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ABSTRACT 
 
Artificial neural networks (ANN) have demonstrated good predictive performance in a wide variety of real world 
problems.  However, there are strong arguments as to why ANNs are insufficient for data mining.  The arguments 
are the poor comprehensibility of the learned ANNs, which is the inability to represent the learned knowledge in an 
understandable way to the users.   In this paper, Artificial Neural Network Tree (ANNT), i.e. ANN training preceded 
by Decision Tree rules extraction method, is presented to overcome the comprehensibility problem of ANN.  
Experimental results on three data sets show that the proposed algorithm generates rules that are better than C4.5.  
This paper provides an evaluation of the proposed method in terms of accuracy, comprehensibility and fidelity.  
 
Keywords: Data mining, Comprehensibility, Artificial Neural Network, Decision Tree. 
 
 
1.0 INTRODUCTION 
 
In the last decade, the capabilities for generating and collecting data have grown explosively.  The amount of data 
stored in computer systems is so huge.  This explosive growth creates the necessity of automated knowledge 
discovery from data. Knowledge discovery or data mining, attempts to identify valid and useful patterns from huge 
volumes of data [1]. The pattern (knowledge) extracted must be in an understandable form because the main 
purpose of data mining is to aid human in decision making. Thus, comprehensibility is an important factor in data 
mining.  In other words, the data mining algorithm must be able to produce patterns understandable to common 
people.  
 
ANN is very successful in identifying hidden pattern from data, which is ANN can recognize relationships and spot 
trends in huge amounts of data that is not apparent to humans [2]. Its ability to learn from data imitates the human’s 
ability to learn from experience. Although ANN has been used in many applications with remarkable success and 
has been frequently found to outperform conventional approaches [3, 4], it has not been well exploited in data 
mining. In data mining, algorithms with good comprehensibility are much desired, but in ANN, this is the main 
limitation. It is regarded as a “black box”, the knowledge learned by ANN is hard to be understood by users because 
it is concealed in a large amount of connections. Moreover, it is difficult to give an explicit explanation for the 
reasoning process of trained ANN, which not only weakens the trust of human beings to ANN but also makes it 
difficult to apply this technology to knowledge discovery or data mining. 
 
 
2.0 RULE EXTRACTION 
 
The limitation of ANN can be addressed by extracting symbolic rules from trained ANN.  Using these extracted 
rules, ANN’s users can understand what the networks have learned and how ANN classify or predict. In other 
words rules extracted from ANN can be used to explain the reasoning behind the output of ANN. The rules 
extracted could also interpret the relationship between input and output variables in data.  By extracting rules, 
explanation capability is added to ANN and making it a complete data mining tool. 
 
According to the taxonomy presented by Andrews et al. [5], rule extraction algorithms can be roughly categorized 
by  
 

i. the schemes of extracting rules from ANN   
ii. the portability of the rule extraction technique 
iii. the expressive power of the rule extracted (types of rules extracted) 
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The schema of extracting rules can be categorized into decompositional or pedagogical algorithms.  The 
decompositional algorithms extract rules by decomposing the ANN and extracting rules from each unit in ANN and 
aggregate them. The earliest decompositional rule extraction method is the KT algorithm developed by Fu [6].  KT 
is derived from the word “Knowledgetron” which was coined by the author to refer to a neural network with 
knowledge.  The KT algorithm generates rules for each concept corresponding to a hidden or output unit whose 
summed weights exceed the threshold of the unit.  The same idea is incorporated in the Subset algorithm developed 
by Towell and Shavlik [7].  This algorithm checks each subset and tries to find out if any of these links exceed the 
bias.  If exceeded, then these weights are rewritten as rules. REFANN, a rule extraction was developed by Setiono 
[14]. This method extracts rules from trained ANN for non-linear function approximation or regression. 
 
Pedagogical techniques treat the network as a ‘black box’ and make no attempt to disassemble its architecture to 
examine how it works, instead this approach extracts rules by examining the relationship between the inputs and 
outputs. Representatives of this category include Validity Interval Analysis (VIA) [8], TREPAN [9], Decision Tree 
Extractor (Dectext) [10], etc.  VIA was designed as a general purpose rule extraction procedure, extracting symbolic 
knowledge from network.  TREPAN, developed by Craven, regards the rule extraction process as an inductive 
learning problem and uses oracle queries to induce an M-of-N decision tree that approximates the concept 
represented by a given network.  Dectext trained network and extract a classical decision tree from the network. 
Zhou et al. [15] developed an algorithm REFNE, by using an ensemble neural network to generate new data 
instances, and then extract symbolic rules from the instances.  Garcez et al. [16] developed a method to extract rules 
from a neural net by first defining a partial ordering on the set of input vectors. 
 
Portability means the extent to which the underlying ANN incorporates specialized architecture, training regimes or 
data type that is needed.  Most of the rule extraction methods required a specialized type of ANN architecture or 
special type of training. Examples of such techniques include BRAINNE [11] and KBANN [7].  Most of the rule 
extraction algorithms require discrete inputs [6, 7, 10] or continuous inputs [8].  Only a few algorithms deal with 
both [9].     
 
The rule extracted from ANN can be expressed in production rule, ‘n’ of ‘m’ tree, etc. Dextect extract production 
rule, where as TREPAN extracts a ‘n’ of ‘m’ tree.  Both of these algorithms use the decision tree approach to extract 
rules from trained ANN. 
 
In this paper, an approach named Artificial Neural Network Tree (ANNT), i.e. ANN training preceded by Decision 
Tree  rules extraction method is presented for solving the understandability of ANN. ANNT was motivated by the 
lack of an intelligent procedure for interpreting the knowledge learned by ANN and utilizing it as a data mining 
tool. ANNT translates the knowledge represented by ANN into DT. In other words ANNT use DT to approximate 
the function of the trained ANN to improve the comprehensibility of ANN.   
 
Dectext and TREPAN are similar to our research work in extracting rules using the decision tree approach.   The 
difference between ANNT with Dectext and TREPAN is the schemes of extracting rules from ANN. ANNT is a 
decompositional approach, where as Dectext and TREPAN are pedagogical techniques.  More detailed information 
can be obtained by ANNT approach, compared to the Dectext and TREPAN approach. ANNT shows the role of 
each layer, especially the hidden layer, that is, the ANNT approach decomposes the network and extracts the rules 
from output layer to hidden layer then map to input layer, where as in Dectext and TREPAN, only the input and 
output data are used to extract the rules.  Another difference between ANNT and Dectext is that ANNT works on 
discrete or continuous data whereas Dectext works only with discrete data type. The If-Then rules extracted from 
ANNT are easier to understand compared to the ‘n’ of ‘m’ tree extracted by TREPAN.  The ANNT method will not 
be subjected to any special training or architecture.   
 
 
3.0 ANNT APPROACH 
 
ANNT represents the knowledge learnt by ANN in a more understandable form (If-Then rules).   DT algorithms use 
only the data to create the decision tree.  ANNT has both the data and the model of the data in the form of ANN.  
The ANNT approach starts with learning by ANN.  Learning in ANN means the adjustment of weights by training 
the network with training data. By learning, an ANN becomes knowledgeable. The next stage is to extract the 
implicit knowledge encoded in ANN in the form of rules using the tree approach. To reduce the number of rulers 
extracted, that is, to improve the comprehensibility of the rules, the DT is pruned. Reduced error pruning based on 
statistical confidence estimation is used to prune the DT.  This pruning technique calculates the confidence interval 
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for the error [12]. In this research, rule comprehensibility is reported as the number of rules. The smaller the rule 
set, the more understandable it will be.  
 
3.1 ANN Learning 
 
The basic structure of ANN used in this research is a standard three layer network consisting of one layer of input 
units, a layer of H nonlinear hidden units and a layer of one output unit. The available data are randomly divided 
into 2 subsets: the training and test sets. ANN learns by changing the weights between the nodes in order to 
optimize a cost function.  One of the most commonly used cost functions is the Sum Squared Errors (SSE).  Before 
learning starts, weights are initialized to small random values.  Training data are then presented to the network 
through the input layer.  Nodes in the hidden layers process the inputs they get from the input layer and pass them to 
the output layer.  An error value is calculated based on the differences between the network’s output and expected 
outputs. Weights are then updated in order to reduce the error value.  This is repeated until the error drops to an 
acceptable level or certain criteria are met. 
 
Given an N dimensional training data p, p=1, 2, 3 …., P, the net input  (zin) and output (z) of hidden neuron are 
computed as follows: 

zin = vo +           (1) i

N
vx∑

z = f (zin)            (2) 

where x denotes the input, vi denotes the weight connecting the  input unit to the hidden unit and vo is the bias of the 
hidden unit.  The activation function (f) is hyperbolic tangent: 

f(zin)   =
inz-inz

inz-inz

e    e
 e  -  e  

+
       (3) 

The output y is    

y = w0 +           (4) ∑
H

jzw

where wj denotes the weights connecting the hidden unit to the output unit and wo is the bias of the output unit.   

Error value is calculated based on the differences between the network’s output (y) and expected outputs.  This 
error value is the basis for the backward pass, where the errors are passed back through the network by computing 
the contribution of each processing unit and deriving the responding adjustment needed to produce the correct 
output.  Weights are then updated to make the actual output (y) move closer to the expected output.  
 
3.2 Knowledge Extraction  

 
The knowledge that has been learnt by ANN is very difficult to interpret because it is distributed into the weight set 
and is represented in analog form. One method of converting the knowledge into a comprehensible form is to 
extract the knowledge in the form of rules. In other words, the rule extraction is the process of interpreting the 
knowledge of trained ANN into comprehensible form to the user and at the same time it is useful for gaining 
insights (relations and pattern) into the training data.  
 
In this stage, the knowledge learnt by ANN is extracted in the form of rules using the tree approach.  First, the ANN 
is decomposed into two parts; hidden to output layer and input to hidden layer.  
 
3.2.1 Building a Output Tree 
 
To build the tree, create a data set (T) with of the output from the hidden layer (z) from Equation 2 as an attribute 
and the actual output (y) from the network (Equation 4) as class.  The values of the class are denoted with y1, 
y2….yNClass.  At the beginning, only the root is present.  At each node the following algorithm (Fig. 1) is executed, 
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trying to exploit the locally best choice.  Let ‘T’ be the set of cases associated at the node. The frequency (yi, T) is 
computed (Fig. 1: step 1) of cases in T whose class is yi for i∈  [1, Nclass].  If all cases (step 2) in ‘T’ belong to a 
same class yj then the node is a leaf, with associated class yj. 

 
If ‘T’ contains cases belonging to two or more classes (step 3), then the information gain of each attribute is 
calculated, see [13].  The attribute with the highest information gain (step 4) is selected for test at the node.  Tests of 
discrete attributes consider partitions of ‘T’ into n subsets, one for each possible value of the attributes.  Tests of 
continuous attributes partition ‘T’ into two subsets, and certain threshold values have to be determined (step 5).  A 
decision node has s children if T1, T2, ….Ts  are the sets of the splitting produced by the test on the selected attribute 
(step 6). Obviously s = 2 when the selected attribute is continuous, and s = h for discrete attributes with h possible 
values. 
 

      Form Tree  
      Step 1:   ComputeFrequency(T); 
      Srep 2:   if  OneClass  or  FewCases 

      return a leaf; 
               create a decision node N;  

      Step 3:   ForEach Attribute A  
            ComputeGain(A); 

      Step 4:   N.test  =  AttributeWithBestGAin; 
      Step 5:   if  N.test  is  continuous 

                  find Threshold; 
      Step 6:   ForEach T1 in the splitting of T 
      Step 7:       if   T1 is Empty 

                       Child of N is aleaf 
      else 

      Step 8:            Child of N = FormTree; 
 

Fig. 1: Tree Construction Algorithm 
 

If ‘T1’ is empty, (step 7) the child node is directly set to be a leaf, with the associated class being the most frequent 
class at the node.  The divide and conquer approach consists of recursively applying the same operations on each 
non-empty ‘T1’ (step 8). 
  
3.2.2  Input Trees 

In step 2, the input trees are built in accordance with the branch of the output tree in step 1. Each branch is 
reflecting the value of z (Equation 2). For every branch, an input tree will be build. The train data (p), which is used 
in training ANN is used as an attribute and the value of output from hidden neuron (z) is used as classes to build 
these input trees.  To produce smaller input trees, pruning is used. Pruning will simplify the tree by pruning away 
various subtrees and replacing them with leaves.  Smaller trees will result with a smaller number of rules and 
increase the comprehensibility of the rules.  
 
3.2.3 Rules 
 
In step 3, convert each input tree into rules. The number of leaves in the tree corresponds to the number of rules.  
The path from the root to each leaf specifies the conditions for each rule. Rules that are generated from each of the 
input tree will comprehensibly describe the function of hidden neuron. Combine all the rules extracted to get the 
final rules, which describe the relationship between the input and the output of the ANN.   
 
3.3 Knowledge extraction : An Illustrative Example  
 
Thyroid data set [17] is used for ANNT illustration. This data set is described by five attributes (resin uptake test, 
thyroxin, serum triiodothyronine, basal thyroid-stimulating hormone and thyrotropin) with two classes (patient 
having thyroid as 1 and patient not having thyroid as 0).  For simplicity, In1 to In5 (Fig. 2) is used as the name of 
input instead of the actual attribute name.  As shown in Fig. 2, a three layer network with 4 hidden units, is trained.  
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Fig. 2:  Three Layer Neural Network 
 
The knowledge that is learnt in training is stored as weights in the connection links.  To extract this knowledge in an 
understandable form, the ANN is decomposed using the tree approach. The ANN will be decomposed into two 
parts; from output layer to hidden layer (Fig. 3), and then hidden layer to input layer (Fig. 5). 
 
Using the output from hidden neurons as attribute and the actual output of the ANN as class (Fig. 3), an output tree 
is built.  In other words, the outcome of each hidden neuron is used as input data and the actual output from the 
ANN is used as output data.  It should be mentioned here that any tree method can be utilized to build the tree. The 
algorithm for building this tree is given in Fig. 1. In Fig. 4, branch H4 is less or equals to -0.0515 is reflecting the 
value of z (Equation 2) for hidden neuron 4 (H4).  From Fig. 4, when H4 is less than or equal to -0.0515 and H1 is 
less or equal to -0.995, then the patient is having thyroid. It is noted here that two branches are used to classify. Two 
input trees must be built based on H4 and H1.  
 

 

 

 

Fig. 3: Decomposition of the neural 
network from hidden layer to 
output  

 Fig. 4: The output from hidden neurons is 
used as attributes and the actual output 
from the network is used as class to build 
this output tree 

 
Fig. 5 shows the decomposition of neural network for H4. Here, the train data (p) is used as attribute and the output 
from the hidden neuron (z) is used as class.  If the outcome of H4 is less or equals to -0.0515, the outcome is 
converted to 1, which means the patient is having thyroid.   Using these data, an input tree is build (Fig. 6). 
 
The tree in Fig. 6 can be easily converted into IF – THEN rule which is shown in Fig. 7.  The same procedure is 
done to decompose H1.  The final rule is obtained by combining the rules of H4 and H1 for this example (Fig. 7).   
 
The performance of ANNT approach using unpruned tree (unpruned rules) and ANNT using pruned tree (pruned 
rules) is evaluated in terms of accuracy, comprehensibility and fidelity. The original data is used to estimate the 
accuracy of the extracted rules by measuring how well the rules extracted represent the original data.  It should be 
noted here that the rule is extracted based on the actual output from ANN, but the accuracy is evaluated based on 
the original data set. The accuracy of the rule extracted can be expressed as: 
 

  Accuracy   =  
data ofnumber   Total 

data classified correctly  ofnumber  Total
 x 100  (5) 
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Fig. 5: Decomposition of the neural 
network from the input layer to 
hidden layer when hidden neuron 
(H4) is less than or equal to -0.0515.  

 Fig. 6: Input tree for H4 < -0.0515. The 
training data is used as attributes and the 
output from the H4 is used as class to build 
this input tree 

   

 
 
 
 
 
 

Fig. 7: Output tree to Final Rules 

IF (In3<=2.9 & In2<=12) |     
IF (In3<=2.9 & In2>12 & In1>109)  
 
           & 
 
        IF In4>2.2  
 

           

 

{

 
 
The fidelity of the rule extraction is a measure of the agreement between the ANN and the extracted rule (how well 
the extracted rule set mimics the behaviour of the network).  Rule comprehensibility is reported as the number of 
rules.   

Fidelity  =  
data ofnumber   Total 

) N - (N - data ofnumber  Total RulesANN  x 100        (6) 

 
where NANN is total number correctly classified data in ANN and NRules is total number correctly classified data in 
rule set 
 
 
4.0 EXPERIMENTAL RESULTS  
 
Three case studies, heart problem, thyroid, and rainfall in Kota Kinabalu have been used to analyze the performance 
of ANNT.  The first two data sets can be obtained from UCI repository [17] while rainfall data were collected from 
the Metrological Department in Kota Kinabalu, Sabah, Malaysia.  The heart disease data set is used to find out 
whether a person has heart disease. This data set, consists of 13 attributes and 2 classes (patient healthy or sick), has 
270 (150 healthy and 120 sick) instances with 5 continuous value attributes. The thyroid data set, which consists of 
5 attributes and 2 classes (patient having thyroid or not), has 215 (150 normal and 65 having thyroid) instances with 
all 5 attributes being continuous value. The rainfall data set is used to predict the rainfall pattern in Kota Kinabalu. 

 
 

        
       Final Rules 
IF In3<=2.9 AND In2<=12 THEN 1 
IF In3<=2.9 AND In2>12 AND In1>109 THEN 1 
IF In4>2.2 THEN 1 

 

{
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It contains 732 instances with 10 attributes and two classes (will rain or not).  All the attributes are continuous 
value.  
 
These data sets were randomly divided into two subsets: the training set (60%), and test set (40%).  Five groups 
each with six networks were trained. Each group used the same training data set with randomized initialized 
weights.  In each group, the average results of the six networks are regarded as the result of the group.  It should be 
mentioned that the architecture of the networks has not been finely tuned (standardized for all the data sets for 
comparison).  The hidden neurons are activated using hyperbolic sigmoid activation function with linear output 
units.  The learning rate is fixed at 0.001 with maximum epoch set at 2000 with 9 hidden neurons chosen. 
 
Tables 1 to 3 show the train and test set classification (accuracy) results of ANNs on heart, thyroid and rainfall data 
sets. Each row in the table represents the minimum, maximum, average (in percentage) and standard division of 
each group for training and testing data sets. The average classification accuracy of the trained ANNs is quite high 
(above 89.9%) for heart and thyroid data, where as the classification accuracy of trained ANNs is around 83% for 
rainfall data set.  The analysis of the results for rainfall data shows that most of the misclassified patterns belong to 
the it will rain class. Prolonged training (increase iteration) does not help to increase the number of correctly 
classified patterns. 
 

Table 1: Performance of ANN for Heart Data Set 
  Training Set Test Set 
 Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 87.04 93.21 90.12 2.21 79.63 85.19 82.56 2.30 
Group B 85.80 90.74 88.40 1.82 81.48 85.19 83.15 1.52 
Group C 88.89 93.83 90.74 1.66 81.48 93.83 85.24 4.46 
Group D 87.65 90.12 89.30 1.08 81.48 85.19 83.80 1.52 
Group E 90.12 91.36 90.74 0.39 81.48 84.26 82.10 1.12 

 
 

Table 2: Performance of ANN for Thyroid Data Set 
  Training Set Test Set 
 Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 88.37 96.12 92.38 3.15 88.37 96.51 92.25 3.09 
Group B 89.92 93.80 92.51 2.00 89.54 91.86 90.50 0.88 
Group C 93.02 97.67 95.61 1.81 86.05 97.67 91.67 4.61 
Group D 89.15 95.35 93.15 2.27 84.88 93.02 88.76 3.50 
Group E 89.15 93.02 91.60 1.50 87.21 91.86 90.51 1.86 

 
 

Table 3: Performance for ANN on Rain Data Set 
  Training Set Test Set 
 Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 80.64 83.6 82.61 1.13 78.16 80.89 79.98 0.98 
Group B 80.18 84.06 81.74 1.33 76.11 80.55 78.55 1.64 
Group C 81.78 85.65 83.56 1.41 75.09 79.86 77.87 1.99 
Group D 82.46 85.42 83.90 1.18 74.74 79.86 77.30 1.74 
Group E 82.69 84.97 83.83 0.96 73.72 78.84 76.96 2.03 

 
The overall performance of ANNs is determined by measuring the classification accuracy achieved by the ANN on 
an unseen pattern (generalization) for each data set. The thyroid data set generalized better than the heart and rain 
fall data sets.   
 
Tables 4 to 6 report the performance of the extracted rules from the three data sets.  The rule accuracy 
(classification) is measured (in percentage) as the ratio of correctly classified patterns to the total number of patterns 
(training or testing).  It should be mentioned here that the rule extracted from the data sets is based on the actual 
output from the ANN. To check the accuracy of the rules, the original data set is used. 
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Table 4: Rule Extraction Performance for Heart Data Set 
  Training Set Test Set 
 Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 72.14 86.42 80.75 5.66 73.15 83.33 79.48 3.58 
Group B 75.31 81.48 79.63 2.54 71.56 83.33 79.13 4.64 
Group C 76.54 90.12 82.10 5.38 74.07 87.04 79.63 5.59 
Group D 74.07 83.33 79.11 4.18 74.07 85.19 80.71 5.09 
Group E 76.54 87.65 83.74 3.84 74.07 75.93 74.85 0.70 

 
 

Table 5: Rule Extraction Performance for Thyroid Data Set 
 Training Set Test Set 
  Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 89.15 94.57 91.99 2.23 87.21 94.19 91.28 2.73 
Group B 87.60 94.57 91.47 2.64 87.21 90.70 89.15 1.20 
Group C 91.47 96.9 94.57 1.96 86.05 94.19 90.12 3.01 
Group D 89.92 94.57 92.89 1.86 83.72 93.02 89.73 3.63 
Group E 89.15 94.57 91.86 2.06 84.88 93.02 90.31 2.91 

 
 

Table 6: Rule Extraction Performance for Rain Data Set 
 Training Set Test Set 
  Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 78.36 81.09 79.57 1.08 73.72 79.86 77.02 2.10 
Group B 77.22 79.95 79.35 1.06 73.72 80.20 77.25 2.39 
Group C 79.73 82.46 81.51 0.97 70.31 78.16 75.32 2.62 
Group D 79.73 83.37 81.59 1.53 73.04 78.84 76.39 2.04 
Group E 78.82 82.46 81.13 1.32 72.35 78.16 75.54 2.32 

 
Tables 4 to 6 shows that the accuracy of the extracted rule from the training set as well as the generalization of the 
extracted rules are slightly lower than the performance of ANN for all the data sets.   
 
Tables 7 to 9 show the performance of the extracted rule from pruned tree.  For the heart data set, extracted rule 
from pruned tree increases the accuracy of the rules (0.87% for training rules and 0.4% for testing rules).  For the 
thyroid data set, the extracted rules accuracy increases by about 0.17 % for the training set and decrease 0.2% for 
testing set. Accuracy of the rules decreases (0.2% of the train set and 0.1% of the test set) for the rainfall data set. 
 

 
Table 7: Rule Pruning Performance on Heart Data Set 

 Training Set Test Set 
  Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 77.16 87.04 83.23 3.54 74.07 85.19 80.40 3.63 
Group B 70.03 83.33 80.18 5.72 71.30 83.33 77.29 5.49 
Group C 76.54 85.80 81.89 4.31 72.22 87.04 78.86 6.53 
Group D 75.31 83.33 79.63 3.70 75.00 85.19 82.72 4.05 
Group E 79.01 87.04 83.95 3.03 73.15 84.26 76.08 4.20 
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Table 8: Rule Pruning Performance for Thyroid Data Set 
 Training Set Test Set 
  Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 89.15 95.35 92.12 2.42 87.21 94.19 91.28 2.73 
Group B 88.37 94.57 91.21 2.62 88.37 91.86 89.53 1.27 
Group C 91.47 97.67 94.70 2.22 86.05 94.19 89.92 2.91 
Group D 91.47 94.57 93.28 1.17 82.56 93.02 89.54 4.03 
Group E 90.7 94.57 92.25 1.62 84.88 91.86 89.34 2.49 

 
 

Table 9: Rule Pruning Performance for Rain Data Set 
 Training Set Test Set 
  Minimum Maximum Mean Std Dev Minimum Maximum Mean Std Dev 

Group A 77.90 81.55 79.61 1.41 74.74 79.18 76.96 1.54 
Group B 77.90 80.64 79.69 0.96 73.72 80.55 77.53 2.35 
Group C 79.50 82.69 81.40 1.06 70.31 78.50 75.26 2.76 
Group D 79.04 83.60 81.25 1.72 72.35 78.84 75.88 2.46 
Group E 78.36 82.23 80.30 1.27 73.04 78.16 75.31 2.20 

 
 

Tables 10 to 12 show the rule extraction performance in term of fidelity and comprehensibility.  The thyroid and 
rainfall data sets show high fidelity (around 99.4% and 97.5%) relatively, compared to the heart data set (91.2%). 
The comprehensibility of the extracted rules after pruning increases 38.7% for the heart data set, 20% for thyroid 
dthe ata set and 21.8% for the rain data set.  Tree pruning increases the comprehensibility and decreases the 
accuracy of the rule extracted.  
 
Test set accuracy results for ANNT and C4.5 are listed in Table 13.  The results are the average of five groups for 
all the three data sets. The accuracy of ANNT rules is better than C4.5 rules for these data sets.    

 
 

Table 10: Rule Extraction Performance on Fidelity and Comprehensibility  
Before and After Tree Pruning for Heart Data Set 

  
Fidelity 

Before Pruning 
Num of Rule 

After Pruning 
Num of Rule 

Group A 90.62 56.33 32.33 
Group B 91.24 89.20 53.20 
Group C 91.36 63.67 31.50 
Group D 89.81 58.50 42.67 
Group E 93.00 42.67 28.67 

 
 

Table 11: Rule Extraction Performance on Fidelity and Comprehensibility  
Before and After Tree Pruning for Thyroid Data Set 

  
Fidelity 

Before Pruning 
Num of Rule 

After Pruning 
Num of Rule 

Group A 99.61 6.33 5.33 
Group B 98.97 9.67 7.00 
Group C 98.97 7.50 5.17 
Group D 99.74 6.67 5.50 
Group E 99.74 4.33 4.00 
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Table 12: Rule Extraction Performance on Fidelity and Comprehensibility  

Before and After Tree Pruning for Rain Data Set  
  

Fidelity 
Before Pruning 

Num of Rule 
After Pruning 
Num of Rule 

Group A 96.96 405.33 319.33 
Group B 97.61 384.50 280.50 
Group C 97.95 379.33 308.00 
Group D 97.68 478.50 373.83 
Group E 97.30 505.83 404.67 

 
 

Table 13: Test Set Accuracy Results for ANNT and C4.5 
Method Heart Thyroid Rain fall 
ANNT 78.76 90.12 76.30 
C4.5 71.79 89.75 74.91 

 
 
5.0 DISCUSSION 
 
It is hard to make a direct comparison between ANNT and the other methods as published works include results 
obtained from only a small number of data sets.  Most of the earlier works are only trying to interpret ANN but in 
this research, attempts are also made to extract the knowledge (relationships) that exists from the data set.  With 
this, ANNT is compared following the guidelines given in the work of Andrews et al. [5] following 4 dimensions: 
 

i. The Expressive Power of the Extracted Rules 
 

The ANNT method expresses the extracted knowledge as ‘IF..THEN’ statements (the nodes of the tree) 
combined with logical ‘AND / OR’ (the links).  The knowledge produced in the form of rules are easy to 
understand by users. Examples of the extracted rules are shown in Fig. 7.  From these extracted rules, the 
user can understand how ANN classifies or predicts.  

 
ii. Quality of the rules extracted  

 
The quality of the rules can be measured by accuracy, comprehensibility and fidelity. The ANNT’s average 
accuracy for the heart data set 78.8%, thyroid 90% and rain fall 76.3%.  These results indicate that there is a 
slight drop in ANNT accuracy by 5% for the heart data set, 0.7% for thyroid data set and 2.3% for rainfall 
data set compared to ANN accuracy.  Comprehensibility of ANNT is compared before and after tree pruning 
in this research.  For all three data sets, comprehensibility of the rule increase, 38.7% for the heart data set, 
20% for the thyroid data set and 21.7% for the rainfall data sets after tree pruning. The trade off is between 
accuracy and comprehensibility.  In term of fidelity, ANNT of thyroid and rainfall data sets shows high 
fidelity compared to heart data set.   In this research, the concentration is more on the accuracy and 
comprehensibility than fidelity of the extracted rules. 
 

iii. Portability  
 

Portability means the extent to which the underlying ANN incorporates specialized training regimes.  ANNT 
does not need any specialized training or architecture and can be used on binary, discrete or continuous data.  

 
iv. Network Structure and Generalization 

 
ANNT is flexible and can be used on any type of feed forward networks or groups of neural networks as a 
pre-process. Since the pre processor of ANNT is ANN, ANNT will have high robustness to noisy data.  In 
this research it is also observed that the extracted rule set has shown better generalization performance than 
the C4.5 for all the three data sets. 
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6.0 CONCLUSION  
 
In this paper, a method is presented to overcome the comprehensibility problem of ANN by extracting symbolic 
knowledge from a trained ANN using the tree approach. This enables the user to understand how ANN is 
performing its task.  This will lead to more confidence in accepting ANN as a data mining tool and could benefit 
data mining application because it has strong generalization ability.  Rule extraction from the ANNT approach does 
not depend on the structure or the training methods. It can also work on continuous and discrete data. The 
knowledge gained can enhance the decision making process and will be a valuable tool in data mining. 
Experimental results on three data sets show that the ANNT algorithm generates rules that are better than C4.5.   
Pruning of Decision Tree helps to improve the comprehensibility of the rules extracted. 
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