
Malaysian Journal of Computer Science, Vol. 18 No. 2, December 2005, pp. 1-10

1

INTEGRATING XML WITH RELATIONAL DATABASES USING MIDDLEWARE APPROACH

Lee Ching Kum and Sai Peck Lee
Faculty of Computer Science & Information Technology

University of Malaya
50603 Kuala Lumpur

Malaysia
email: saipeck@um.edu.my

ABSTRACT

Over the past few years, XML has become the undisputable lingua franca standard both for semi-structured data
representation and exchange format over the Internet, and also content management in various e-business worlds,
especially the B2B and B2C enterprise applications. However, most of these organisations still rely heavily on
existing relational database management systems (RDBMS) to store and manage their structured data for daily
critical business transactions. In fact, major database vendors, which also happen to be the giant software
companies like Microsoft, IBM and Oracle, have ventured and taken great initiatives in researching and providing
for a single solution to integrate these semi-structured XML data with structured data in relational databases. Most
importantly, it is estimated that during the next few years to come, more than 75% of e-business applications will
implement XML technologies in their applications. Consequently, as more software applications are rapidly
beginning to implement XML, there should be a growing need for XML middleware to efficiently integrating XML
data at the front-end with a RDBMS at the back-end. Hence, this research is aimed at providing a generic XML-
based framework, which is known as JXDB, that allows a user to use XML for dealing with semi-structured data for
creating, accessing or updating to existing heterogeneous relational databases that store structured data and vice
versa. JXDB is designed to provide a generic and extensive XML middleware framework for integration between
XML documents and heterogeneous relational databases.

Keywords: XML, Relational Database Systems, XML Middleware, SQL, XQuery

1.0 INTRODUCTION

XML is rapidly emerging as a widespread recognised standard over the past several years since it was first
introduced as the replacement markup language for the popular but limited features of HTML. However, only over
these few years that XML experts have begun to realise that XML was versatile and has more useful benefits outside
its usage in the browsers, and was extremely suitable as a data exchange and data representation format among
various applications on the Internet. Thus, due to the widespread acceptance of XML, a large growing number in
XML documents and subsequently higher demands for efficient storage and retrieval of XML solutions are needed.
Most importantly, the popularity of XML is due to its flexibility for representing many kinds of diverse information.
XML is known as a versatile, readable meta-language for both humans and computers that can be understood easily
because it is capable of self-describing the information content from various data sources, including semi-structured
and structured documents, relational databases, native XML databases and object databases. Apart from that, the
extensible nature of XML, coupled with its nested structure ability makes it possible to define new kinds of complex
documents for specialised purposes, making it ideal for both representing and exchanging data over the Internet
without the loss of semantics. Therefore, because of this, it is possible for applications to exchange and interpret this
information. As the importance of XML has increased, e-businesses have much to gain from XML by automating
and exchanging transactions with suppliers, partners and customers, such as in application-to-application (A2A),
business-to-business (B2B) and business-to-customers (B2C) applications. As the Internet brings efficient
connectivity for these applications to be integrated together, it has encouraged cost-effective e-commerce
transactions, bringing it within the reach of all of the organisations in connected supply chain businesses. As a result,
this causes major changes in the ways traditional businesses are conducted. Ultimately, most of the organisations
still rely on RDBMS as their back-end database systems but now they need to integrate their existing RDBMS with
these XML data. Thus, some efficient tools or middleware to view, query, export and import data between XML and
relational databases are needed. These tools for querying and integrating between XML and relational databases are
still largely in their infancy, but are beginning to emerge rapidly. Meanwhile, most of the major software companies
and database vendors have been hard at work in addressing and finding the challenges of integrating XML with
relational databases.

Lee and Lee

2

The scope of this paper is to study and analyse the possibilities and advantages of the enabling XML technologies in
order to implement a working prototype of graphical user interface (GUI) XML-based middleware for the XML
users to work with any heterogeneous relational database environment. JXDB system will not be replacing any of
existing XML middleware or XML-enabled databases in the market, but serve as a basis of milestone to be used as a
generic XML-based middleware that implements consistent and generic XML middleware framework approach for
integration between XML documents and heterogeneous relational databases. Subsequently, efficient transfer and
retrieval of XML data rely heavily on how the data is being stored and in what form do the applications need to use
the data. The success of this prototype system is expected to increase the power of integration and development
productivity among the software vendors who have to work in this area.

2.0 LITERATURE REVIEW

In this section, a brief literature review is done on the XML documents and relational databases. However, the
review on the newly popular native XML databases and XML-enabled databases are beyond the scope of this paper.
Here, the review covers the data transfer and mapping technologies used in integrating (marshalling and un-
marshalling) XML documents with heterogeneous relational databases. In this case, when the user retrieves a set of
records from the database, the system is able to retain the XML structures and able to generate respective XML
documents and their DTDs at the end of the process. Before we proceed, we need to understand that naturally XML
data are very different from relational data in several important aspects. This has influenced the design of the
integration between XML and relational databases in order to have a smooth bi-directional data transfer between
them. To start off, XML data are often heterogeneous and distribute their meta-data throughout the document itself
as they are self-describing content. In contrast, the latter consists of a regular data structure, which allows the
descriptive meta-data for the data to be stored in a separate catalog. XML documents can contain many levels of
nested structures or elements, whereas relational data are generally flat in nature. Moreover, XML documents have
an intrinsic order, whereas relational data are likely to be unordered except where an ordering can be derived from
data values. Relational data are usually “dense”, meaning that nearly each and every column in relational tables has
a value. In addition, relational tables are able to represent missing information by a special null value. On the other
hand, XML data are often “sparse” and can represent missing information simply by the absence of an element. As a
result, for these and also other reasons, we cannot directly transfer and integrate the XML data into existing
relational databases, but it has to be coexisting with RDBMS to complement each other. Hence, we need to look into
different and efficient methods or approaches to efficiently handle and integrate the XML data at the front-end to
RDBMS at the back-end.

2.1 XML Middleware Approach

In this section, we will discuss briefly about XML middleware. Generally, XML middleware is an independent
server applications or sets of APIs that sit between the front-end user application and the back-end databases to
transfer XML data between the XML application and the back-end databases, which are mostly relational databases.
One of its benefits is that it is able to provide services to a large scale of applications that is connected over the
TCP/IP network. Subsequently, it reduces the complexity of application integration in a multi-tier and enterprise
solution. This is because XML middleware approach permits applications to be divided into multiple layers thus
allowing abstraction and reducing application complexity at each layer. Thus, multiple applications and users can
connect and share one middleware over the network. XML middleware approach can be categorised into template-
based and model-based approach [9]. The most common strategy that returns XML data from relational databases is
template-based approach. This middleware approach processes an XML document with embedded SQL SELECT
statements in a template, which are replaced in the output document by their results via the middleware software [9].
For example, it can generate an XML document from the data retrieved from a Customer table. On the other hand,
template-based approach does not support transfer of data from XML documents to relational databases as it is too
complex to do so. Most of the middleware transfer XML data directly according to the model on which they are
built because both of them are structured differently in nature. Model-based approach creates a data model based on
the XML document and then maps that model to the database. They are much more powerful as they can be used to
transfer data from XML documents to databases and vice versa, and also as automated mapping tools. Middleware
software is used by data-centric applications to transfer XML data between XML documents and databases, which
sits between an XML document and a database [9]. These middleware use database drivers, such as ODBC, JDBC,
or OLE DB, to connect to relational databases. A generic graphical view of the architecture of a middleware is
shown in Fig. 1.

Integrating XML with Relational Databases using Middleware Approach

3

Fig. 1: Generic graphical view of middleware architecture

2.2 Review of XML Middleware: XML-DBMS

We reviewed one of the existing XML middleware in the open source community; called XML-DBMS. It is an open
source middleware that consists of rich-feature of data transfer APIs to transfer data between XML documents and
relational databases. It is designed using model-based approach that implements object-relational mapping
technologies and is defined via a generated XML-based mapping language [9, 10]. Here, the mappings can be
written manually from scratch or generated automatically from a given DTD or database schema [10]. Besides, both
DTDs and database schemas can be generated from the mapping process, the latter approach can be reversible
whereby DTDs can also be generated from database schema and vice versa. Like most middleware, XML-DBMS
preserves the hierarchical structure of an XML document, as well as data in that document. If requested, it is also
able to preserve the order in which children at a given level in the hierarchy appear. Additionally, when transferring
data from an XML document to the database, users can specify what required actions to take like to insert, update
data or both. On the other hand, when transferring data from the database to an XML document, users can use filters
like the “where” expression to specify only the specific data to be retrieved [9, 10]. Thus it provides parameterised
approach in this case for greater flexibility to the software developers. In spite of its many useful features, it is still
just a set of Java API packages for transferring data between XML documents and relational databases used in an
application that can be run from the command line or a program to transfer data between an XML document and a
database.

3.0 JXDB SYSTEM ARCHITECTURE

JXDB is a GUI-based XML middleware designed in this proposed research to provide efficient transfer and retrieval
of XML data from multiple XML documents at the front-end with heterogeneous relational databases at the back-
end and vice versa. As a result, JXDB provides a consistent and extensible XML middleware framework. Fig. 2
shows the high-level 3-tier architectural design of JXDB system; it consists of several components that are
integrated together to demonstrate the functionality of transferring XML data from multiple XML documents to
heterogeneous relational databases, and vice versa. Each of these components is isolated according to their
functionalities in the system. The presentation layer is responsible for displaying the application user interface
whereby users will interact with the system through this interface. The business layer focuses on the components
that are responsible to process and perform the business rules of the system. The data access layer is responsible for
the data storage and retrieval management. This layer consists of components that know how to communicate with
the place where the data storage resides. Different database products from different relational database vendors were
tested; they are Oracle 9i, Microsoft SQL 2000, MySQL and Access 2000.

Users interact with the system through the XML-based Interfaces package at the presentation layer. This package
consists of a set of use cases that will illustrate what kind of services the system can provide to these users, such as
load, insert, delete or update XML data to relational tables and retrieve XML data from relational tables to XML
documents. In the business layer, there are several components that are integrated together to perform necessary
jobs, such as the query interpreter is responsible to interpret queries actions like insert, delete and update via data
grid control that stores the persistent XML data in memory, and also to query and retrieve XML data via W3C
XQuery on multiple XML documents. Other components include the mapping component that is used to map XML
schemas or DTDs to database schemas using table-based mapping definitions. In order to transfer data from XML
documents to any type of database, it is necessary to map the XML document schemas, which consist of respective
DTDs or XML schemas to the database schemas. The transformation & transfer component is used to transform the
decomposed XML data in DOM memory to Java objects based on the mapping schemas defined. Following that,

Lee and Lee

4

these persistent objects will transfer the updated data to relational tables. Besides, it also provides data export from
relational tables to compose XML documents and its respective DTDs through SQL SELECT statement. Lastly, the
transaction component performs database transaction services such as commit and rollback transactions during the
data transfer to relational databases in order to maintain data integrity in both XML documents and relational
databases.

Fig. 2: JXDB System Architecture

4.0 JXDB ANALYSIS MODEL

The software analysis approach used in JXDB system is based on object-oriented analysis and modelled using
Unified Modelling Language (UML). To model JXDB analysis process, we are using use case model driven
approach. In fact, the main benefit of using this approach is that all design decisions can be traced back to user
requirements, analysis, design, and implementation and testing. Hence, use case model driven approach can be
implemented throughout the whole software development life cycle. Most software organisations have begun to
adopt use case model to build their requirement model, where the software developers can understand what the users
of the system wants and present these requirements back to the users because they also need to understand it from a
developer’s point of view. Fig. 3 illustrates the use case diagram for JXDB system. This figure models the system’s
requirements and what are the services that the user can do with the system. Examples of the scenarios where the
system can offer its services to the users are load XML documents, insert, update, delete, and read XML data, etc,
followed by transferring of these XML data from XML documents to relational databases and vice versa.

Integrating XML with Relational Databases using Middleware Approach

5

Fig. 3: Use Case Model of JXDB

Fig. 4 presents the object diagram for JXDB system, which can assist our analysis process by addressing the focus
on what problem domain we are going to solve, without worrying the best way of how to solve the problem. In order
to get the task done, these identified objects have to integrate with each other to provide the services needed by some
other objects and, in turn, also need to use the services provided by other objects, so that they can complete the task.
This is because each of these objects has been assigned specific tasks according to their roles in the system.
Therefore, the diagram also helps to illustrate the relationships that exist between the identified objects in our system
by linking each of them to related objects in their interaction. At this stage, all the objects shown in Fig. 4 are
without their attributes, except the QueryInterpreter object because its attributes are important to define the layout of
the system’s user interface. The operations of each object are derived from the message calls occurred during the
objects’ interaction when carrying out the behaviour of the use case instances.

Lee and Lee

6

XMLInterfaces
Width
Height
Top
Right
Left
Bottom
Position

generateXMLDoc()
displayXMLView()
readXMLData()
insertXMLData()
updateXMLData()
selectXMLData()

<<boundary>>

DBTransaction

establ ishConn()
selectDatabases()
startCommit()
startRol lback()

<<control>>

Database

createTable()
dropTable()
executeInsertQuery()
executeUpdateQuery()
executeDeleteQuery()
executeSelectQuery()

<<entity>>

interacts with
used by

transform & transfer to

manages

retrieves fromstores to

invokes

connects to

displays toinvokes

QueryInterpreter

interpreterInsert()
interpreterUpdate()
interpreterDelete()
interpreterSelect()

<<control>>

Mapping

generateMapFile()
mapFrDTD()
mapFrXMLSchema()

<<control>>

Transfer

transferData()

<<control>>

Transformation

transformXML2DB()
transformDB2XML()

<<control>>

Fig. 4: JXDB Object Diagram

5.0 DATA TRANSFER STRATEGY

A common problem now in XML community is how to transfer and map XML data to and from databases. There
are many different methods of transferring data but most are basically doing similar approach that is by mapping and
conversion of data structure before transferring to databases. Moreover, XQuery still does not support direct
updating of XML data to databases [6]. This section discusses briefly the data transfer strategy used in this JXDB
system. In order to integrate XML data between XML documents and relational databases, we have to do some
mapping on the XML structure defined in XML schema, such as DTD or XML schema, to the database structure
defined in database schema [9]. The transformation and transfer component in this case is built on top of the
mapping component. To transfer data from multiple XML documents to relational databases, there are few steps
involved. First, the Query Interpreter component uses XQuery where the user has to enter the XQuery expressions to
query and retrieve XML data from multiple XML documents, and then it will generate a new virtual XML result [3,
4, 11]. Some of the XQuery expressions that are supported here like Path expression, Element Constructors and
FLWR expressions [1, 2]. Subsequently, it will display and model the virtual XML results on the data grid control
and also it will also create DOM objects in memory for further manipulation of the XML results. From this data grid
control, the user can insert, update or delete the in-memory XML results before mapping and transferring the data to
relational databases. After that, the mapping component will perform the necessary mapping from XML schema or
DTD to database schema based on the generated map file. Here, the user has an option to save a copy of XML
results in a physical XML file. Once the mapping is in place, the Transform component will transform the XML data
to Java objects before invoking Transfer component to transfer the data to the back-end relational database. At the
same time, the system also generates a SQL script file when transferring to relational databases if we need to create
new tables or drop existing tables. The DBTransaction component will manage the whole transaction during the data
transferring process, and it is also responsible to establish and manage connection pooling to databases.

Integrating XML with Relational Databases using Middleware Approach

7

There are two commonly used mapping strategies to model XML data in XML documents; they are table-based
mapping and object-relational mapping or object-based mapping [9]. We need to do a mapping from its DTD to
database schema before transferring the data between XML documents and relational databases because the XML
structure is not the same as database structure [3, 4, 9, 11]. In fact, both mappings are bidirectional meaning that
they can be used to transfer data both from XML documents to the databases and from the database to XML
documents. We have studied the pros and cons of both mapping strategies, and decided to use the table-based
mappings, though it only works with a limited subset of XML documents depending on the application
requirements. Despite this, this mapping satisfies our requirements even though there are some tradeoffs in return.

On the other hand, to transfer data from relational databases to XML documents, the implementation strategy is
almost similar. First, users will issue a SQL SELECT statement to the database to select required data from a table
or multiple tables using a JOIN statement, and then download the result sets to the client’s side and generate virtual
XML views using DOM API that were transformed from persistent Java objects. Subsequently, the system also
generates its respective DTD and optional mapping file when it has downloaded the result sets to the client’s side
because these files might be needed later on in the mapping process. The generated virtual XML view is presented
back to the users via the data grid control. Here, the user can continue to manipulate the data like before, such as
insert, update or delete, before going through the same process of mapping and transferring the modified data back
to relational databases for updating. Fig. 5 shows the graphical overview of JXDB’s data transfer strategy.

Fig. 5: JXDB’s Data Transfer Strategy

6.0 CRITICAL REMARKS

We have analysed several critical remarks found in this system. Some of the remarks are due to the immature
capabilities and facilities offered by W3C XQuery, which is the first query language designed for XML data to
receive industry-wide attention and support from W3C. At the time this paper is written, XQuery is still being
developed by the W3C XML Query Working Group and has obtained a “Working Draft” status [1, 2, 5].
Unfortunately, XQuery provides retrieval and query of XML data as read-only and it still does not provide full text
search, insert, update and delete facilities for XML data [6]. Hence, the proposed system does not use direct insert,
update and delete on XML data using XQuery, except for querying and retrieving of XML data from multiple XML

Lee and Lee

8

documents. Instead, we use a data grid control to generate a XML-based view over the XML document where users
can directly insert, update and delete the data through the data grid control. Moreover, the inconsistency format
between the XML and XQuery has made the implementation of XQuery as the query language for XML data rather
tedious and complicated. Despite the goal of W3C to make XQuery the default query language for XML, XQuery
itself is still not in XML format [5]. Thus, W3C is trying to work on XML syntax for the XQuery semantics in their
future release working drafts. Therefore, in future it is possible that these XQuery limitations can be resolved once
XQuery has been fully matured and has reached the W3C’s Last Call Working Draft status before it fully becomes a
W3C Recommendation [1, 5].

Presently, the system does not cater for processing a large volume of XML documents as it is using DOM APIs for
processing and parsing XML. This is due to the weakness of XML DOM parser as DOM parser has several serious
problems that will affect the performance-sensitive of an application. One of DOM problems is the fact that it loads
the entire XML document into computer memory using much more memory. For example, to parse or query large
XML documents on low hardware specification will be a bottleneck for any application. To overcome this, if it is
related to hardware issue, then we can upgrade the hardware specification such as upgrade the system memory.
Another subtle problem of DOM API is that the source code written for it must scan the XML document twice when
parsing. Despite these, some of these problems could be addressed with a better underlying data structure designed
to internally represent the DOM object model. However, it will be ideal that W3C works to improve on the
performance processing of XML DOM parser. Instead, if it is related to software problems, we believe that by using
SAX parser, it will be able to process a larger volume of XML documents and faster compared to XML DOM
parser. This is because SAX API does not have a generic object model, so it does not have the memory or
performance problems like DOM API. In this case, one consequence of using table-based mappings is that it only
works with a limited subset of XML documents.

Another issue is that using middleware approach introduces another layer in the application’s system architecture. In
fact, it decreases the overall performance of the application. For example, instead of directly connecting to the back-
end databases and let the XML-enabled databases do the necessary processing, it needs to do object-relational
mapping and transformation of the XML data to relational schema every time they transfer the data to the database
and vice versa. The issue gets more complicated if the XML schema and/or map file for the XML are changed
frequently. Another similar subtle issue is that if there are lots of different types of structure of XML files and
frequently new types of XML are being introduced that will definitely make mapping and transformation of schema
more complicated. Hence, it will lead to a change in the mapping definition file and corresponding change in the
relational schema. All these will incur much higher deployment and maintenance cost and vulnerable to more points
of failure. In addition, sometimes this approach is not preferred by software developers as it increases complexity of
the system.

7.0 FUTURE EHANCEMENT

There are several potential features identified, that can be added to this system to enhance and extent the XML-
based middleware functionalities to offer better and richer features to its users. One of the potential future
enhancement works is to web-enable and offer as web services over Internet, so that the users can access the system
across the enterprise network at anytime and anywhere. This is the most significance feature because nowadays web
services are also receiving great interest and supports by major software companies such as Microsoft, IBM, Sun,
etc. A web service can publish and enable its programmatic application interface accessible by any remote
applications over the Internet. Another potential future work that has been identified is to extent its ability to
integrate with different types of databases other than relational databases, such as native XML databases and object-
oriented databases. This will enable the system to be vendor and platform independent, and robustness so that it is
capable to integrate with any types of back-end databases.

Though it may seem that a lot of future work has to be done, this middleware system is still a very promising
initiative system for integrating XML data and heterogeneous relational databases in updating and retrieving of
XML data to relational databases and vice versa. Moreover, it can provide a generic framework for software vendors
to extent this framework to work on improving and extending the functionalities of this system. As the emerging
XQuery becomes mature and recognised as the standard XML query language by W3C, more value-added facilities
should be made available to the large XML communities, such as direct update and deletion of XML data using
XQuery without a schema. This is the area that needs more work to be done to test using XQuery once it can provide
direct inserting and updating of XML data. To use these with relational databases, the data in the database must be
modelled virtually in XML format, thereby allowing queries over these virtual XML documents. However, this

Integrating XML with Relational Databases using Middleware Approach

9

situation will change when XQuery is finalised by W3C, as some major database vendors are already working on
their own implementations. Another possible future work is to provide a generic mapping framework that can map
any types of XML documents to relational structure without using an explicit map file or a schema. Most
importantly, XML middleware products are relatively new compared to XML-enabled relational databases, thus
scalability and reliability of this approach have not been fully tested.

8.0 CONCLUSION

In this paper a GUI-based XML middleware approach integrating XML with heterogeneous relational databases
using object-oriented concepts are investigated. Various studies and tests were conducted on several XML
middleware products, including both commercial and freeware products, that implemented similar approach in
mapping and transferring of XML data to relational databases and vice versa. However, we only documented the
study done on one of the existing XML middleware products, i.e. XML-DBMS version 1.0 that is used to transfer
XML data to relational databases, and vice versa. These tests are used to analyse the strengths and critical remarks
of these products, and based on the results, a conceptual system specification and design for the proposed JXDB is
made by taking into consideration the pros and cons of these products. At the time this paper is written, the proposed
JXDB is relatively one of the first few middleware to implement XQuery for querying and retrieving of XML data
from multiple XML documents though it is still at its infancy. However, much work is going into solving many
issues to improve its functionalities for it to evolve rapidly into a more mature standard query language like what
SQL is as the standard query language for relational databases. Additionally, vast quantities of business critical data
are currently stored in the existing back-end relational database systems. However, great demand is pushing for the
ability to present that data in XML form to the client applications. Last but not least, XML middleware approach is
suitable to be implemented in a distributed multi-tier application environment. This is because with this approach,
connection pooling can be introduced to significantly improve the performance of these multi-tier applications,
especially in applications that are not tightly coupled with the back-end databases or any existing legacy databases,
and where the XML schemas and formats are not changed frequently.

REFERENCES

[1] Don Chamberlin, “XQuery: An XML query language”. IBM Systems Journal. Vol. 41, No. 4, 2002.

[2] Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Marchiori and Jonathan Robie, “XML Query

Use Cases”, W3C Working Draft, 15 November 2002. http://www.w3.org/TR/xmlquery-use-cases/.

[3] Eisenberg, Andrew and Melton, Jim, “SQL/XML and the SQLX Informal Group of Companies”. ACM

Special Interest Group on Management of Data (SIGMOD) Record. Vol. 30, No. 3, Sept. 2001, pp. 105 - 108.

[4] Eisenberg, Andrew and Melton, Jim, “SQL/XML is Making Good”. ACM Special Interest Group on

Management of Data (SIGMOD) Record. Vol. 31, No. 2, June 2002, pp. 101 - 108.

[5] Melton, Jim and Eisenberg, Andrew, “An Early Look at XQuery”. ACM Special Interest Group on

Management of Data (SIGMOD) Record, Vol. 31, No. 4, December 2002, pp. 113 - 120.

[6] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy and Daniel S. Weld, “Updating XML”, ACM Special

Interest Group on Management of Data (SIGMOD) Record. Department of Computer Science and
Engineering, University of Washington. Vol. 30, No. 2, June 2001, pp. 413 - 424.

[7] J. Shanmugasundaram, H.Gang, K. Tufte, C. Zhang, D. J. DeWitt, and J. F. Naughton, “Relational Databases

for Querying XML Documents: Limitations and Opportunities”, in Proceedings of the Very Large Data
Bases (VLDB) International Conference, 1999, pp. 302 - 304.

[8] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. R. B. Lindsay, and H. Pirahesh, “Efficiently

Publishing Relational Data as XML Documents”, in Proceedings of the Very Large Data Bases (VLDB)
International Conference, 2000.

[9] Bourret, Ronald. Mapping DTDs to Databases, 2001. http://www.xml.com/lpt/a/2001/05/09/dtdtodbs.html.

Lee and Lee

10

[10] Bourret, Ronald. XML Database Products : Middleware, 2000 – 2002.
http://www.rpbourret.com/xml/ProdsMiddleware.htm

[11] Funderburk, J.E. , Malaika, S. , Reinwald, B, “XML Programming with SQL/XML and XQuery”. IBM

Systems Journal. Vol. 41, No. 4, 2002.

BIOGRAPHY

Lee Ching Kum obtained her Master of Software Engineering from Faculty of Computer Science and Information
Technology, University of Malaya, Malaysia in 2003. Currently, she is working as a software developer in the
private sector.

Sai Peck Lee is currently an associate professor at Faculty of Computer Science & Information Technology,
University of Malaya. She obtained her Master of Computer Science from University of Malaya in August 1990, her
Diplôme d’Études Approfondies (D. E. A.) in Computer Science from University of Pierre et Marie Curie (Paris VI)
in July 1991 and her Ph.D. degree in Computer Science from University of Panthéon-Sorbonne (Paris I) in July
1994. Her current research interests include Software Engineering, Object-Oriented (OO) Methodology, Software
Reuse and Framework-based Development, Information Systems and Database Engineering, OO Analysis and
Design for E-Commerce Applications and Auction Protocols. She has published an academic book and more than 70
papers in various local and international conferences and journals. She had also served as the executive editor of a
journal for 2 years, and has been in the reviewer committees and programme committees of several local and
international conferences.

