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ABSTRACT 
 
Software processes relate to the sequences of steps that must be performed by software engineers in order to pursue 
the goals of software engineering.  In order to have an accurate representation and implementation of what the 
actual steps are, software processes may be modelled and enacted by a Process Modelling Language (PML) and its 
process support system (called the Process Centered Environments i.e. PSEE). 
 
This paper discusses the design of the process support environment for a new process modelling language, called 
the Virtual Reality Process Modelling Language (VRPML).  It identifies the main components of the VRPML 
process support environments as well as summarises the current implementation prototypes.  It highlights lessons 
learned and offers insights into the design of next-generation PMLs and PSEEs. 
 
Keywords: Process Modelling Languages (PML), Process Centered Software Engineering Environments 

(PSEE), Software Engineering, Virtual Reality Process Modelling Language (VRPML) 
 
 
1.0 INTRODUCTION 
 
Engineering as a discipline relates to the creative application of mathematical and scientific principles to devise and 
implement solutions to problems in an economic and timely fashion.  To provide a quality solution, it is not usually 
sufficient to focus only on the final product.  Often, it is also necessary to consider the processes involved in 
producing that product.  For example, consider an assembly line of a car.  From the customer’s perspective, it is the 
final product that matters (i.e. a quality car).  From an engineering perspective, such quality could not be achieved if 
some of the processes (e.g. assembly lines) are faulty.  Although additional rework can fix the problems caused by 
the faulty assembly lines, this tends to raise the overall costs because it deals only with symptoms of the problem.  
In contrast, going to the cause of the problem and improving the process (e.g. the faulty assembly lines) avoids the 
introduction of quality defects in the first place and leads to better results with lower costs.  As this example 
illustrates, it is through the processes that engineers can observe and improve quality, control productions costs and 
possibly reduce the time to market their products. 
 
Similar analogies can be applied in the case of software engineering.  To produce quality software, it is necessary to 
emphasize on the processes by which the software is produced.  In software engineering, these processes are called 
software processes.  Software processes relate to the sequences of steps that must be performed by software 
engineers in order to pursue the goal of software engineering.  In order to have an accurate representation and 
implementation of what the actual steps are, software processes may be modelled and enacted by a process 
modelling language (PML) and its process support system called the Process Centered Environments (PSEE).  
Although there has been much fruitful research into PMLs and their corresponding PSEEs, their adoption by 
industry has not been widespread [6].  Furthermore, no single PML and PSEE have assume dominance and accepted 
as the de facto standard. 
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For these reasons, research into PMLs and PSEEs are still necessary.  In this paper, we discuss our experiences 
developing the support environments for the Virtual Reality Process Modelling Language (VRPML) [13-19].  We 
also discuss how the environment can be used to realise some of the main novel features of VRPML, that is, in 
terms of the integration with a virtual environment as well as the support for dynamic creation of tasks and 
allocation of resources [15, 16]. 
 
This paper is organised as follows: Section 2 gives an overview of VRPML.  Section 3 summarises the main 
components of the VRPML support environments.  Section 4 discusses the experience using the support 
environment.  The paper ends with a brief discussion on further work to be done. 
 
 
2.0 OVERVIEW OF VRPML 
 
Software processes are specified in VRPML as graphs, by interconnecting nodes from top to bottom using arcs that 
carry run-time control-flow signals.  In VRPML, software processes are generically modeled.  Resources (in terms 
of software engineers, artifacts and tools) can be dynamically assigned and customised for specific projects from a 
generic model.  To illustrate this, Fig. 1 presents an excerpt of the VRPML solution to a benchmark process, i.e. the 
ISPW-6 problem [8].  Briefly, the ISPW-6 problem involves a software requirement change request occurring either 
towards the end of the development phase or during the maintenance and enhancement phase of the software 
lifecycle.  When a software change request is received, the project manager assigns and schedules specific tasks to a 
number of participating software engineers.  These tasks include: Modify Design; Review Design; Modify Code; 
Modify Test Plans; Modify Unit Test Package; and Test Unit.  Some tasks may be executed in parallel, while others 
have to be executed in a sequential manner.  In each task, there are defined roles, tools, source files, task ordering 
constraints, pre-conditions and post-conditions, which must be respected by the software engineers to complete the 
task. 
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Fig. 1: Excerpt from the VRPML Graph for the ISPW-6 Problem 
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Similar to JIL [10] and Little JIL [12], software processes in VRPML are described using process step abstractions, 
which represent the most atomic representation of a software process (i.e. the actual activity that software engineers 
are expected to perform).  These activities are represented as nodes, called activity nodes (shown as small ovals with 
stick figures). 
 
As depicted in Fig. 1, VRPML supports many different kinds of activity nodes.  They include: general-purpose 
activity nodes (shown as individual small ovals with stick figures); multi-instance activity nodes (shown as 
overlapping small ovals with stick figures); and meeting activity node (shown as small and shaded overlapping ovals 
with stick figures).  Both multi-instance activity nodes and meeting activity nodes have associated depths, indicating 
the actual number of engineers involved (and also the number of identical activities in the case of multi-instance 
activity). 
 
The firing of activity nodes is controlled by the arrival of a control flow signal.  In VRPML, an initial control flow 
signal is always generated from a start node (a white circle enclosing a small black circle).  A stop node (a white 
circle enclosing another white circle) does not generate any control flow signals.  Control flow signals may also be 
generated at the completion of a node, often from special completion events called transitions (shown as small white 
circles with a capital letter, attached to an activity node) or decomposable transitions (small black circles with a 
capital letter).  Decomposable transitions enable automation scripts or sub-graphs to be specified (and executed if 
selected) as post-conditions before allowing transition to generate a control flow signal.  The sub-graph associated 
with the decomposable transition representing Done (labeled D) for the activity node called Modify Code is given in 
Fig. 2. 
 

Check Com pilation

SW Engr

R D

 
 

Fig. 2: Sub-graph for Decomposable Transition labeled D in Modify Code 
 
When Check Compilation fails, the assigned software engineer can select the transition R (for re-do).  As a result, a 
control-flow signal will be generated to re-enact its parent node (i.e. Modify Code) through a re-enabled node 
(shown as two white circles enclosing black circle).  Otherwise, if the compilation is successful, the assigned 
engineer can select the transition D (for Done).  In this case, the control-flow signal will be generated and 
propagated back to the main graph to enable the subsequent connected node. 
 
In VRPML, activity nodes can also be enacted in parallel using combinations of language elements called merger 
and replicator nodes (shown as trapezoidal boxes with arrows inside).  To improve readability, a set of VRPML 
nodes can be grouped together and replaced by a macro node (shown as dotted line ovals), with the macro expansion 
appearing on a separate graph.  For example, with reference to Fig. 1, Test Unit is a macro node.  The macro 
expansion of Test Unit is given in Fig. 3. 
 
For every activity node, VRPML provides a separate workspace, the concept borrowed from ADELE-TEMPO [1], 
APEL [3] and MERLIN [7].  Fig. 4 depicts the sample workspace for the activity node called Review Meeting in 
Fig. 1.  A workspace typically gives a work context of an activity as it hosts resources needed for enacting the 
activity: transitions, artifacts (shown as overlapping two overlapping documents with arrows for depicting access 
rights), communication tools (shown as a microphone, and an envelope), and any task descriptions (shown as a 
question mark).  Effectively, when an activity is undertaken, the workspace is mapped into a virtual room, 
transitions into buttons, and artifacts, communication tools (i.e. for synchronous and asynchronous forms of 
communications) and task description into objects which can be manipulated by software engineers to complete the 
particular task at hand.  This mapping is based on Doppke’s task-centered mapping described in [4]. 
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Fig. 3: Macro Expansion for Test Unit in Fig. 1 
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Fig. 4: Sample Workspace for Activity Node Review Meeting from Fig. 1 
 
As part of its enactment model, VRPML relies on its resource exception handling mechanism.  In VRPML, 
resources include roles assignment, artifacts and tools (including communication tools) in a workspace as well as the 
depths of multi-instance activity nodes and meeting activity nodes.  Depending on the needs of a particular software 
development project, these resources can be allocated either during graph instantiation or dynamically during graph 
enactment.  Upon the arrival of the control-flow signal, an activity node will be enabled.  Here, the VRPML 
interpreter attempts to acquire resources that the activity node needs.  If resources are successfully acquired, the 
VRPML interpreter then instantiates the activity corresponding to that activity node.  If for any reason VRPML fails 
to acquire the resources, the enactment will be blocked until such resources are made available (e.g. an engineer has 
not been assigned to the activity).  In this way, the VRPML’s resource exception handling mechanism is similar to 
blocking primitives (e.g. in, read) in Linda [5].  Once the enactment is blocked, the VRPML interpreter 
automatically produces an activity for the administrator (e.g. process engineer) to rectify the resource exception or 
completely terminate the current activity.  If that activity is terminated, the administrator may optionally terminate 
the overall enactment of the particular VRPML graph in question or manually re-enact connecting nodes by 
providing the necessary control-flow signals that they need to fire.  If the resource exception is rectified, normal 
enactment of the particular VRPML graph can be resumed resulting in the activity being assigned to the appropriate 
software engineer.  When that engineer selects that particular activity, a workspace for that activity will appear as a 
virtual room with artifacts, transitions and communication tools as objects which software engineer can manipulate 
to complete the task.  Finally, the activity is complete when the software engineer selects one of the possible 
transitions (e.g. passed, failed, done, or aborted). 
 
 
3.0 THE VRPML SUPPORT ENVIRONMENT 
 
In order to implement VRPML, a number of components for the support environment are identified.  These 
components and their interactions are shown in Fig. 5 (from next page). 
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The main components of the complete VRPML support environment and their functions are: 
 Graph Editor - allows the VRPML graphs to be specified 
 Compiler - compiles the VRPML graphs into an immediate format for enactment 
 Runtime Interpreter - interprets the compiled VRPML graph 
 Runtime Client - retrieves activities and resource assignments from the communication repository layer 
 To-do-list Manager - manages the activities assigned to a particular software engineer 
 Workspace Manager - manages activity workspace in a virtual environment, manages activity transition, 

and forward queries to the resource manager 
 Communication Repository Layer - allows communication between the runtime interpreter, runtime 

client, and workspace manager 
 Resource Manager - queries the databases for artifacts 

Each component is described accordingly in the next section. 
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Fig. 5: The VRPML Support Environment 
 



Zamli, Isa and Khamis 

62 

Graph Editor 
 
Much like a programmer’s editor in a textual programming language, the graph editor allows VRPML graphs to be 
drawn and changed.  It also allows browsing through graphs, and would support examination of every level of the 
graph (for instance, by opening further graph-editor windows onto workspaces and macros) in order to assist 
awareness issues (i.e. in terms of the readability of the VRPML graph).  Although having a dedicated graph editor 
for VRPML would be vital for a complete system, it warrants no further discussion because the technology of graph 
editors is essentially already well-established.  Consequently, the graph editor for VRPML has not been developed, 
and VRPML graphs are drawn manually. 
 
Compiler 
 
A compiler performs syntax checking and translates a VRPML graph into an intermediate format known to the 
runtime interpreter.  In this research work, the compiler for VRPML has not been developed and the compilation of 
the VRPML graphs is performed manually.  However, in order to ensure that a compiler could be written, research 
into the information needed for enactment is necessary.  In particular, an important consideration for compiling 
VRPML is the information stored in the intermediate format.  Clearly, the topology of the VRPML graph in terms of 
the ordering and sequencing of activities together with their resource assignments needs to be preserved.  One 
solution shown in Fig. 6 is to produce a roadmap of how activities are interconnected, and to generate the resource 
assignments in all the workspaces separately as resource tuples. 
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Fig. 6: Compilation of the VRPML Graph 
 
A format for the roadmap and the resource tuples has been identified as indicated below and used to facilitate the 
hand-compilation of the VRPML graph, hence permit enactment.  To illustrate this technique, Fig. 7 shows an 
example graph to be compiled. 
 

 
 

Fig. 7: Simple VRPML Graph 
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The roadmap that is generated for the above VRPML graph is as follows (where the number shown on each arc is 
the internally generated control-flow signal id which is allowed to flow through the arc): 
1, Master 2]) Master] 3]) 
2, Administrator] Activity A]) 
3, Administrator] Activity C]) 
4, Administrator] Activity A]) 
5, Administrator] Meeting B]) 
6, Administrator] Activity D]) 
7, 8, Master] 9]) 
9, Master] Terminate]) 
 
“Master” refers to the runtime interpreter itself whilst “Administrator” refers to the role in charge of rectifying 
resource exceptions (e.g. when resource assignments are not specified or not available).  The characters ,, ] and ) 
merely serve as separators which are used by the runtime interpreter to parse the enabling control-flow signal id 
(shown as a unique number for clarity), the defined activities and the target activity assignment (e.g. master or 
administrator). 
 
Resource tuples must be generated for each activity defined in the graph.  To illustrate the contents of a resource 
tuple, assume that the workspace for activity A shown in Fig. 8 is defined below: 
 
The resource tuple for activity A is generated as follows with keywords (shown in bold) used for clarity and human 
readability. 
ActivityName = Activity A, 2, 
ActivityType = General Purpose, 
Role = DsgnEngr 
AssignedEngineer   = Unspecified, 
Artifact =  Design Document, Path/Url for Modified Design, Read, Path/Url for tool, 
Artifact =  Requirement Change, Path/Url for Req. Change, Read, Path/Url for tool, 
Artifact =  Source Code, Path/Url for Source Code, Read/Write, Path/Url for tool, 
Tool = Email Program, Email, Path/Url for tool, 
Transition = D, Transition Done, Non-Decomposable, 5, 
Descriptions = Put the description of the activity here. 
 

?

RequirementChange

SourceCode

DesignDocument

Activ ity  A
DsgnEngr

D

EmailTool

 
 

Fig. 8: Example Workspace 
 
A resource tuple carries runtime information about the workspace consisting of: activity name and type; resource 
assignments including access rights for artifacts; tool assignments; and the defined transitions as well as the id of 
each control flow that will be generated if a particular transition is selected.  One important aspect to observe in 
order to generate the resource tuple is that the id of each control-flow signal to be generated must be consistent with 
that defined in the roadmap.  For example, transition Done must generate the control-signal id 5 in order to enable 
activity B. 
 
Using the roadmap and resource tuples, the enactment can easily be achieved.  In fact, by adopting the Linda tuple 
space as the communication repository layer, the enactment can be achieved in a distributed environment. 
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Runtime Interpreter 
 
Having considered the graph editor and the compiler, the next component is the runtime interpreter.  Much of the 
functionality has already been implied in the earlier discussion.  The full list of the runtime interpreter’s functions is 
as follows: 

 parse, maintain, and interpret the runtime information held in the roadmap and the resource tuples 
 check for the arrival of control-flow signals in the communication repository layer, and decide when 

activities are able to fire 
 interact with the resource manager to check for resource availability before enabling activities and return 

exceptions accordingly 
 detect the termination of enactment and shut down gracefully. 

 
Runtime Client 
 
To support enactment in a distributed environment, there is the need to implement a runtime client which works on 
behalf of the to-do-list manager in order to retrieve the activities and their resource allocations from the 
communication repository layer according to a software engineer’s assignments.  There are two types of runtime 
client which can be considered.  In the first type, the runtime client automatically retrieves activities and their 
resource allocations as soon as they are assigned.  In this case, there is a need for a dedicated channel which 
maintains a connection between the runtime client and the communication repository layer at all times.  In the 
second type, the runtime client only retrieves activities and their resource allocations when there is an explicit 
request from the software engineer.  As far as this research work is concerned, both types are equally useful.  
However, the second type has been chosen because it simplifies the implementation in the sense that there is no need 
to set up a dedicated communication channel between the runtime client and the communication repository layer. 
 
To-do-list Manager 
 
In order to manage the assigned activities, there is also a need for a to-do-list manager.  The full list of the to-do-list 
manager’s functions is as follows: 

 to create a to-do-list for a particular software engineer 
 to interact with the runtime client upon request to retrieve the assigned activities from the communication 

repository layer 
 to provide an internal to-do-list queue to store the assigned activities received from the runtime client 
 to manage the graphical user interface (GUI) to allow a software engineer to select, browse, or undertake 

activities from the to-do-list queue as well as retrieve the assigned activities from the communication 
repository layer 

 to forward an activity and its resource allocations to the workspace manager (described below) when the 
activity is selected to be undertaken 

 to provide an interface to quit the to-do-list. 
 
As an illustration, Fig. 9 shows a sample snapshot of the to-do-list GUI for a software engineer named Kamal where 
the current activity in the to-do-list queue is Review Design.  Five buttons are also shown: Retrieve the activity; 
Perform the activity; Quit the to-do-list; Set; and Send.  These buttons implement the functions described in the 
bulleted list above with the exception of the Send button.  It must be stressed that implementation efforts 
concentrates on the functionality of the rather than the aesthetics of the user interface. 
 
Workspace Manager 
 
The workspace manager generates and maintains each activity’s workspace according to its work context, that is, in 
terms of the artifacts and tools required to complete that activity.  Maintaining work context is important to give the 
software engineers a sense of awareness about the activity that they undertake. 
 
At a first glance, generating and maintaining each activity’s workspace according to its work context seem like a 
difficult task.  However, a closer look reveals that this can easily be achieved by the workspace manager parsing the 
runtime information stored in the resource tuple.  Using this runtime information, each activity’s workspace can be 
generated when it is enabled. 
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Fig. 9: The To-Do-List Graphical User Interface 
 
As far as the implementation is concerned, the chosen approach to generate the workspace for each activity in a 
virtual environment is through the use of the Virtual Reality Modelling Language (VRML), a language for 
specifying three dimensional scenes with rich sets of object primitives and events [11].  With VRML, the workspace 
can be translated to a VRML scene, and the actual translation may be facilitated by a freely available 
CyberVRML97 library package [9] integrated as part of the workspace manager itself.  In this work, efforts have 
been directed towards providing functionality and ignoring the aesthetics of the virtual environment. 
 
Fig. 10 depicts the possible translation of the workspace and representation in a virtual environment for an activity 
called Modify Design.  Utilising Doppke’s task-centered mapping [4], the activity’s workspace maps into a virtual 
room with artifacts and tools corresponding to objects in that virtual room.  Artifacts are represented as cylinders, 
and their access rights are distinguished by colours.  Task descriptions are represented as help boxes.  Transitions 
are represented as spheres. 
 

 
 

Fig. 10: Sample Workspace in a Virtual Environment 
 
Following a request from the software engineer, the workspace manager needs to interact with the resource manager 
in order to query the databases for artifacts and tools in the workspace to perform the activity.  Because VRML 
supports event handling, it would be possible for the software engineer to access the objects (e.g. artifacts, tools, and 
transitions) in a scene, although this has not been investigated further as the objective here is to demonstrate that it is 
feasible to support integration with a virtual environment at the PML enactment level. 
 
However, the fact that in the prototype the representation of transitions in the virtual environment are not active 
means that a mechanism is needed to simulate transitions and hence indicate the completion (or cancellation) of an 
activity.  Thus, a Send button and a message box are provided in the to-do-list GUI (Fig. 10) to achieve the sending 
of a control flow signal to the communication repository layer by the workspace manager. 
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Communication Repository Layer 
 
The main function of the communication repository layer is to act as an intermediate mailbox for keeping the 
assigned activities and their resource tuples as well as the control-flow signals.  There are three main components 
which interact with the communication repository layer: the runtime client to allow query of activity assignments 
and their resource tuples; the runtime interpreter to allow assignment of activities and their resources allocations to 
be made; and the workspace manager to allow the control-flow signals generated from transitions to be sent. 
 
As far as implementation is concerned, the distributed shared memory model based on the Linda tuple space seems 
to be a suitable choice for the communication repository layer.  The main reason for choosing the Linda tuple space 
stemmed from the fact that the VRPML enactment model is based on Linda, the base language from which the 
Linda tuple space is derived.  In addition, Linda provides several pre-defined primitives which facilitate pattern 
matching of tuples in the tuple space and they can be used to simplify the implementation.  While there are many 
Linda implementations available, Jada [2], the Linda implementation based on Java, has been chosen for this 
research work.  Jada permits the user to setup a client-server based Linda tuple space that uses Java Remote Method 
Invocation.  It is this tuple space that facilitates enactment in a distributed environment. 
 
Resource Manager 
 
The last component that needs to be considered for supporting enactment is the resource manager.  The main 
function of the resource manager is to handle the queries received from the runtime interpreter and the workspace 
manager.  As discussed earlier, the queries received from the interpreter mainly involve checking for resource 
allocation and availability before allowing that activity to be assigned.  The queries received from the workspace 
manager mainly involve requests to manipulate existing artifacts and tools or to create new artifacts.  In addition to 
handling queries, the resource manager also enforces the required access rights involving artifacts, and supports 
changes and updates of the shared artifacts by multiple software engineers. 
 
In terms of implementation, the resource manager can be straightforwardly realised by a database server with the 
capability of accessing more than one database at a time in a distributed environment.  Because the technology to 
access the database server is well-established, it warrants no further discussion. 
 
 
4.0 DISCUSSION 
 
The main components of the VRPML support environment have been identified in this paper.  As far as 
implementation is concerned, a working prototype has been developed [17}.  Fig. 11 summarised the overall class 
diagrams for the VRPML support environments based on the Unified Modelling Language (UML) notation. 

 
Here, the VRPML interpreter class plays the role of interacting with all the roadmap generated by the compilation 
process.  In order to do so, VRPML interpreter class needs to interact with the roadmap manager class.  The 
roadmap manager class sequences the execution of the VRPML model based on the roadmap description.  The 
exchange of information on the roadmap execution (i.e. tuples within a distributed environment) is done through the 
tuple space operator class which is responsible for managing the tuple operations on the communication layer.  As 
their name suggest, the engineer GUI class and the administrator GUI class provide interface to the users.  The 
construction of a virtual environment space for both the engineer’s GUI and the administrator’s GUI are done 
dynamically by the workspace manager class based on the workspace description of the activity assigned to them.  
Finally, the resource manager class is responsible for accessing the databases for a particular task assigned to the 
engineers by the workspace manager. 
 
As part of the evaluation process on the VRPML support environment discussed earlier (i.e. in terms of whether or 
not the environment is suitable for implementing the novel features of VRPML), an experiment which demonstrated 
enactment in a distributed environment by utilising the ISPW-6 problem has been successfully conducted.  The 
complete discussion on the experiment is, however, beyond the scope of this paper and has been presented 
elsewhere [16, 17]. 
 
Given that the ISPW-6 problem has been formulated by experts in the field of software engineering, it should 
contain different types of process issues seen in the real world.  Thus, the fact that the support environment is able to 
assist and facilitate enactment is a positive indication of its applicability. 
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Fig. 11: The UML Class Diagram for the VRPML Support Environment 
 
While the conversion from the VRPML graph to an intermediate format known to the interpreter is done manually 
in the current prototype, the translation process is done as a compiler would have.  No expert knowledge, that is 
making use of information not available to the compiler, is applied during the translation process.  Therefore, a 
compiler support for VRPML is implementable.  In fact, as far as an automated compiler is concerned, it is currently 
under development along with the complete support environments. 
 
 
5.0 FUTURE WORK 
 
As the current implementation of VRPML is still in a prototype form, an obvious starting point for future work 
would be to complete the implementation.  For example, implementing an automated compiler and a complete 
workspace manager would be a useful endeavour. 
 
A number of other research avenues could also be investigated.  The fact that VRPML and its support environments 
supports integration with a virtual environment opens up many possibilities for using visualisation to provide 
multiple views of the same process model from different perspectives, and hence potentially improving process 
understanding.  Instead of using a straightforward mapping of workspaces, that is, a workspace, artifacts, tools and 
task descriptions map one-to-one to a virtual room and objects, other meaningful visualisations could also be 
explored by defining or using other types of mapping.  For example, artifact-centred mapping as defined by [4] 
could be used where artifacts are represented as virtual rooms and their dependency relationships are expressed as 
part of the arrangement of the rooms.  If sub-products of the artifacts are defined, then they are represented as 
separate rooms connected to the parent product room either by exits or by containment, whilst tools and task 
description can be defined as objects inside the room.  Clearly, by manipulating the types of mapping used, multiple 
views of the same process can be achieved.  In turn, such views may enhance the support for awareness. 
 
Another possible area of research is to find other ways of addressing awareness in VRPML, for example, supporting 
user awareness by representing software engineers as avatars in the workspaces during enactment or using live 
video.  Using avatars or live video can perhaps improve the sense of realism and further encourage informal 
communication as engineers can “see” each other.  This is especially useful if the workspaces involve more than one 
person, and the software engineering teams are physically distributed. 
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Although useful by giving focus on a particular activity, it is believed that workspaces defined by VRPML (Fig. 11) 
give insufficient working context particularly about the overall activities, that is, in terms of how the pieces fit 
together into the whole picture.  In the current VRPML implementation, questions such as what the previous task 
was, what the next task is, and what needs to be done to move along cannot be easily answered.  Therefore, it would 
be useful to find ways for VRPML to also give context of the overall activity, for example, by giving the software 
engineers access to the enacted VRPML graph in the forms of animated flow of control during enactment. 
 
Finally, because a software development project often involves hard deadlines, another possibility for further work 
is to investigate the inclusion of “timing” criteria as part of the VRML notation as well its runtime environment.  
Perhaps, the timing criteria could be exploited as part of the workspace definitions, raising an “alarm” when an 
activity is due to be completed.  As a result, the software engineers can be reminded about the deadlines of the 
activities that they are undertaking. 
 
 
6.0 CONCLUSION 
 
Because of the potential benefits in terms of being able to provide automation, guidance and enforcement of 
software engineering practices and policies, through modelling and enactment (i.e. execution), a PML and its PSEEs 
could form an important feature of future software engineering environments.  Moving toward a goal of a 
practicable PML and PSEE, this paper has highlighted the main components of the VRPML support environments.  
The fact that the VRPML support environments complement the VRPML novel features (e.g. in terms of supporting 
distributed enactment within a virtual environment) gives a positive indication of its applicability.  As such, we 
believe that our work offers valuable insights into the design of next-generation PMLs and PSEEs. 
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