others are kept 
in the disk. We store fixed number of elements per block. The size of element stored in the vector is uniform within 
any block, but may vary between blocks. Any operation in the vector ultimately propagated to the block. Multi-
block structure reduces reorganization cost of vector and also reduces the wastage of space.  

The main operations of the block are, (i) isEmpty():  check whether the block is empty. (ii) addToken(token): insert 
a new token to the block. The insertion always occurs at the end of the block. The element size of the inserting 
element should be same as the element size of the block. If the element size of the token is larger than the element 
size of the block then widening operation is issued. (iii) getToken(index): This operation returns the ith token from 
the block and i must be smaller than or equal total  number of elements in the block. (iv) widen(numBit): Widening 
operation is issued when the element-size of inserting token is larger than that of existing element-size. During the 
widening operation, all the elements in the block are reorganized and element-size is set to new element-size. To 
perform this operation, all the existing tokens are inserted to a temporary wordlist with new element size then the 
new element is added to the temporary wordlist. The old wordlist is deleted and the properties of the block are set 
with new element-size. (v) getTupleId(token): This operation returns a set of record_IDs from the block that has the 
same token found in parameter. This record_ID represents the index of matching tuple within the block (not the 
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database record_ID). If no matching token found in the block then it returns –1. The overall size of the compressed 
vector is:  
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Here, n = total number of elements in the vector, m = total number of elements in a block, vi = width of each 
element in the ith block (bits), w = word size (bits).  
 
The overall creation time complexity is the sum of the, 

(i) Overall widening operation (U= ⎡ ⎤( )mmnO 2log/ × ). 

(ii) Time to store blocks in disk: ⎡ ⎤( )sTmnO ×/ . 
(iii) Dictionary creation time: total dictionary search time + total block storage time = 

( )ddi TBOCO ×+ () .          
Here, TS = time to store a compressed block into the disk, Td = time to store a dictionary block into the disk and Bd 
= size of the dictionary block. Here, the network delay will be zero, because each compressed vector and its 
corresponding domain dictionary resides in the same column server. 

3.3 Index Structure 

An index file is created if the lexeme is a search key. The index structure is associated to <lexeme, token> instance. 
We transform lexeme to token using dictionary and then token is used as a new search key. A hashing technique is 
used to extract the specific token from the multi-block vector structure. 
 
 
4.0 PARALLEL CONSTRUCTION OF VIRTUAL DATA CUBE 
 
A data warehouse is based on a multidimensional data model which views data in the form of a data cube. Data 
cube is the computation of aggregation on all possible combination of dimension attributes. For a base relation R 
with N dimension attributes {D1, D2 …., DN} and one measure attribute M, the full data cube of R on all the 
dimensions is generated by CUBE BY on D1, D2 …., DN. It is equivalent to the union of 2N distinct GROUP BY. 
Each group-by is called a cuboid. The CUBE BY is a very expensive operator, and the size of its result is extremely 
large especially when the number of CUBE BY attributes and the number of tuples in the source relation is large.  

4.1 Data Cube File Format  

Data cube construction format is depicted in Fig. 3. Here the smallest unit is the record_ID, which is a sequence of 
bit string. Every single record_ID and its corresponding measure_Value melded into a cube_Record. Multiple 
cube_Record form a cube_Word, where multiple cube_Word fused into a cube_Block. Every cube_Block is 
independently addressable so the structure is suitable for large data cube. Here each cube_Block contains a fixed 
number of cube_Records and hence the memory requirement for different blocks of different cuboids may be 
varied. However the cube_Records of a particular cuboid are mapped contiguously to the underlying cube_Words. 
So no space is wasted at the word boundaries except at the block boundaries. Then, multiple cube_Block form a 
cube_Vector, alternatively which is called a cuboid. Finally all the cuboids collectively form the resultant data cube. 

 
Fig. 3: Data Cube construction procedure. 

cube_
Block 

We have generated the data cube directly from the compressed vector in parallel. A data cube is constructed from a 
schedule tree, whereas a schedule tree is generated from a cuboid lattice (Fig. 4(a)) by solving a minimum spanning 
tree problem. This is illustrated in Fig. 4 for a four dimensional attribute ‘ABCD’. Here we assume that 
|A|≥ |B| |C| |D|. There are two types of data cube file: root cuboid and child cuboid. Fig. 4(b) depicts the flow of 
data cube generation. 
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4.2 PCVDC Algorithm 

The general idea of our Parallel Construction of Virtual Data Cube (PCVDC) [16] is: starting from the first token, 
each column server extracts a chunk of tokens from their individual compressed vector in parallel and sends it to the 
application server. Application server then generate and broadcast {record_ID, measure_val} to all the column 
servers. These are stored into the blocks of the cube_vectors. Repeating this process the root cuboid is generated. 
Each column server then locally computes the child cuboids from its smallest parent cuboid in parallel as assigned 
in the schedule tree. Eventually the complete data cube is constructed. The detailed algorithms are depicted in 
Algorithm 1, 2 and 3. 

 
 

Fig. 4: (a) A cuboid lattice of four dimensional attributes ‘ABCD’.  
(b) A Schedule tree produced from the aforementioned lattice 

 
 

Algorithm 1: PCVDC in the Application Server Algorithm 2: PCVDC in the Column Server

Input:  tokens from column server 
Output: record_IDs and measure_Values  
1. create a server socket  
2. create as many as child threads for each column 
 server 
3. pass socket acceptance to each thread constructor 
4. for each column server thread pardo 
5.  while(true) do 
6.   wait to receive a chunk of tokens from each  
   column server 
7.   send this token to the root thread 
8.   root thread generates the record_IDs using the 
   collected tokens and extract the corresponding 
   measure values 
9.   send these record_IDs and measure_Values to 
   the column server 
10.   if the last token had received then break 
11.  end while 
12. end for 
 

Input:  schedule tree, compressed vector file 
Output: complete data cube 
1. create a thread for this column server 
2. create a socket and connect to the server port 
3. while EOF of all compressed vector file is not 

reached  
4.  extract a chunk of tokens from the vector 
5.  send these tokens to the application server 
6.  wait to receive the record_IDs and the  

measure_Values from the application  server 
7.  store them to the rootCuboid file 
8. end while 

Algorithm 3: 
constructChildCuboid(rootCuboid) 

1. r ← rootCuboid 
2. generate all childCuboids of r  
3. for each children c of r from left to right do 
4.  if c has no children then 
5.   return to parent cuboid 
6.  else constructChildCuboid(c) 
7.   end if 
8. end for 

 
4.3 PCVDC Analysis & Evaluation 

Let, m = average cardinality of each dimension attributes. n = Average number of tuples (elements) in compressed 
vector. d = Number of dimension attributes. b = Total number of blocks. For a single server system, time 
complexity to construct a data cube: 
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In the case of root cuboid generation: total number of tuples in the data cube is md, for each tuple in the data cube, 
we have to search sequentially all the n tuples of the first dimensional attribute (vector) to match with the first 
element of that data cube tuple. If a match is found then we have to extract the same tuple of the next dimensional 
attribute (vector) in order to find a match with the next element of that particular tuple in the data cube. On an 
average, there are n/m replicas of each tuple of the domain dictionary in the vector. So for each tuple in the data 
cube, total searching for the rest of the d-1 dimension attributes (vectors) is: ( )( )1/ −dmn . In the case of child 

cuboid generation: since there are total  ‘d-x’ dimensional child cuboids of a d dimensional cuboid, for each 

of this child cuboid, a total of  comparison is made. Now, For a multiple server system, time complexity to 

construct a data cube is 

xd
d C −

1+−xdm
( ) ( ) ( )dd mOmOnO =+ . Here to generate the root cuboid, only n number of searching 

is made in parallel through the compressed vectors. Whereas, for child cuboid generation, it is same as single server 

system, but the generation is distributed among d number of servers. So a maximum of  comparison is made. If 
the number of dimensions in the source relation is N, i.e. total number of cuboids is 2

dm
N, number of dimension in the 

cth cuboid is dc, cardinality of the jth domain of the cth cuboid is Ccj, size of the block-ID is Bc and measure value is 
M in cth cuboid. Therefore the maximum size of the data cube is: 
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4.4 Query from the Data Cube 

For centralized systems, the primary criterion for measuring the cost of a particular strategy is the number of disk 
accesses. In a distributed system, other issues must be taken into account: 

• The cost of data transmission over the network. 
• The potential gain in performance from having several sites process parts of the query in parallel. 

The relative cost of the data transfer over the network and data transfer to and from disk varies widely depending on 
the type of network and on the speed of the disk. Thus, we cannot focus solely on disks cost or on the network cost. 
Rather, we must find a good tradeoff between the two. We speed up the processing of a query by executing the 
different operations in parallel of a query expression. Here the resultant data cube is independently distributed and 
the different query expressions which are imposed onto the same cube_Record are managed by pipelining. 
Therefore is no necessity of locking and logging in the query operations and cache-coherency problem is eliminated 
as well. A detailed query operation is shown in Fig. 5 and the corresponding algorithm is depicted in Algorithm 4. 
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Fig. 5: Architecture of PCVDC query operation 

Algorithm 4: Query Operation
Input:  query 
Output:  resultant dataset 
1. Application server creates a client session for each client when client connected to application server. 

The client session is created by multithreading. 
2. Application server talk over the query manager for each query and the cheapest execution plan is found 

out among the many possible execution plans that give the same answer. 
3. Translate each query into the SQL form. 
4. Select the appropriate Middleware server from its metadata, which is associated with the column servers 

under which the query results reside. 
5. Middleware server decomposes the tokenized query into individual projection, sort, where condition, 

join operation and determine the dependency between them. Then it forwards the request for projection 
and condition operation to the pertinent column servers. 

6. Column servers extract the result of the condition and projection operation from the appropriate cuboids 
with the help of the cube index. 
6.1. For condition it creates two stages Pipeline for Domain Dictionary (DD) in the 1st stage and Data 

Cube (DC) in the 2nd stage. Here Cx implies condition number x. 
6.2. For projection it also creates two stages pipeline for Data Cube (DC) in the 1st stage and Domain 

Dictionary (DD) in the 2nd stage. 
6.3. When different pipelining stages try to invoke the same domain dictionary or data cube block, it is 

handled thread synchronization.   
7. Finally, the results containing facts and lexemes are sent back to the Middleware server, which are 

packed with the query ID and eventually passed back to the Application server. 

4.4.1 An Example Query Operation 

A simple query example is shown in Fig. 6, which is constructed from the schedule tree (Fig. 4 (b)) of the PCVDC 
architecture. The example query is made based on customer relation entropy. Given five dimensional attributes, 
which are ID (X), Name (A), Street (B), City (C), Status (D), and one measure attribute named Salary (M). Let the 
query is “Select Name, Max (Salary) From Customer Relation Where Street = ‘bijoy’ AND Status = ‘Unmarried’.” 
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This query is imposed to the query manager which is forwarded to application server in a different manageable 
format. Then it is partitioned into sub-query by the application server and send on to the appropriate column server 
for tokenizing the query attributes. After that, as the result of the query lies in the cuboid ‘ABD’, whereas the 
cuboid ‘ABD’ resides in the column server-B, so the query tokens are passed to column server-B. Then the result, 
Name = ‘011..0’ and Salary = ‘40000’ is passed back to application server. Token ‘011..0’ is further sent to column 
server ‘C’ for decompression, therefore Name = ‘Obayed’ is returned, which is passed back to the query manager. 

Query manager

Application Server

A= *
B= ‘Dhaka’
D= ‘Unmarried’

Column
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Select name, Max (salary)
From Customer Relation
Where city=”Dhaka” and

status=”Unmarried”

A= ‘Obayed’
M= ‘40000’

Which unmarried person in
Dhaka city get the maximum

salary and how much ?

“100101110” “1”

 
Fig. 6: A simple query example 

4.4.2 Time Complexity to Query from a Data Cube 

Let, t = Query tokenization time, m = Average no. of cube records per cube_block. d = Number of dimension 
attributes, and netd = overall data transmission delay through the network. Now, the overall query response time = 
Query tokenization time + Cube_block search time + Cube_record searching time + Network delay. Since a hash 
indexing is used to locate the cube_block and binary search is applied to locate the cube_record, therefore 
cube_block searching time is  and cube_record searching time is( )1O ( )mO 2log . So, the overall query response 

time we achieved is: . ( )dnetmtO ++ 2log
 
 
5.0 OPTIMALITY ISSUE OF PCVDC 
 
Prefix and suffix redundancy are identified in our approach and eliminated as well. Prefix redundancy is understood 
by the fact that there is a cube with dimensions A, B and C. Each value of dimension A appears in 4 group-bys (A, 
AB, AC, ABC) and possibly many times in each group-by. This prefix redundancy can be further classified into 
inter-cuboid and intra-cuboid prefix redundancy. Since there is no direct storage of dimension attribute values, the 
prefix redundancy is automatically wiped out. Suffix redundancy occurs when two or more group-bys share a 
common suffix (like ABC and BC). For example, consider a value Bj of dimension B that appears in the fact table 
only with a single value Ai of dimension A. Then, the group-bys <Ai, Bj, x> and <*, Bj, x> always have the same 
value for any value x of dimension C. More specifically taking an extreme case as an example, let a fact table R 
have only a single tuple r = <A2, B1, C3, M>.  Then, the data cube of R will have 23 = 8 tuples, <A2, B1, C3, V1>, < 
A2, B1, *, V2>, <A2, *, C3, V3>, <A2, *, *, V4>, <*, B1, C3, V5>, <*, B1, *, V6>, <*, *, C3, V7>, <*, *, *, V8>. Since 
there is only one tuple in relation R, we have V1 = V2 = … = V8 = aggr(r). Therefore, we only need to physically 
store one tuple <A2, B1, C3, V>, where V= aggr(r). So the cube for R with 8 tuples can be condensed into one tuple. 
Our optimization feature detects and purges this type of redundancy. Algorithm 4 depicts the optimal cuboid 
construction procedure where the suffix redundancy is eliminated. 
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Algorithm 4: Constructing Optimal Cuboid
Input: name: cuboid name = ‘X1X2…Xn tokens from column server 
 metadata: name.dat = ‘X1X2…Xn’.dat 
Output: optimal cuboid 
1. Load ‘X1X2…Xn’.dat into the memory. 
2. t  1st tuple going to be added into the cuboid ‘X1X2…Xn’ 
3. while any tuple remains to be added do 
4.  bID  blockID of t 
5.  mVal  measureValue of t 
6. check the existence of t into the metadata 
7.  if not found 
8.  add the bID and mVal into the cuboid 
9.  end if 
10.  if Xjvalj …Xkvalk is a constant suffix of Xivali …Xj-1valj-1, where i <=  
                j <= k, then 
11. broadcast (fileName=Xj…Xk, suffixToken=valj…valk, 

prefixName = Xi…Xj-1, prefixToken= vali…valj-1) targeted to 
the column servers which contain any cuboid, whose name 
starts with Xj…Xk. 

12.  end if 
13.  t  next tuple going to be added into this cuboid 
14. end while 

 

Algorithm 5:  Update Metadata
Input:  broadcastInfo 
Output: updated metadata file  
(Running under an infinite thread on each column server) 
1. if the file addressed in the broadcast_Info do not exist then 
2.  create this file. 
3. else if the broadcastInfo is already exist then return 
4. else 
       add ‘suffixToken, prefixName, prefixToken’ into the file referred as       
           fileName.dat 

 
6.0 EXPERIMENTAL SETUP 

In our experimental setup there were one application server and several column servers (one for every compressed 
vector) connected via LAN. Each server having 3GHz Pentium IV processor, 40GB hard disk and 512MB RAM. 
The platform was windows XP and was implemented by java development kit 1.5.  

We used TCP (Transmission Control Protocol) for the communication between two of our applications residing in 
different computers. During the root cuboid of the data cube construction process we used multicasting which can 
be thought of as broadcasting data over a network connection to many connected agents, as opposed to unicasting 
packets between two agents on a normal connection. To support concurrent access onto the Application server by 
multiple Column servers for the root cuboid generation we used multithreading. Also multiple tokenized query 
requests which are imposed onto the Column servers are handled by multithreading. When the multiple query 
threads in our system tried to access the same data cube or dictionary block asynchronously, it was handled by 
Thread Synchronization. Collection of threads is managed by Thread Pool to improve the performance when 
executing large numbers of tasks as a result of reduced per-task invocation. 

We chose a classical retail data warehouse of an enterprise which is collected from the oracle data warehouse 
corporation. A synthetic data generator was implemented to generate the data that resembles the real data sets for 
merchandising relation. We assumed six attributes (Table 1) and considered approximately 4 million customers of 
an enterprise. Based on this, the approximate cardinality of each dimension attribute is shown subsequently. Each 
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record is estimated as 104 bytes in the uncompressed base relation, whereas each compressed record occupies at 
most 7 bytes.  

Table 1: The sales relation structure 

Attribute 
Name 

Data 
Type Cardinality Length 

(bytes) 
Bits  
required 

Sales_Id Integer Primary 
key 4 22 

Product Name Varchar 507 30 9 
Customer 
Name Varchar 5000 30 13 

Customer 
Status Varchar 2 10 1 

Sales City Varchar 64 30 6 
Price Charged Double Measure value 

Total 104 
bytes 

51bits  
≈7bytes 

 
 

Table 2: Storage requirement of DMBVA versus SQL Server 
 

Number 
of records 
(million) 

Storage space 
in SQL Server 
(MB) 

Storage 
space in 
DMBVA 
(MB) 

Compression 
Factor against  
SQL Server 

1 251.92 9.525 26.45 
2 501.86 18.312 27.40 
3 755.76 26.32 28.71 
4 1011.65 33.56 30.14 
5 1289.36 41.20 31.30 

 

6.1 DMBVA Storage 

The storage space occupied by DMBVA demonstrates a significant compression factor against SQL Sever, as 
shown in Table 2. The average compression ratio is 28.87 with respect to SQL Server. This is because SQL Server 
needs to store the original source relation in an uncompressed format with some additional information which 
contrasts with our work. 

6.2 Data Cube Storage 

The compressed vector act as the source relation for the generation of the data cube, and the data cube was 
generated directly from this compressed format in a parallel environment. Since the data cube was generated 
directly from this compressed vector and its contents are virtual, a great deal of reduction in the ultimate storage 
space was achieved. We compared our system with binary storage footprint (BSF) and Dwarf [12]. In PCVDC the 
fact table i.e. the compressed vector contained 100000 tuples with a uniform distribution of the dimensional values 
over a cardinality of 1000. In Table 3, the storage occupied by different methods for different dimensions is 
demonstrated. This experimental result is consistent with the analytical evaluation which is stated in section 4.3. 
 
BSF comparatively took much more space for all the dimensions, because all the cuboids are stored here in non-
indexed binary summary table without eliminating the redundancy. Excluding Prefix but Including Suffix 
redundancy (EPIS) both Dwarf and PCVDC perform better. However, in this case, PCVDC dominates Dwarf in the 
data cube storage reduction due to the absence of lexemes. After eliminating the suffix redundancy (noted as ES) 
the storage cost reduced a lot for both methods. We achieved a significant storage reduction for all the dimensions 
with respect to Dwarf, because of the elimination of lexeme storage and data cube storage format in PCVDC. 
Again, in our system this storage was reduced by a factor of 1/N, where N is the number of column server. This is 
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because different cuboids were stored by different servers according to the schedule tree. So it is clear that PCVDC 
dominate all other methods in the case of storage reduction, where suffix redundancy is a crucial factor in the 
overall performance. Therefore, our parallel system architecture scales well with the number of dimensions. Here a 
constant running time can be maintained as the dimension is increased by adding a proportion number of 
processors. 
 

Table 3: Data Cube storage cost comparison with other system 
 

Dim BSF Dwarf 
EPIS 

PCVDC 
EPIS 

Dwarf 
ES 

PCVDC 
ES 

Storage /column 
server 

10 2333 
MB 1322 MB 538.33 MB 62 MB 25.26 MB 2.53 MB 

15 106 GB 42.65 GB 21.57 GB 153 MB 77.38 MB 5.16 MB 
20 4400 GB 1400 GB 838.37 GB 300 MB 179.65 MB 8.98 MB 
25 173 TB 44.8 TB 30.83 TB 516 MB 355.09 MB 14.20 MB 
30 6.55 PB 1.43 PB 1.16 PB 812 MB 658.69 MB 21.95 MB 

 

6.3 PCVDC Construction Time 

The data cube was generated directly from this compressed vector in parallel, hence a great deal of reduction in the 
ultimate construction time was achieved. We compared the construction time of PCVDC with Dwarf (Fig. 7). The 
same data set was used here. Dwarf construction time was proportional to its size, and required much less time as it 
avoids computing large parts of the cube by eliminating the suffix redundancy. On the contrary, PCDVC creation 
time was little higher for smaller dimensions with respect to Dwarf. This is because, during the construction of root 
cuboid, it faced the data transmission overhead through the network channel. But after that all other cuboids were 
constructed independently in parallel from their parent cuboids in different column servers. Due to this parallel 
nature, a significant reduced creation time was achieved for bigger dimensions. 
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Fig. 7: Creation time comparison between Dwarf  
and PCVDC 

Fig.8: Response time of Dwarf, PCVDC  
and Cubetrees 

6.4 Query Response Time 

We speed up the processing of a query by executing different operations in parallel in a query expression. Therefore 
we achieved a significant reduced query response time by applying the intraquery and interquery parallelism. The 
response time was experimented with Dwarf [12] and Cubetrees [15] (Fig. 8). Here the query was made against a 
complete cube of 4−10 dimensions with 300000 tuples in the fact table. We made almost 1000 queries on projection 
operation and multiple predicates select queries which include multiple attributes in the where clause. Both range 
and point queries were made. Query against a data cube was actually be reduced to a sub-query against only one 
particular cuboid or a union of such sub-queries, and this is done by the query manager. The full Cubetrees [15] 
took a huge response time since it calculates the entire cube. Dwarf cube performed better in case of smaller 
dimensions but as the dimension grows it became difficult to manage the condense storage in the main memory. In 
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contrast with that, PCVDC performed much better for higher dimensions with a little sacrifice in the query 
tokenization time. But it was overcome by the parallelization of the query operation. Up to 10 dimensions, the 
average speedup in the response time were 16.34 and 1.59 with respect to Cubetree [15] and Dwarf Cube 
respectively. This speedup would be further accelerated for higher dimensions due to our parallel architecture. 

To compare the access speed of projection operation we choose 4 example queries shown in Table 4. Query Q1, Q2, 
Q3 and Q4 represents the projection operation of 1, 2, 3 and 4 attributes respectively. The set of quires were 
imposed onto 1 million tuples. Because the conventional database system accesses the entire tuple for any type of 
query, so the number of attributes has no significant effect in the query time. The PCVDC accesses only the 
information related to the attributes used in query. The average access speed for projection operation is a factor of 
45.78 with respect to SQL Server.  

Table 4: Comparison of Access Speed on Projection Queries 

Average Elapsed Time 
(sec) Sl. 

No. Number of Attributes SQL Server 
(Ts) 

PCVDC  
(Tc) 

Access 
Speed 
(Ts/Tc) 

Q1 Single attribute 
projection 220 6.29 34.98 

Q2 Two attribute projection 285 6.85 41.60 
Q3 Three attribute projection 342 7.13 47.97 
Q4 Four attribute projection 457 7.80 58.59 

We also imposed the Multiple Predicates SELECT queries onto one million tuples. We take here four queries given 
in Table 5.  Query Q5, Q6, Q7 and Q8 has one, two, three and four attributes respectively in the WHERE clause. 
We run the same query in SQL Server and PCVDC. The average access speed we achieved was a factor of 38.8. 

Table 5: Multiple Predicates SELECT Queries 

Average Elapsed Time 
(sec) Sl. 

No
. 

SQL Command SQL Server 
(Ts) 

PCVDC 
(Tc) 

Q5 SELECT * FROM Sales_Table WHERE Ai=’XXX’ ; (2≤ i ≤ 5) 245.43 8.24 

Q6 SELECT * FROM Sales_Table WHERE Ai=’XXX’ AND Aj=’YYY’; 
(2≤ i, j ≤ 5 and i ≠ j) 337.67 9.17 

Q7 SELECT * FROM Sales_Table WHERE Ai=’XXX’ AND Aj=’YYY’ 
AND Ak=’ZZZ’ ; (2≤ i, j, k ≤ 5 and i ≠ j ≠ k) 388.44 9.45 

Q8 SELECT * FROM Sales_Table WHERE Ai=’XXX’ AND Aj=’YYY’ 
AND Ak=’ZZZ’ AND Al=’WWW’ ;  (1≤ i, j, k, 2 ≤ 5 and i ≠ j ≠ k ≠ l) 444.55 10.55 

 
 
7.0 CONCLUSION AND SCOPE OF FUTURE WORK 
 
There are works with distributed and parallel architecture of data warehouse without compression. Again, there are 
works with data warehouse compression but no distribution. Therefore integrating these two technologies, in this 
thesis, we have first presented a distributed data warehouse architecture using compression-based multi-block 
vector structure for relational database. Using this architecture, we achieved a compression factor around 26.45 to 
31.30 against the SQL Server for source relation. Afterwards, using our PCVDC Algorithm, the data cube was 
generated directly from this compressed form of data in a parallel environment without any decompression. Hence, 
it took significantly reduced creation and storage cost for the data cube. The PCVDC method was compared with 
BSF, Dwarf and Cubetrees. The cube size reduction effectiveness of PCDVC was around 18.88% to 59.26%, with 
an average of 39.77% better than that of the Dwarf cube and far more against BSF. The average speedup in the 
response time was 16.34 and 1.59 with respect to Cubetree and Dwarf Cube respectively.  All of our experimental 
results are consistent with the analytical evaluation. Here we picked out the source relation as uniformly distributed, 
so that we can find out the upper bound of complexity for the data cube storage and query response time. If the 
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source relation is unevenly distributed then we would get a reduced complexity for both the case of compressed 
vector and data cube. 

Our future work includes data migrating tools for compression based PCVDC system in a distributed and parallel 
environment. Using this tool, compressed data blocks can be migrated to remote servers and query can be answered 
from there without any decompression. Our architecture can also be used for parallel mining, where clustering and 
classification techniques can be applied in parallel onto the compressed vectors and virtual data cube. Back-up and 
recovery mechanism of these distributed data cube and compressed vectors can be considered in future. The system 
has been tested using synthetic data set. However, it can also be implemented in real life environment. We believe 
that the system will behave as our findings.  
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