
Malaysian Journal of Computer Science, Vol. 18 No. 1, June 2005, pp. 40-49

40

AN EXTERNAL SORTING ALGORITHM USING IN-PLACE MERGING AND WITH NO ADDITIONAL
DISK SPACE

Md. Rafiqul Islam and S. M. Raquib Uddin
Computer Science and Engineering Discipline
Khulna University, Khulna-9208, Bangladesh

email: cseku@khulna.bangla.net
 raquibuddin26@yahoo.com

ABSTRACT

This paper presents an external sorting algorithm using linear-time in-place merging and without any additional
disk space. The algorithm uses quick sort to produce runs in the first phase. In the second phase it uses special
verification technique and uses in-place merging technique to reduce the average time complexity and disk I/Os
especially the output (write) operations. The I/O and time complexities are analysed and compared with another
algorithm [5] which also uses no additional disk space.

Keywords: External sorting; Algorithms; In-place merging

1.0 INTRODUCTION

The problem of how to sort data efficiently has been widely discussed. Most of the time, sorting is accomplished by
external sorting, in which the data file is too large to fit into the main memory and must reside in the secondary
memory. Disk I/Os are more appropriate measures in the performance of external sorting and other external
problems, because the I/O speed is much slower than the CPU speed. The most commonly used external sorting is
still the merge sort as described by Knuth [1], Sing and Naps [2] and others. A two-way merge sort requires extra
disk space. Fang-Cheng Leu, Yin-Te Tsai and Chuan Yi Tang [3] proposed an algorithm to reduce disk I/Os but it
did not reduce the time complexity of sorting. Dufrene and Lin [4], M. R. Islam et al. [5] proposed algorithms with
no additional disk space. They reduced time complexity but disk I/Os occur frequently in their algorithms. By
using the linear-time in-place merging proposed by Huang, B. C., and Langston, M. A. [6], we present an efficient
external sorting algorithm with special cases and without any additional disk space.

2.0 EXTERNAL SORTING ALGORITHMS WITH NO ADDITIONAL DISK SPACE

 Begin of file End of file

Fig. 1: External file after splitting into blocks

In the algorithm proposed by Dufrene and Lin [4], the external file is divided into equal sized blocks, which are
approximately one half of the available memory (RAM) of the computer. Now if M is the size of memory, then the
block size, B = 2/M . Again if N is the size of the external file, then the number of blocks, B/NS = (Fig. 1). At
the first iteration Block_1 and Block_ S are read into the lower half and upper half of the memory array,
respectively and after sorting, the records of the upper half of the memory array are returned to the Block_ S area of
the external file. Now Block_ 1−S comes into the upper half and the process continues. The loop terminates when
Block_ 2 has been processed. Each iteration reduces the file size by one block. The next iteration starts again with
Block_ 2 . The last two blocks to be processed are Block_ 1−S and Block_ S and upon completion, the entire file
is sorted. This algorithm uses quicksort to produce runs.

Block_1 Block_2 Block_S-1 Block_S

File size (N)

An External Sorting Algorithm Using In_Place Merging and with No Additional Disk Space

41

Fig. 2: Sorting by special merging technique

The algorithm proposed by M. R. Islam et al. [5] works in two phases (Fig. 2). The first phase is the same as the
algorithm proposed by Dufrene and Lin [4]. The algorithm then uses special merging techniques in the second
phase. The merging process used here is accomplished in two steps. In the first step, merging is applied to sort the
records (as both halves of the memory array contain sorted records) of the lower and upper half of memory array
and the sorted records are written simultaneously in the position of Block_ 1−S in the external file until the block is
full. In the second step, the remaining records in the lower and upper half of memory array are again merged and
the sorted records are written from the beginning of the upper half of the memory array. After this, Block_ 2−S is
read into the lower half of the memory array and iteratively when Block_ 2 has been processed, the upper half of the
memory array contains the highest sorted records of the entire file and they are written in the position of Block_ S
in the external file. The next iteration starts with Block_ 2−S and Block_ 1−S which are read into the lower and
upper half of the memory array respectively and the process continues. The last blocks to be processed are
Block_ 2 and Block_ 3 and upon the completion, the entire file is sorted. In the next section we present an
overview of the main ideas behind this ()nΟ time merging technique mainly deduced by Huang, B. C., and
Langston, M. A. [6], which is used in the proposed algorithm.

2.1 Brief Description of the In-place Merging

Let L denote a list of n records containing two sub lists to be merged, each in non-decreasing order. To generalise
the algorithm, let us suppose that n is any number regardless of whether it is even or odd. Fig. 3a illustrates such a
list with .18=n Only record keys are listed, denoted by capital letters. Subscripts are added to keep track of
duplicate keys as the algorithm progresses. Let us also assume that n largest-keyed records from the elements of

L have permuted at the front of the list (the relative order is immaterial i.e. in any order of the n largest-keyed
records from the elements of L), followed by the remainders of the two sub lists, each of which contains the
remaining records in non-decreasing order. To take n largest-keyed records from the elements of L , we choose

the ceiling value of the result of this n quantity for non perfect square. Fig. 3b shows an example list in this

format. Now L is viewed as a series of blocks, each of which is not more than n size where the leading block is
used as the internal buffer and the remaining blocks will have to be sorted so that their tails (rightmost elements)
form a non-decreasing key sequence. Records within a block retain their original relative order (Fig. 3c). The next
section provides pseudo-code that will be helpful for implementing this merging technique to sort any number of
records residing in the main memory. In order to locate two series of elements to be merged, the first series begins

End of file

Lower half Upper half

Block_1 Block_2 . . . Block_S-1 Block_S

Merge of
50%

Begin of file

Merge the records and write from the beginning of upper half

File size (N)

Memory

Lower half Upper half

Records

Islam and Uddin

42

with the head (leftmost element) of block 2 and terminates with the tail of block i , ,2≥i where block i is the first
block so that tail () >i head ().1+i The second series consists solely of the elements of block 1+i , where 2i = (Fig.
4a). Using the buffer to merge these two series repeatedly, compare the leftmost unmerged element in the first
series to the leftmost unmerged element in the second, swapping the smaller with the leftmost buffer element. In
general, the buffer may be broken into two pieces as we merge (Fig. 4b). We halt this process when the tail of block
i has been moved to its final position. At this point, the buffer must be in one piece, although not on a block
boundary. Block 1+i must contain one or more unmerged elements (Fig. 4c). To locate the next two series of
elements to be merged, the first begins with the leftmost unmerged element of block 1+i and terminates as before
for some .ij ≥ The second consists solely of the elements of block 1j + , where 4j = (Fig. 5a). We resume the
merge until the tail of block j has been moved (Fig. 5b). We continue this process of locating series of elements
and merging them until we reach a point where only one such series exists, leaving the buffer in the last block (Fig.
5c). A sort of the buffer completes the merge of L (Fig. 5d).

444 3444 214444 34444 21
2Sublist

113121112
1Sublist

211111121 VRQLKKIHEQQMJGEDCC {

44 344 21

4434421

444 3444 21

3214342143421

2sublist ofremainder

121112

1sublist ofremainder

1111121
Buffer

12311 LKKIHEMJGEDCCQQQRV

a) Example list ,L with 18=n b) Internal buffer is extracted

{ 32144 344 2144344214434421
block5

11
block4

1
3block

21112
 2block

11121
buffer

12311 MJLKKIHEGEDCCQQQRV

c) Blocks are sorted

Fig. 3: Initial rearrangement of blocks

{ 32144 344 2144344214434421
block5

11
block4

1
2 Series

21112
1 Series

11121
buffer

12311 MJLKKIHEGEDCCQQQRV

{ 32144 344 21443442144 344 21
block5

11
block4

12111112311
merged

21121 MJLKKIHQGQQRVEEDCC

a) Locating the first two series of elements, 2=i b) Merging is partially completed

{ 3214434421
block5

11
block4

12111
buffer

11231121121 MJLKKIHQVQQRGEEDCC

c) First two series are merged

Fig. 4: Merging the first two series of elements

32144344214434421
series2

11
series1

12111
buffer

11231121121 MJLKKIHQVQQRGEEDCC 1
buffer

21113121111121121 MQRQVQLKKJIHGEEDCC
4434421

a) Locating the next two series of elements, 4=j b) Series is merged

4434421
buffer

211131121111121121 QRQVQMLKKJIHGEEDCC 112131121111121121 VRQQQMLKKJIHGEEDCC

c) Leaving buffer in the last block d) Buffer is sorted, completing merge

Fig. 5: Completing the merge of L

An External Sorting Algorithm Using In_Place Merging and with No Additional Disk Space

43

Algorithm: In-place merging

/*mem_arr[] is a global array containing two sorted subsets in its lower and upper halves that is the memory array.
Declare q as the last index of lower half, r as the last index of upper half and a as the ceiling value of square root
of the total number of records in the memory array*/

1. Set i=0 //Extracting the buffer elements
2. While (i<a)
 {

If mem_arr[q] >= mem_arr[r] then do
{

move each element from array index i by one index position until element of index q is rebuilt
and store mem_arr[i] the previous value of mem_arr[q],

}
else
{

move each element from array index i by one index position until element of index r is rebuilt,
store mem_arr[i] the previous value of mem_arr[q] and increment q by one;

 }
Increment i by one

 } //Closing brace of loop
3. Set p=1, start=2*a-1 and start1=q+a //Rearranging the blocks
4. If (start>q) then set start=q
5. If (start1>r) then set start1=r and p=2
6. While(p)
 {

If (mem_arr[start] > mem_arr[start1]) then interchange these two blocks and upgrade q, start
 and start1as necessary;

Increment start1 by a and if (start1>r && p==2) then set p=0, else if (start1>r) then set start1=r and p=2;
 } //Closing brace of while loop
7. Set p=1, start+=a and start1=q+a
8. If (start1 > r) then set start1=r
9. If (start>r || start >= start1 || q==r) then jump to step 10, else if (start>q) then set start=q and begin from step 6
10. Set left=0, i=a and j=a //Merging
11. If (mem_arr[i+1] < mem_arr[i]) then set set k=i+1 and do step 12 and 13
12. Loop
 {

If(mem_arr[j] <= mem_arr[k])
{

 Swap mem_arr[left] with mem_arr[j] and increment left by one;
If(j< left) then set left=j;
Increment j by one;

 }
else
{

Swap mem_arr[left] with mem_arr[k] and increment left by one;
If(k < left) then set left=k;
Increment k by one and if (k > r) then set k=r;

}
 If j is greater than i then exit from the loop;
 } //Closing brace of loop
13. Set i=k-1and j=k
14. Increment i by one and repeat from step 11 until i is not equal to r
15. Set k=left+a //Moving buffer elements as the rightmost block’s elements
16. If k is less than or equal to r then move each element from array index left by one index position until element of
 index k is rebuilt and store mem_arr[left] the previous value of mem_arr[k]
17. Increment k by one

Islam and Uddin

44

18. Go to step 16 if k is less than or equal to r
19. Quicksort the buffer elements //Sorting the buffer elements
// Buffer elements are sorted through which in-place merging technique is completed

2.2 Algorithm Using In-place Merging

The algorithm works in two phases. In the first phase, the algorithm works as the algorithm proposed by Dufrene
and Lin [4] that is, Block_1 and Block_ S are read into lower half and upper half of the memory array, respectively,
and they are sorted using Quick sort. This phase terminates when Block_ 2 is read into the upper half of the
memory array and sorted with the remaining records in the lower half of the memory array. Thus we get sorted
runs. After this phase, the lower half of the memory array contains the lowest sorted records of the entire file.
Then, the algorithm switches to its second phase, whereby the sorting process continues considering the following
two cases:

Case 1: Here the required blocks are read and if the last record of the lower half of the memory array is smaller

than the first record of the upper half of the memory array, then it is not required to sort the records of the
memory array and then the next block will be read for further approach.

Case 2: This is the general case. The in-place merging technique is used here.

In the second phase, Block_ 1−S and Block_ S are read into the lower and upper halves of the memory array
respectively. For Case 1 the blocks are not required to write back in the external file. In Case 2, after applying the
in-place merging, the upper half of the memory array contains the highest ordered records of Block_ S and
Block_ 1−S and the lower half is sent back to its corresponding position in the external file (Fig. 6). After this,
Block_ 2−S is read into the lower half of the memory array and checked for the conditions specified in Case 1 or
Case 2. In this way, when Block_ 2 has been processed, the upper half of the memory array contains the highest
sorted records of the entire file and they are written in the position of Block_ S in the external file for Case 2. The
next iteration starts with Block_ 2−S and Block_ 1−S to be read into the lower and upper halves of the memory
array respectively. At the end of this iteration, the upper half of the memory array contains the highest sorted
records among the blocks i.e. Block_ 2 , Block_ 3 , . . . , Block_ 1−S and they are written in the position of
Block_ 1−S in the external file for Case 2. After each pass, the size of the external file is decreased by one block.
The last two blocks to be processed are Block_ 2 and Block_ 3 , which upon completion, the entire file is sorted.

Fig. 6: Sorting by in-place merging

Block_1 Block_2 Block_S-1 Block_S

File size (N)
Memory

After using in-place merging
the lower half is sent back

to the corresponding position in the external file

Lower half Upper half

Begin of file End of file

An External Sorting Algorithm Using In_Place Merging and with No Additional Disk Space

45

Algorithm: An external sorting algorithm using in-place merging and with no additional disk space

1. Declare the blocks in external file to be half of memory array. Let the blocks be Block_1, Block_2, …,

Block_ 1−S , Block_ S
2. If there is only one block in the external file then quicksort the entire memory array
3. Read Block_1 into the lower half of memory array. Set ST = //Begins first phase
4. Read Block_ T into upper half of memory array
5. Sort the entire memory array using quicksort
6. Write upper half of memory array to Block_ T area of external file
7. Decrement Block_ T by one block
8. Repeat from step 4 if Block_ T is not equal to Block_1
9. Write lower half of memory array to Block_1 area of external file
10. Set SP = //Begins second phase
11. Read Block_ P into the upper half of memory array and set 1−= PQ
12. Read Block_ Q into the lower half of memory array
13. If last element of the lower half is greater than first element of the upper half then sort (merge) the memory

array using in-place merging and write lower half of memory array to Block_ Q area of external file
14. Decrement Block_ Q by one block
15. Repeat from step 12 if Block_ Q ≠ Block_1
16. Write upper half of memory array to Block_ P area of the external file. Decrement Block_ P by one block
17. Repeat from step 11 if Block_ P ≠ Block_2
//End of sorting procedure

3.0 DISK I/OS AND TIME COMPLEXITIES

3.1 Disk I/Os

If M is the size of the available memory i.e., the number of records that can fit into the main memory, then the
block size, .2/MB = Again if N is the size of the external file then the number of blocks is ./ BNS = In the
first phase, BN / blocks will have to be processed and it takes BN / read (input) operations. After this phase,
Block_1 of the external file contains the lowest sorted records of the entire file. 1/ −BN blocks will have to be
processed in the second phase. After each pass of the second phase the file size is reduced by one block. The last
blocks to be processed are Block_2 and Block_3 and upon completion, the entire file is sorted. Thus in the second
phase, the number of input operations is () () ()+−+−+− 3/2/1/ BNBNBN2+

Total number of disk input is:

() () ()+−+−+−+ 3/2/1// BNBNBNBN … 2+ (1)
() () ()[] 112...3/2/1// −+++−+−+−+= BNBNBNBN

()() 11//2
1 −+= BNBN

1
222

2
−+=

B
N

B

N

The number of output (write) operations is as follows. In the first phase, it takes BN / output (write) operations.
After this phase, each block of the external file is individually sorted. In the second phase, 1/ −BN blocks will
have to be processed. Each pass of this phase reduces the file size by one block. Now we will consider the two
cases specified in the algorithm. For Case 1, if the last record of the lower half of the memory array is smaller than
the first record of the upper half of the memory array, then the blocks are not required to write back to the external
file. Otherwise the control switches to Case 2. Now let the probability to fall in Case 1 be P and the probability to
fall in Case 2 be .Q Here 1=+QP and .10 ≤≤ P Therefore QP −=1 where .10 ≤≤Q So the number of
output operations in the second phase is:

() () ()[]2...3/2/1/0* ++−+−+−+ BNBNBNQP = () () ()[].2...3/2/1/ +−+−+− BNBNBNQ Here, in the
worst case (if always case 2 is encountered) .1=Q Then the number of output operations in the second phase is

Islam and Uddin

46

() () () .2...3/2/1/. +−+−+− BNBNBN Now, for the worst case the total number of output operations of the
algorithm is:

+BN / () () ()[]2...3/2/1/ +−+−+− BNBNBN
() () ()[] 1123/2/1// −+++−+−+−+= LBNBNBNBN
() 11//2

1 −+= BNBN














−+= 22

2
2

1
B
N

B

N .

Here the average case .2/1=Q Then the number of output operations in the second phase is:

() () ()[]2...3/2/1/2
1 +−+−+− BNBNBN . Now, the average case for the total number of output operations of

the algorithm is:
() () ()[]2...3/2/1/2

1/ +−+−+−+ BNBNBNBN

() (){ }[]1/122/1//2
1 −++++−+−+= BNBNBNBN L

() 2

1
214 −++= B

N
B

N
B

N

2
1

4
3

2

2

4
1

−+=
B
N

B

N

3.2 Time Complexity

The time complexity of the internal quick sort is ()nen logΟ in average case, as given by Knuth [1]. Here, n is the

number of records to be sorted. So, the time complexity for the first phase of our algorithm is ()()nenBN log1/ − .
The second phase consists of two mutually exclusive cases and let the probability to fall in Case 1 be P and the
probability to fall in Case 2 be Q . Here, 1=+QP and 10 ≤≤ P . Therefore, QP −= 1 where 10 ≤≤ Q . Now
for Case 1, it is not required to sort the records of the memory array. For Case 2, if there are n records in the
memory array then the time complexity of merging of the records in both halves is ()nΟ as given by Huang and
Langston [6]. So, the time complexity in the second phase is:

0]1...)3/()2/[(]1...)3/()2/[(∗++−+−+++−+− BNBNPnBNBNQ . Here, in the worst case (if always Case
2 is encountered) 1=Q . Then, the time complexity in the second phase is: nBNBN]1...)3/()2/[(++−+− . Now
the total time complexity of the algorithm in the worst case is:

nBNBNnenBN]1....)3/()2/[()log)(1/(++−+−+− ∑
−

=
+−=

2/

1
.)1/(log

BN

i
inBNnen Here in average case

.2/1=Q Then, the time complexity in the second phase is: nBNBN]1...)3/()2/[(2
1 ++−+− . Now the total

time complexity of the algorithm in an average case is:
nBNBNnenBN]1....)3/()2/[(2/1)log)(1/(++−+−+−

∑
=

+−=
− 2/

1
2/)1/(log

BN

i
inBNnen .

4.0 COMPARISON OF DISK I/OS AND TIME COMPLEXITIES

4.1 Comparison of Disk I/Os

The algorithm presented by M. R. Islam et al. [5] also works in two phases. In the first phase, this algorithm takes

BN / I/Os [BN / reads and BN / writes]. In the second phase, 1/ −BN blocks will have to be processed. In this
phase, at each pass whenever Block_2 is encountered in the lower half of the memory array; then for B records of
the upper half of the memory array (records after merged and copied from the beginning of the upper half of the

An External Sorting Algorithm Using In_Place Merging and with No Additional Disk Space

47

memory array) there will be 1 write for B records of this block of the upper half. After each pass, the file size is
reduced by 1 block. In the first pass of the second phase ()BN − records will have to be processed and in the
second pass of the second phase ()BN 2− records will have to be processed and so on. Thus in the first pass of the
second phase, there will be 1/ −BN reads and () 1+−− BBN writes and in the second pass, there will be

2/ −BN reads and () 12 +−− BBN writes and the process continues [Because at each pass of the second phase
whenever Block_2 is encountered in the lower half then instead of B writes for B records of the upper half there will
be 1 write]. The total number of disk input of M. R. Islam et al.’s algorithm is:

() () () 2...3/2/1// ++−+−+−+ BNBNBNBN ; which is similar to equation (1).

So the input (read) operations of M. R. Islam et al.’s algorithm is the same when compared to the proposed
algorithm.

Table 1: Comparison of output (write) operations for both cases (worst and average) of the proposed algorithm with

M. R. Islam et al.’s algorithm

External
File Size,
N (MB)

Block Size,
B (MB)

Ratio of
Output

Operations
(in worst

case)

Ratio of
Output

Operations (in
average case)

Reduction of
Output

Operations (in
worst case)

(%)

Reduction of
Output

Operations (in
average case)

(%)
200 32 0.0589 0.0379 94.11 96.21
320 32 0.0462 0.0273 95.38 97.27
512 32 0.0398 0.0223 96.02 97.77
1000 32 0.0354 0.0188 96.46 98.12

The total number of disk output of M. R. Islam et al.’s algorithm is:
+BN / () () ()[]12...1312 +−+++−++− BBBNBN

() ()[] () 1*2/...32/ −+++−+−+= BNBBNBNBN
() ()[] 2/...32/ −+++−+−+= BNBBNBNBN

() ()[] 2/21...3/2/ −+++−+−= BNBNBNB

()() 2/21/2/2
1 −+−−= BNBNBNB

2
2

32
2

2
−+−+= BN

B
N

B
N .

Now, in the worst case, the number of output operations of the algorithm with in-place merging is:






 −+ 2/2/2

2
1 BNBN .

We assume, 




 −+ 2/2/2

2
1 BNBN 22/3/22/2 −+−+= BNBNBN

()12/2/222/22/32/ −++=




++⇒ BBNBNBNNBN .

Now from the above equation we assume that i) 22/1/22/ =⇒= BNBN where obviously 22/1 < . Thus,

BNBN /22/ < ; ii) BNBNBNN /3/32/22/3 ≤⇒=⇒= where   2/ >BN . Thus, BNN 2/2/3 2≤ for

  2/ >BN ; iii) the remaining quantity cannot change the less than relationship of the whole expression. Thus,






 −+ 2/2/2

2
1 BNBN 22/3/22/2 −+−+< BNBNBN for   2/ >BN . So, in the worst case; the number of

output operations of the proposed algorithm is less than M. R. Islam et al.’s algorithm and in average case; the

Islam and Uddin

48

number of output operations of the proposed algorithm is () 2
1/4

32/2
4

1 −+




 BNBN which is also less than

that of M. R. Islam et al.’s algorithm. For various external file sizes, the reduction of output (write) operations of
the algorithm using in-place merging from the algorithm presented by M. R. Islam et al. is calculated for both cases
(worst and average) and given in Table 1. Here ratio of output operations in the worst

case
22/3/22/2

2/2/2
2

1

−+−+











 −+

=
BNBNBN

BNBN
 and in average case

()
.

22/3/22/2
2

1/4
32/2

4
1

−+−+






−+






=
BNBNBN

BNBN

4.2 Comparison of Time Complexity

The time complexity of the algorithm presented by M. R. Islam et al. is: () i
i

nBNnen
BN
∑
=

+−
− 2/

1
1/log and the time

complexity of the algorithm with in-place merging in the worst case is: () .
2/

1
1/log i

BN

i
nBNnen ∑

−

=
+− However,

in an average case, the time complexity of the algorithm with in-place merging is:

∑
−

=
+−

2/

1
2/)1/(log

BN

i
inBNnen .

Table 2: Comparison of time complexity (in average case) of the proposed algorithm with M. R. Islam et al.’s

algorithm

External
File Size,
N (MB)

RAM Size,
M (MB)

Record
Size

(Byte)

Number of
Records in
RAM)(n

Ratio of Time
Complexity
(12 TT) (in

average case)

Reduction of
Time Complexity
(in average case)

(%)

100 64 4 16777216 0.9836 1.64
200 64 4 16777216 0.9434 5.66
300 64 4 16777216 0.9093 9.07
500 64 4 16777216 0.8547 14.53

Now we assume that, =∑
−

=
+−

2/

1
2/)1/(log

BN

i
inBNnen () i

BN

i
nBNnen ∑

−

=
+−

2/

1
1/log ∑∑

−

=

−

=

=⇒
2/

1

2/

1

2/
BN

i

BN

i

inin

nn =⇒ 2/ . However, nn ≠2/ (for n is a positive integer) and .2/ nn < So in an average case, the algorithm
with in-place merging is better than the algorithm proposed by M. R. Islam et al. and in the worst case, the time
complexities are the same for both of the algorithms. Table 2 shows the reduction of time complexity of the
proposed algorithm as compared to the algorithm presented by M. R. Islam et al.

Here =1T time complexity of M. R. Islam et al.’s algorithm

()

() () ()[]
() ()()

() ()[]
() ()[]
() ()()[]nMMNnnBN

BBnnnnBN

BNnnnBN

BNBNnBNnn

nBNBNBNnn

inBNnn

e

e

e

e

e

BN

i
e

/log1/
2/2log1/

2/2log1/

1/2/21/log

1...3/2/1/log

1/log
2/

1

−+−=
−+−=

−+−=

−−+−=

++−+−+−=

+−= ∑
−

=

An External Sorting Algorithm Using In_Place Merging and with No Additional Disk Space

49

Here =2T time complexity of the proposed algorithm in average case

()

() ()()[]2/log1/

2/1/log
2/

1

nMMNnnBN

inBNnn

e

BN

i
e

−+−=

+−= ∑
−

=

Thus, ratio of time complexity (in average case),
()()
()()MMNnnen

MMNnnen

T

T

/log

/2log

1

2
−+

−+
=

5.0 CONCLUSION

We have presented an external sorting algorithm with no additional disk space using some special conditions and
applying an in-place merging technique. Only the Quick sort and in-place merging are used in this algorithm. The
algorithm uses probability concepts to reduce disk I/Os, especially the output (write) operations as well as the time
complexity in average case and creates no extra file or any priority queue.

REFERENCES

[1] D. E. Knuth, “Sorting and Searching: The Art of Computer Programming”, Addison-Wesley, Reading, MA,

1973, Vol. 3.

[2] B. Singh and T. L. Naps, “Introduction to Data Structure”. West Publishing Co, St. Paul, MN, 1985.

[3] Fang-Cheng Leu, Yin-Te Tsai, Chuan Yi Tang, “An Efficient External Sorting Algorithm”, revised in May

2000.

[4] W. R. Dufrene, F. C. Lin, “An Efficient Sorting Algorithm with No Additional Space”. Comput. J. 35 (3)

(1992).

[5] R. Islam, N. Adnan, N. Islam, S. Hossen, “A New External Sorting Algorithm with No Additional Disk

Space”. Information Processing Letters, 86 (2003) 229-233.

[6] B. C. Huang, and M. A. Langston, “Practical In-Place Merging”. Communications of the ACM, March 1988,

Vol. 31, No. 3.

BIOGRAPHY

Md. Rafiqul Islam obtained his Master of Science (M. S.) in Engineering (Computers) from the Azerbaijan
Polytechnic Institute in 1987 and Ph. D. in Computer Science from Universiti Teknologi Malaysia (UTM) in 1999.
His research areas include Design and Analysis of Algorithms, Information Security. He has a number of papers
related to these areas published in national and international journals as well as conference proceedings. His
research interest involves external sorting and bioinformatics.

S. M. Raquib Uddin has completed his final examination for graduation in Computer Science and Engineering
from Khulna University. His research areas include algorithms with respect to external sorting.

