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ABSTRACT 
 
This paper examines the generalization characteristic of Gaussian ARTMAP (GAM) neural network in 
classification tasks.  GAM performance for classification during training and testing is evaluated using the k-folds 
cross validation technique.  A comparison is also done between GAM and Fuzzy ARTMAP (FAM) neural network. 
It is found that GAM performs better (98-99%) when compared to FAM (79-82%) using two different types of 
dataset. The difference between GAM and FAM is that input data to be to classified using FAM must be normalized 
in prior. Hence, three different normalization techniques are examined namely; unit range (UR), improved unit 
range (IUR) and improve linear scaling (ILS). This paper also proposes an alternative technique to search the best 
value for gamma γ parameter of GAM neural network, known as gamma threshold.  A small number of training 
required for GAM also shows that its fundamental architecture retain the attractive parallel computing and fast 
learning properties of FAM. 
 
Keywords: Gaussian ARTMAP (GAM), Fuzzy ARTMAP (FAM), gamma threshold.  
 
 
1.0 INTRODUCTION 
 
There are numerous technical applications that require the usage of artificial neural network (ANN). An example of 
the ANN is the supervised ARTMAP neural networks. The history of ARTMAP started in 1992 when Carpenter, 
G.A. et al. [6,7] introduced the Fuzzy ARTMAP neural network that is suitable for classification of both binary and 
analog input pattern. One of the most important features of ARTMAP is the ability of its algorithm to classify the 
untrained input patterns to the appropriate classes. However, for the past years other researchers have tried to 
improve the fundamental theory of FAM by introducing various techniques with brilliant concepts. For instance, 
Williamsons, J.R. created a new version of FAM that is known as Gaussian ARTMAP (GAM). In his paper [18], he 
had demonstrated that GAM outperformed its counterparts FAM in classification tasks especially with the noisy 
input pattern. 
 
In order to enhance the generalization performance of GAM, developers need to set the value of parameters 
required for the classifiers. This step is important since the exact initial value for the parameters would increase the 
performance of the classifier. The characteristics of good classifiers are that they should be independent from tuning 
parameters characteristic [3] or in other word should have less parameter to be initialized by the developers. We 
observe that none highlighted the best technique to choose the suitable γ parameter of GAM. Only Williamsons 
advised to start training with a large γ and decrease γ as training progresses. He also said that the value of γ varies 
with different type of application dataset. However, in this paper we introduce a technique to deliberately search the 
best possible value for the gamma parameter of GAM γ. In addition, we also demonstrate that GAM would have 
better generalization capability when the suitable γ value is adopted. 

 
The organization of this paper is as follows: In Section 2 we discuss in general about the generalization concept 
which is the main purpose of this paper. Section 3 explains about GAM and FAM algorithm respectively. Section 4 
focuses on important elements in this work such as the dataset used, cross validation and normalization techniques 
(for FAM only) applied. Section 5 contains the result for both FAM and GAM in terms of their parameters 
initialization or cross validation results. Finally, Section 6 provides the conclusions and directions for future 
research. 
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2.0 GENERALIZATION PERFORMANCE 
 
Basically, generalization refers to the capability of each ARTMAP neural networks to identify and recognize the 
untrained or unknown tested input vector with the correct output answer. Fig. 1 describes an example of how the 
classification and prediction process will help the ARTMAP neural networks to generate higher generalization 
performance.  Assuming we have nine input pattern that represent two different group of data which is A and B after 
the training process was done. Let us say that we have a new input pattern x as shown in Fig. 1b and 1c. Therefore, 
an excellent neural network is capable of predicting which class is suitable to represent this input (e.g. either in 
group A or B).  
 
However, from the supervised ARTMAP point of view this untrained input pattern can be described into two main 
conditions. First, if the input is inside the category space which is already learnt by the ARTMAP neural network 
(Fig. 1c). Secondly, if the input is initiated outside the category region generated in the recognition layer (Fig. 1b). 
A supervised ARTMAP neural network with good generalization characteristic should be able to cluster the input 
for both conditions into the targeted category. In this work we adopt the k-folds cross validation techniques to 
generate both types of circumstances. Therefore, we can evaluate the generalization performance for each classifier 
for a given dataset (e.g. in this paper we compare the performance of GAM and FAM). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) 

Fig. 1: Generalization measurement a) Six categories in the recognition layer for two different classes A and B. 
b) The untrained input pattern is outside the categories. c) The untrained input pattern within the categories. 
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3.0 SUPERVISED ARTMAP NEURAL NETWORK 
 
Fuzzy ARTMAP (FAM) is a supervised neural network developed by Carpenter, G.A. et al. [6, 7]. FAM 
incorporates four basic combinations that are pair of Fuzzy ART modules ARTa and ARTb, Associate learning 
network, internal controller module and a mapfield Fab. The details of this neural network are described in [6] for 
FAM while [18] for GAM. 
 
 
4.0 EXPERIMENTAL WORK 
 
In this section, we discuss all the important aspects that have been carried out in the implementation of this work. In 
order to examine the performance of GAM and its comparative counterpart FAM, we use an application data as the 
input pattern. Furthermore, the training and testing process is based on the cross validation technique. 
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4.1 Dataset 
 
A comparative study between FAM and GAM neural network performance is conducted based on two different 
datasets. These datasets have been generated from the binary images that represent an insect using dissimilar 
features extraction techniques which are Geometric Legendre Moment Invariant (LMI) and Krawtchouck Moment 
Invariant (KMI). Each dataset consists of 240 feature vectors that represent 20 different insect images. 
 
4.2 Cross Validation 
 
In order to find the generalization performance of FAM and GAM in conjunction with different types of features 
extraction, the method of k-fold cross validation is used. In this work the available data G is split into k mutually 
exclusive subsets, designated as G1, G2, G3,….Gk of equal size. The classifier is than trained and tested k – times.  
The value of k is set to be 4. The cross validation estimate is defined as the number of correct classification divided 
by the number of data points in the set G. The percentage of correct classification (PCCk) is given by (1) and the 
number of correct classification (NCCk) is given by (2). σ(x,y)t=1 if the testing vector is true, while σ(x,y)t=0 if 
otherwise and n refers to the number of data tested. 
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4.3 Normalization Techniques for FAM  
 
Since the value of FAM input range from zero (0) to one (1) and it is found that most of the result produced in stage 
1 are not most on the particular range, therefore the normalization process are required. Thus, three (3) types of 
different normalizations techniques have been selected for this purpose. They are the simple unit range (SUR), 
improve unit range (IUR) and improved linear scaling (ILS). Equation (3), (4) and (5) show the computation needed 
for SUR, IUR and ILS respectively. The best technique adopted is based on the highest classification rate produced 
by FAM neural network. With reference to the equations, X’ refers to the new value of feature, X in each dimension 
after the normalization process. 
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−÷∑ −= nnX µσ   
 
Furthermore Xmax and Xmin refer to the maximum and minimum features value respectively. For the ILS 
computation, µ refers to the min of the feature and σ is used for the standard deviation of the features in the same 
dimension. The dimensions for each vector are defined as n. 
 
 
5.0 RESULTS AND DISCUSSION 
 
In this section we discuss both neural networks with their parameters initialization. Then, we continue with the main 
cross validation result. 
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5.1 FAM Parameters Initialization 
 
Like any other neural networks, FAM also has three (3) important parameters to be initialized, namely the learning 
parameter, choice and vigilance parameter. Table 1 describes the value chosen for all the parameters. The value for 
vigilance parameter of ARTa increases as training progress, while choice parameter can be at any number except 
zero (0). Since the vigilance will automatically increases, thus the starting value which is also known as the baseline 
vigilance is set to 0.5. One of the advantages of FAM is that it converges faster than other types of neural networks. 
FAM also can achieve high classification rates by using fast learning mode (i.e. by initializing the learning 
parameter to one (1) as demonstrated by Lopes, M.L.M. et al. [12] where he applied FAM in electric load 
forecasting. It is found that FAM requires only three (3) epochs training for most of the moment data used as shown 
in Table 2. Nevertheless, different types of moment and normalization techniques applied generate different value 
for vigilance and the number of categories in ARTa. 
 

Table 1: Parameter setting for FAM  
 

Parameter Value 
Baseline Vigilance, ρ   0.5 
Vigilance ARTa, ρa 1 
Learning, β 1 
Choice, α 0.01 

 
 
 
 
 
 
 
 

Table 2: FAM training with β equal to one (1) 
 

  Unit Range Improve unit range Improve linear scaling 
 e ρA nA NCC ρA nA NCC ρA nA NCC 

LMI 1 0.96 26 154 0.96 26 154 0.97 26 155 
 2 0.96 40 170 0.97 40 170 0.97 38 240 
 3 0.96 43 240 0.97 43 240 0.97 38 240 
 4 0.96 43 240 0.97 43 240 0.97 38 240 
 5 0.96 43 240 0.97 43 240 0.97 38 240 

KM 1 0.98 22 175 0.98 22 175 0.98 22 175 
 2 0.98 35 240 0.98 35 240 0.98 33 240 
 3 0.98 35 240 0.98 35 240 0.98 33 240 
 4 0.98 35 240 0.98 35 240 0.98 33 240 
 5 0.98 35 240 0.98 35 240 0.98 33 240 

Note: NCC = number of correct classification      e = epoch     
 nA=No. of ARTa category 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this stage, we found that UR generates lower vigilance compared to IUR but the number of categories in ARTa is 
still the same. This is because IUR actually decreases the feature space available between 0.1 and 0.9 as shown in 
equation (4). Meanwhile, UR widens the data between 0 and 1 (Fig. 2a). These circumstances cause different 
groups of data closely tight together. Fig. 2 illustrates a situation when the vigilance value will increase in two 
different groups of data A and B in the same feature space ξ. Nevertheless, KMI, with ILS normalization technique, 
demonstrates the highest classification of insect images compared to other methods. Even though KMI produces the 
lowest categories number in ARTa, LMI on the other hand generates the lowest value for vigilance parameter. 
 
 

a)  
= data group B  = data group A 

Fig. 2: Comparisons among normalization techniques a) UR, b) IUR and c) ILS 

b)

ξ

A

'
sδ

B

δ'
d

ξ

A

sδ  

B

δd

c) 

ξ

BA

''
sδ

δ’’
d

 
 
 
 
 
 
 

16 
Malaysian Journal of Computer Science, Vol. 20(1), 2007 



Generalization Performance Analysis Between Fuzzy Artmap and Gaussian Artmap Neural Network pp. 13 - 22 
 

5.2 FAM Cross Validation Result 
 
Table 3 illustrates the cross validation result for FAM with 3 epochs learning. We describe the circumstances for 
both KMI and LMI as shown in Fig. 3. Basically, the distance between group A and B for KMI is smaller (δ’

d< δd) 
thus creating higher value of vigilance compared to LMI. Meanwhile, the difference between data in the same group 
for KMI is less than LMI (δ’

s< δs), therefore it generates a slightly smaller number of categories compared to LMI. It 
seems clear that even though the differences between groups in this case insect object are small, it is always an 
important factor to investigate the polarity of the data in each group.  Therefore the probability for FAM to generate 
high classification rate is possible. 
 
 Table 3: Cross validation result for FAM 
 

    Unit Range Improved Unit Improved linear 
  k ρA nA NCC ρA nA NCC ρA nA NCC 

LMI 1 0.96 34 52 0.97 34 52 0.97 37 53 
  2 0.96 35 46 0.97 35 46 0.97 34 46 
  3 0.96 32 44 0.97 32 44 0.97 33 43 
  4 0.96 38 48 0.97 38 48 0.97 38 49 
      PCC 79   PCC 79   PCC 80 

KM 1 0.98 30 54 0.98 30 54 0.99 29 56 
  2 0.97 34 49 0.98 34 49 0.98 32 50 
  3 0.97 24 40 0.98 24 40 0.98 22 41 
  4 0.97 33 49 0.98 33 49 0.98 32 50 
      PCC 80   PCC 80   PCC 82 

 

Note:  NCC = number of correct classification         
PCC = percentage of correct classification        nA= No. of ARTa category 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  = data group B   = data group A 

Fig. 3: A comparison between different dataset a) LMI and b) KMI 
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5.3 GAM Parameter Initialization 
 
GAM requires only one parameter to be initialized which refers to the gamma parameter γ. Other parameters are 
mathematically obtained from the data pattern that was trained by GAM. Basically, different types of moment 
generate various data set thus the value of gamma is different for one data set to another.  Table 4 illustrates the 
value that has been tested for different type of moment applied in this work. Note that the value of gamma for KMI 
is high compared to other moments since KMI produces large numbers for its feature vectors. We found that gamma 
value is totally different from learning parameters of FAM. The value of gamma principally refers to the standard 
deviation of data when there is only one input pattern trained for a particular category. Nonetheless, the differences 
between learning and gamma parameter will be clearly revealed as the discussion progresses. There are four (4) 
different values of gamma tested for each type of moment applied in the GAM training phase. 
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We use the highest to the lowest possible value for gamma (from left to right of Table 4). In order to find the 
optimal value for gamma, Williamson, J.R. [18] suggested to begin the training with a large gamma value decreases 
its value as training progresses.  We found that when the value of gamma is large, the number of epoch training, 
categories and the vigilance parameter is huge. Moreover, when gamma decreases the value for all those three 
parameters is also reduced. However when the value of gamma reaches a certain level the number of categories in 
ARTa increases.  We manage to determine the vital factor that leads this situation to occur. Fundamentally, this 
factor has it own unique relation with the use of equation (6) which has been applied to update the standard 
deviation for every category in ARTa. To simplify our discussion, equation (7) is rewritten in an easier form of 
GAM σji parameter update. Fundamentally, when each category learns their first input pattern the value of gamma 
will be assigned as a standard deviation (σji = γ). Nevertheless, when A  is too large (γ is too large) compared to  
therefore equation (7) becomes (8). These means GAM will take more epochs training to reduce the influence of A 
in order to produce an optimal value of standard deviation of category J. This is shown in Table 4 whereas the 
number of epoch training is higher when the value of gamma is large. 

B

 
 

 e ρA nA NCC ρA nA NCC ρA nA NCC 
   γ = 0.1  γ = 0.001  γ = 0.0001  

LMI 1 -0.04 21 173 -30 26 240 -179 57 240 
  2 -0.005 44 72 -30 26 240 -179 57 240 
  3 -0.003 68 152 -30 26 240 -179 57 240 
  2 -0.003 93 154 -30 26 240 -179 57 240 
  1 -0.003 132 240 -30 26 240 -179 57 240 

 γ = 1x1011 γ = 1x109 γ = 1x108

KMI 1 -0.007 27 126 -36 28 240 -83 56 240 
  2 -0.001 70 138 -36 28 240 -83 56 240 
  3 -0.001 90 135 -36 28 240 -83 56 240 
  6 -0.001 142 164 -36 28 240 -83 56 240 
  1 -0.001 155 240 -36 28 240 -83 56 240 

 
Note: NCC = number of correct classification   e=epoch    nA=No. of ARTa category 

Table 4: GAM training result using different value of gamma γ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If otherwise A is too small compared to B, it will make less epoch training for GAM to converge since equation (9) 
refers to the original standard deviation for category J. Using both examples, we can extend our explanation about 
the differences between large and small gamma in generating the vigilance and categories number in ARTa. Fig. 4a 
illustrates two categories S and N with large standard deviation in Gaussian distribution space. When σ is large the 
overlapping area for both categories S and N become huge. To avoid this area, the value of vigilance parameter in 
ARTa is increased. If there is new input x to be fed into GAM, the CMF for the input will be situated below 
vigilance, thus a new category Y will be generated by GAM (Fig. 4b). This is the main reason that there is a large 
number of categories and vigilance for ARTa when gamma is set too large. 
 

( ) ( ) ( ) ( ) 2
)(

1
1

2
)

1
1()( iItjitjntjitjntji −

−
+−

−
−= µσσ        (6) 

    ( ) BtnAtnt jjji )()(1)( 11 −− +−=σ          (7) 

Where:       ( 12 −= tA jiσ )

)
( )2)( iji ItB −= µ

       ( ) ( Atnt jji )(1 1−−≅σ          (8) 

       ( ) Btnt jji )(1−≅σ            (9) 

 
 
 
 

18 
Malaysian Journal of Computer Science, Vol. 20(1), 2007 



Generalization Performance Analysis Between Fuzzy Artmap and Gaussian Artmap Neural Network pp. 13 - 22 
 

19 
Malaysian Journal of Computer Science, Vol. 20(1), 2007 

 

Fig. 4: Gaussian distribution for categories with a) huge γ b) optimal γ c) small γ.  
New category crated between two categories with d) huge γ e) optimal γ f) small γ 
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Meanwhile, when the value of gamma is set to the optimal value, we have the best possible shape for each category 
as illustrated in Fig. 4c. Therefore, the vigilance is initialized at a considerable value since the overlapping area is 
small. However, if gamma is set too small we have very narrow shape categories (Fig. 4d). In addition, when the 
new input x is trained using GAM, thus a new category created (Fig. 4e). This is the main reason for GAM to 
generate many categories in ARTa when gamma value is set too small.  The combination of all examples contribute 
to the fact that certain level of the gamma value causes the situation whereas the number of categories in ARTa is 
not decreasing as the gamma value becomes smaller.  Hence, we identify this circumstance as gamma threshold. 
Therefore, we apply gamma value slightly smaller than the gamma threshold occurred. For KMI dataset the gamma 
value used is 1x109 while for the LMI is 0.001. At this stage we cannot compare specifically the category generated 
by GAM between different types of moment because the value of gamma applied is basically an approximation 
only. Further investigation is required to find an accurate value of standard deviation in GAM neural network for 
every dimension in input feature vector. 
 
5.4 GAM Cross Validation Result 
 
Table 5 illustrates the cross validation result for GAM with 3 epochs learning. Still we can see that GAM produces 
high classification using KMI dataset. We also found that when the vigilance is too low, the value of PCC is small 
compared to other folds. For example, in ZMI cross validation process, the third fold produces the lowest vigilance 
if compared to other folds. This situation is also similar in other types of moment data set. Nevertheless, GAM 
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performs better classification of insect images when compared to FAM neural network for all types of moment 
applied in this work (Table 5). 
 

Table 5: Cross Validation result for GAM  
 

 LMI KMI 
k ρA nA NCC ρA nA NCC 
1 -32.44 27 60 -28.61 29 60 
2 -23.31 29 59 -28.24 28 60 
3 -78.19 20 58 -28.02 21 60 
4 -22.13 32 60 -29.22 29 59 
    PCC 98.75   PCC 99.58 

 

Note:  NCC=number of correct classification;  
           PCC=Percentage of correct classification;  
           k=Number of fold for cross validation;   
           nA= No. of ARTa category 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.5 Comparison between FAM and GAM 
 
From both cross validation result shown in Table 4 and 5, we conclude that GAM demonstrates better performance 
in classification task when compared to FAM neural network. In addition, we discover three (3) main factors 
affecting the result for both neural networks in terms of their algorithm characteristics. 
 
 

 = Data Group B 

a) b) 

= Data Group A 

 
 
 
 
 
 
 
 
 
 

Fig. 5: Clustering technique for a) GAM b) FAM  
 
5.5.1 Different clustering techniques 
 
In principal, any type of neural network based on supervised ARTMAP requires CCF and CMF in order to cluster 
an input data. Both FAM and GAM mathematically have different CCF and CMF from each other. FAM uses the 
hyperactangle method to cluster the same input data however GAM utilizes the separable Gaussian distribution. Fig. 
5 illustrates an example of input clustering atmosphere. Notice that FAM requires two (2) hyperactangle spaces to 
cluster the data of group A while GAM produces one (1) of its Gaussian distribution space. 
 
5.5.2 Different technique in testing phase 
 
In testing phase, GAM applies different equation [18] compared to FAM while searching the winner category for 
the given input vector. Since FAM uses vigilance checking in doing so, the chances for FAM will not select any 
suitable category exist, especially when the current input vigilance is lower compared to ARTa vigilance. 
Meanwhile, GAM applies the probability concept where every input tested will always have their best chosen 
category even though it is less than the vigilance value. 
 
5.5.3 Normalization Factors 
 
One of the weakness of normalization technique applied is that it causes the lost of vector length information in 
input vector [2]. This is because the range of the data is only between zero (0) and one (1). 
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6.0 CONCLUSION 
 
The experimental results demonstrate that GAM offers better classification performance compared to the FAM 
neural network. This also shows that GAM has an excellent generalization capability while being as artificial 
classifiers. In fact, the performance of FAM is also influenced by the normalization technique adopted. In this paper 
we have used three different type of normalization technique that not only generated different classification result 
but also produced dissimilar number of category in the recognition layer.  We have introduced a better technique in 
order to search the optimum value for gamma γ which is known as gamma threshold value.  This will assist us to 
design the most optimal GAM architecture.  We have also demonstrated that GAM can learn the input patterns in 
finite list of data presentation and proven that GAM can be used in on-line learning situation. However, there is also 
some weakness within the GAM neural network properties that still need to be investigated further. For example, 
improvements of GAM category match function (CMF) also can be done since the value of standard deviation for 
each category are approximation only.  In addition, this value of gamma γ will be used either for training or testing 
in CCF and CMF. 
 
Therefore, the search of winning category to represent the current input pattern seems to be unbalanced between the 
category that already learned more than one input compared to the category that only learned one input. To make it 
worse, the fact that every dimension of each features vector should have different value either a small or big 
number. Therefore, the value of gamma γ can really influence the outcome of GAM performance. Furthermore, we 
also have demonstrated that k-folds cross validation techniques can be used in order to find the generalization 
capability of supervised based ARTMAP neural network such as GAM and FAM. It also helps to reduce the 
probability of over-training for both FAM and GAM neural network.  It is also found that classification rate for both 
neural networks are influenced by the type of moment invariant techniques applied. This is proven by KMI which 
has demonstrated the higher classification rate for FAM and GAM compared to other moment. Finally, we 
discussed the factors which contribute GAM to achieve better performance than FAM neural network. These factors 
are clustering techniques, testing methodologies and normalization of input vector. 
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