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ABSTRACT 
 
Process Modeling Languages (PMLs) are languages used to express software process models.  Process Centered 
Software Engineering Environments (PSEEs) are the environments used to define, modify, analyse, and enact a 
process model.  While both PMLs and PSEEs are equally important, it is the characteristics of PMLs that are the 
focus of this article.  Over the past 15 years, there have been many PMLs (and PSEEs) developed.  Despite many 
potential advances, the use of PMLs in industry has not been widespread.  As PMLs could form a vital feature for 
future software engineering environments, it is useful to reflect on the current achievements and shortcomings, and 
to identify potential areas of omission.  It is also useful to explore issues emerging from related research areas, the 
adoption of which could improve the applicability and acceptance of PMLs.  Given such potential benefits, this 
paper presents a critical analysis of existing PMLs identifying each language’s strong points and weaknesses, 
thereby forming guidelines for the future design of PMLs. 
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1.0 INTRODUCTION 
 
A PML is analogous to a programming language in the sense of providing a model solution of a particular problem. 
However, there is a subtle difference between a PML and a programming language which lies in terms of their 
computational models.  Unlike the familiar computational model in computer science where sequences of operations 
specified by computer programs are automatically executed by the central processing unit, the computational model 
demanded by PMLs is somewhat different.  This is because PMLs require some operations to be executed by (error-
prone) software engineers using some defined software tools, while other operations are suitable for automatic 
execution (e.g. automation of routine operations).  As such, developing an ideal PML to support such a 
computational model poses a challenge to researchers in computer science.  In response to this challenge, many 
PMLs have been developed and described in the literature over the last fifteen years. 
 
Despite many potential advances, the use of PMLs in industry has not been widespread [19].  As PMLs could form a 
vital feature for future software engineering environments, it is useful to reflect on the current achievements and 
shortcomings, and to identify potential areas of omission.  It is also useful to explore issues emerging from related 
research areas, the adoption of which could improve the applicability and acceptance of PMLs.  Given such 
potential benefits, this paper presents a critical analysis of existing PMLs identifying each language’s strong points 
and weaknesses, thereby forming guidelines for the future design of PMLs. 
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2.0 OVERVIEW OF PML ISSUES 
 
A number of researchers have classified these different language paradigms in the context of a PML based on their 
experiences with programming languages.  Liu and Conradi [21] identify five categories of PML language 
paradigms: 

 Active Database PMLs – PMLs which relies on database triggers employing Event-Condition-Action rules as 
the basis for the language. 

 Rule-based PMLs – PMLs which exploits rule-based planning techniques or blackboard architectures in the 
language. 

 Graph/Net PMLs – PMLs which utilises graphs or Petri Nets. 
 Process Programming PMLs – PMLs which define a process model as a computer program based on a 

general purpose programming language. 
 Hybrid PMLs – PMLs which fits into more than one of the above categories. 

 
Although with different headings, Lonchamp [22] proposes a similar classification of PMLs, consisting of the 
following categories: 

 Graphical PMLs – PMLs which provide a graphical syntax. 
 Net-oriented PMLs – PMLs which utilise nets such as Petri nets. 
 Procedural PMLs – PMLs which adopt a procedural programming language. 
 Object-oriented PMLs – PMLs which utilise some features from object-oriented languages (e.g. objects and 

inheritance). 
 Rule-based PMLs – PMLs which exploit rules-based techniques mainly based on Prolog. 
 Multi-paradigm PMLs – PMLs which utilise more than one of the above categories. 

The slight difference between the classification from Liu and Conradi with that from Lonchamp is that the latter 
includes object-orientation. 
 
Building from the classifications from Liu and Conradi, and Lonchamp, Huff [18] identifies four different categories 
of PML language paradigms: 

 Non-executable PMLs – PMLs which provide defined syntax but without executable semantics.  
 State-based PMLs – PMLs which uses hierarchical state machines, Petri nets, or formal grammars as the basis 

of the language. 
 Rule-based PMLs – PMLs which rely on a rule-based approach (i.e. based on Prolog) or database triggers 

(i.e. based on Event-Condition-Action (ECA) rules). 
 Imperative PMLs – PMLs which rely on a model of computation whereby software processes are modelled as 

step by step sequences of commands. 
 
The notable difference between the work of Liu and Conradi, Lonchamp, and Huff is that the latter includes the non-
executable category of PMLs.  Essentially, the outcome of Huff’s non-executable categorisation is that graphical 
high-level notations such as Integration Definition and Function Modeling (IDEF0) and Entry condition, Tasks, 
Verification and Exit Criteria (ETVX) can also be considered as PMLs because of their syntactic abilities to express 
a software process [18].  It should also be noted that Huff’s non-executable category of PMLs does not implicitly 
imply that PMLs in other categories are enactable.  This is because some PMLs can belong to more than one 
category. 
 
A more recent classification of PMLs is that of Ambriola et al [1].  This classification breaks away from the earlier 
classifications, as PMLs are classified according to the process lifecycle that they support rather than being based on 
their language paradigm.  The main categories are: 

 Process Specification Languages (PSLs) – used in the specification phase of the software process, and 
typically make use of formal notations. 

 Process Design Languages (PDLs) – used to support the design phase of the software process. 
 Process Implementation Languages (PILs) – used to support the implementation phase of the software 

process. 
 
Regardless of which classification is used, some PMLs can fit into more than one category.  This is because some 
PMLs combine different language paradigms, and therefore cannot be classified under one particular category.  
Additionally, such an overlap may also occur because the scope of coverage of a PML can be very large covering 
many aspects of the modeling process from the requirement phase to implementation. 
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As far as assessing the existing PMLs, much research has already been done.  Lonchamp [22] reports some results 
of evaluating PMLs using a set of questionnaires given to the authors of each PML.  The questionnaires covered: 

 The modeling approach – language constructs used to express activities and their pre-conditions and post-
conditions as well as ordering constraints and parallelism, input and output artifacts, and roles. 

 The underlying language paradigm. 
 The tools support (e.g. editors, compilers). 
 The enactment capability, the meta-process and the evolution support. 
 The resulting assessment, however, is targeted to the PMLs developed under the European research 

consortium called Process Modeling Techniques Research (PROMOTER). 
 
Complementing from the work of Lonchamp, Ambriola et al [1] define an assessment grid for evaluating both 
PSEEs and PMLs.  As far as evaluating PMLs is concerned, the assessment grid covers: 

 The PML scope of coverage – the part of the process lifecycle the PML supports. 
 The underlying language paradigm. 
 The modeling approach. 
 The support for modularity, composition and reuse. 
 The mechanism for process enactment and evolution. 
 The tool support. 

 
Like Ambriola et al, Conradi and Jaccheri [12] also define an assessment grid in the forms of requirements for 
PMLs and PSEEs, identifying the primary and secondary process elements (i.e. in terms of what constitute a 
software process) that a PML and a PSEE need to support.  In the context of this research work, only the primary 
process elements are considered because they constitute the requirements of PMLs whilst the secondary process 
elements will be ignored as they constitute the requirements of PSEEs.  According to Conradi and Jaccheri, the 
primary process elements consist of: 

 Activities, their pre-conditions and post-conditions, ordering constraints, and parallelism. 
 Input artifacts and output artifacts as products.  
 Human and their roles representation.  
 Tool support.  
 Evolution support. 

 
As has been shown, there have been a number of attempts to classify and characterise the requirements of PMLs.  
However, one aspect perceived to be lacking in the previous classifications of PMLs is the consideration of the 
human dimension which relates to the issues surrounding the software engineers (or process engineers) who create 
the process models and initiate enactment as well as the software engineers who are subjected to process enactment. 
 
Paradoxically, human dimension issues have always been a major concern in research into software processes [2, 
26].  However, current trends in the way software engineers work (e.g. cross organisational boundary, 
geographically and temporally distributed locations) suggest that much more could be done to address these issues.  
These issues include: providing support for process engineers in terms of utilising visual syntax; enactment within a 
virtual environment; supporting user and process awareness; process visualisation; virtual meetings; as well as 
reflecting that support in the features provided in a PML [32]. 
 
Capitalising on these issues relating to the human dimension and building from the earlier characterisations and 
requirements of PMLs, Table 1 presents an alternative characterisation of PMLs which forms a taxonomy for PMLs.  
This taxonomy for PMLs is based on our earlier work (described in [32]) and differs from other work mainly by the 
inclusion of the human dimension issues. 
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Table 1: Taxonomy for PML 
 

 PML Characteristics 
Sequential and parallel activities as 
well as their constraints 
Input and output artifacts 
Role representations 
External tools 

Modeling 
Support 

Abstraction and modularisation 
Enactment in a distributed 
environment 

 
Enactment 

Support Dynamic allocation of resources 
Evolution 
Support Reflection 

Evaluation 
Support Collection of enactment data 

Visual notations 
User awareness 
Process awareness 
Process visualisation 

Human 
Dimension 

Support 
Virtual meetings 

 
Each issue given in Table 1 will now be discussed in detail next. 
 
Modeling 
 
Derniame et al [15] have identified the following constituent parts of a process model which therefore have to be 
represented in a PML:  

 Activities – Activities are any actions performed by software engineers or by computers to achieve a certain 
set of goals.  Examples of an activity can include high-level design or compilation of a program.  In term of 
enactment, activities can be sequential or parallel and are always associated with artifacts (described below) 
and sets of pre-conditions and post-conditions.  Also, depending on its needs, an activity may be performed 
by a single software engineer (e.g. modify a design) or collaboratively performed by a group of software 
engineers (e.g. review a design). 

 Roles – Roles identify the skills required for performing a particular activity.  In many cases, software 
engineers may assume many different roles based on their skills.  

 Artifacts – Artifacts represent the inputs to and the outputs from an activity.  Generally, artifacts are referred 
to, produced or maintained when an activity is performed.  Examples of artifacts include: design documents; 
source code; and object code.  Because artifacts are potentially manipulated by many software engineers 
when performing their activities, artifacts often require some associated access rights.  Access rights ensure 
that artifacts are manipulated in accordance with the pre-conditions or post-conditions of an activity.  

 Tools – Tools are external programs which are needed either to transform artifacts or to support inter-person 
communication (e.g. email, video conferencing program) which is seen as an important aspect of 
collaborative activities such as software processes [31]. 

The last three constituents of a process model from the bulleted list above are often referred to as resources. 
 
In order to achieve reuse of process models, a PML also needs to support abstraction and modularisation.  Through 
modularisation and abstraction, large process models for a particular project, for example, can be broken into a 
number of smaller process models (or modules).  In turn, these smaller process models can be reused to form other 
process models for different projects. 
 
In summary, the categories for PML modeling issues are: 

i. Support for expressing both sequential and parallel activities and their constraints. 
ii. Support for expressing input and output artifacts. 
iii. Support for role representations. 
iv. Support for expressing and invoking external tools. 
v. Support for abstraction and modularisation of process models. 
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Enactment 
 
In order to directly support the activities of software engineers, a process model needs to be enacted.  Enactment of 
process models requires a PML that has executable semantics.  Furthermore, as software processes often involve 
software engineers who may or may not be collocated, a PML also ought to support enactment of process models in 
a distributed environment. 
 
Enactment of a process model raises an issue relating to resource allocations.  Because software processes are highly 
dynamic, rarely can resources for a process model be completely specified ahead of time.  For instance, the number 
of people assigned (as a resource) for a particular activity, and hence how many instances of a particular activity are 
created, must not be fixed since it will depend on the dynamic needs of a project.  Therefore, it is desirable for a 
PML to support the dynamic allocation of resources.  Here, the dynamic allocation of resources means that 
resources are allocated at the last moment, just as the activity is about to be started.  Allowing dynamic allocation of 
resources as a feature of PML gives the process engineers the flexibility to consider the current needs of a particular 
project before deciding on the necessary resource allocation for a particular activity.  As a consequence, because 
resources are allocated dynamically, enactment of a process model can commence even when resources have not yet 
been completely specified. 
 
In summary, the categories for PML enactment issues are: 

i. Support for enactment in a distributed environment. 
ii. Support for dynamic allocation of resources. 

 
Evolution 
 
To handle its evolution in a controlled and integrated manner, a process model also needs to capture issues 
concerning the meta-process [1, 9, 10].  The meta-process is in charge of maintaining and evolving the process 
model according to specific and desirable rules and procedures.  Therefore, the data manipulated by the meta-
process are part of the process model itself. 
 
Because enactment of a process model is typically long-lived and subjected to unpredictable changes (e.g. to cater 
for new needs arising from the current enactment), there is a need for the PML to provide a mechanism to allow the 
meta-process to be able to access the process model even though it is running.  It has been suggested that reflection, 
a feature of a PML which allows enactable code to be manipulated as data, provides such a suitable mechanism [1, 
9, 10].  With reflection, the meta-process can be modeled and enacted as part of the process model itself.  As a 
result, evolution of the process model (and evolution of the meta-process itself) can be achieved dynamically, and be 
supported by the meta-process.  It follows that while an enactable PML without a reflective facility can be used to 
support modeling and enacting of software processes, it may not be able to support an integrated process model 
consisting of both the software process and the meta-process, and to support dynamic changes to both during 
enactment. 
 
In summary, the sole category for PML evolution issues is: 

i. Support for reflection. 
 
Evaluation 
 
If a PML, through enactment of the process model, is being used to guide or enforce software engineering practice, 
it is vital that issues of importance are measured in some way so that evaluation of the process can take place.  This 
is especially important to provide support for software process improvement.  Thus, a PML ought to provide 
relevant software metrics, although little work is reported in the literature [32].  
 
In summary, the sole category for PML evaluation issue is: 

i. Support for collection of “enactment” data. 
 
Human Dimension 
 
Because software processes are carried out primarily by people, it is necessary that human dimension issues be 
considered.  The human dimension can cover issues for the process engineers (or project managers) who create the 
process models and initiate enactment (e.g. facilitating the construction and comprehension of process models) as 
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well as issues for software engineers who are subjected to process enactment (e.g. supporting software engineers at 
work). 
 
In terms of the human dimension issues surrounding the process engineers who create the process model and initiate 
enactment, it is obviously desirable to have a process model which is simple and easy to understand.  This places a 
requirement on a PML to be intuitive in its syntax and semantics.  It is generally believed that this can be obtained to 
a certain extent by adopting a visual syntax and notation.  The reason is that “pictures” are normally thought to more 
readily relate to the cognitive part of the human brain as compared to text.  Employing visual notations in a PML 
helps create an easy to use yet expressive language, thus making a PML more acceptable and accessible.  There are 
a number of visual PMLs discussed in the literature, as will be seen in the next section. 
 
In terms of the issues surrounding the software engineers who are subjected to process enactment, it is desirable that 
enactment of a process model provides some form of awareness in terms of providing information about other parts 
of the model such as other users and other activities.  In the literature, the importance of awareness has been 
established in the field of Computer Supported Cooperative Work (CSCW), a field of study which places emphasis 
on the nature of humans working together collaboratively to achieve a common goal as well as on the possibilities of 
technology to support and improve individual and group efficacy.  Clearly, there is a need to include support for 
awareness as a feature of a PML since enactment of a process model also involves collaborative work similar to 
CSCW.  The support for awareness seems increasingly relevant in line with the growing trends in the way software 
engineers work in geographically and temporally distributed locations (e.g. software designers in London, reviewers 
in Washington and programmers in New Delhi) and across organisational boundaries.  There are two types of 
awareness a PML must support.  They are: 

 User awareness – User awareness is providing knowledge about other group members involved in the 
cooperative system.  In general, having user awareness can often encourage informal interaction.  Such 
informal interaction is normally useful if people are working on shared artifacts (as in a typical software 
process). 

 Process awareness – Process awareness is providing knowledge about the tasks in their working contexts, for 
example in terms of what the previous task was, what the next task is and what needs to be done to move 
along as well as what resources are required.  Typically, having process awareness is valuable as it gives a 
sense of where and how the pieces fit together into the whole picture.  Additionally, process awareness should 
also make people aware of tasks not only involving themselves but also others.  Such awareness may help 
improve the process – for instance, people can plan and anticipate their workloads as needed to meet the 
project deadline.  One way to enhance process awareness is to provide support for visualisation of the process 
model.  This seems to be a useful feature to have in a PML as software processes can be very complex and 
full of subtleties.  Process visualisation can provide multiple views of the same process with different 
perspectives which, in turn, enhances human intuition about the tasks they are involved in.  

 
Apart from supporting awareness and visualisation, there is also a need for a process model to be able to 
accommodate meetings as they are an important characteristic of software engineering.  In fact, in the context of 
supporting software development over distributed locations, it is desirable for a process model to accommodate 
virtual meetings, that is, meetings that are held online.  Accommodating virtual meetings could reduce costs if 
meetings would otherwise have to be held face to face.  Thus, a PML needs to be able to specify virtual meetings as 
part of the process model. 
 
In summary, the categories for PML human dimension issues are: 

i. Support for visual notations. 
ii. Support for user awareness. 
iii. Support for process awareness. 
iv. Support for process visualisation. 
v. Support for virtual meetings. 

 
 
3.0 ANALYSIS OF PMLs 
 
This section provides a detailed analysis of existing PMLs using the characteristics of PMLs identified in the 
previous section.  For each PML, this section presents: a brief description of the language; and an analysis of PML 
issues related to the modeling, the enactment, the evolution, the evaluation, and the human dimension. 
 



Zamli and Isa 

74 

3.1 SLANG 
 
SLANG [3], a PML for the PSEE called SPADE, is based on Petri nets.  The semantics of SLANG are defined by 
high-level Petri nets called Entity Relations (ER) nets.  The main addition that ER nets add to conventional Petri 
nets is the ability to incorporate timing as the criterion to fire transitions. 
 
In addition to the usual Petri nets syntax, SLANG provides an interface defined in terms of input and output places 
(as entry and exit points), input and output transitions (as entry and exit actions) as well as shared places to allow 
sharing of data, all of which are connected by a set of input and output arcs.  In fact, an interface serves as a SLANG 
modularisation facility; an interface may be decomposed to show the overall internal SLANG net structure. 
 
Besides the normal places and the shared places, SLANG also defines user places.  Normal places and shared places 
represent place holders for tokens consisting of typed artifacts stored in an object oriented database, while user 
places represent place holders for tokens consisting of internal messages generated as a consequence of external 
events occurring within the PSEE. 
 
In SLANG, transitions designate events.  Transitions firing depends upon the availability of tokens and the defined 
guards (explained below).  Additionally, timing information, such as the time interval within which an event may or 
must occur, can also be specified by associating time-stamps with tokens and time changes with actions (described 
below).  In addition, SLANG also allows transitions to be textually augmented with scripts consisting of three parts: 

i. A header containing an event’s name and typed parameters which must match the types of the transition’s 
input and output places. 

ii. A guard containing a Boolean expression which checks the firing rules.  A guard may be thought as the pre-
condition for enabling a transition. 

iii. A set of actions that performs some computation on the input tokens to produce some output tokens. 
 
There are two types of transitions in SLANG: white transitions and black transitions.  White transitions are similar 
to procedures in a general purpose programming language – they receive some input parameters (through the 
defined guards that need to be satisfied) and predefined statements are executed in sequence to produce some output 
parameters.  Black transitions, unlike white transitions, allow invocation of external tools.  The combinations of 
black transitions and user places allow SLANG to have some control over the events generated by external tools.  
This capability allows SLANG to support automation at external tool levels, for example, by detecting events such 
as the opening or the closing of external tools. 
 
Analysis of SLANG 
 
In terms of the modeling support, SLANG seems to provide support for most of the characteristics identified in 
Table 1 with the exception of the representation of roles.  In SLANG, activities and their constraints are modeled as 
sets of actions associated with transitions.  Tokens represent typed input/output artifacts which are stored in an 
object-oriented database.  Being a Petri net based PML, SLANG naturally supports parallelism.  Finally, 
modularisation and abstraction facilities are also supported in SLANG through interfaces. 
 
In terms of enactment support, SLANG supports enactment in a distributed environment.  However, SLANG does 
not directly support dynamic allocation of resources but process models (and resource allocation) can be evolved 
while enactment is taking place through SLANG’s reflection facility.  No support is provided for the collection of 
enactment data.  As far as the human dimension support, SLANG only supports visual notations based on Petri nets 
(and augmented with textual scripts). 
 
3.2 LIMBO and PATE 
 
LIMBO and PATE are the two PMLs for the PSEE called OIKOS [23].  Because both LIMBO and PATE exploit 
the idea of coordination to support a software process as inspired by Linda [16], it is worth describing the basic idea 
from Linda. 
 
In Linda, coordination is based on tuples and tuple spaces.  A tuple consists of a set of variables or values.  A tuple 
space can be viewed as a distributed shared memory into which tuples can be inserted or removed.  Each tuple in a 
tuple space is produced by some executing thread and it remains in the tuple space until some other thread consumes 
it.  When a thread requests specific tuples which do not exist, the thread may be suspended until those tuples are 
made available. 
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Borrowing from Linda, LIMBO and PATE support a software process by exploiting a reactive system based on 
threads (called agents) communicating using shared tuple spaces called blackboards. 
 
LIMBO and PATE originated from Extended Shared Prolog, and adopt a rule-based approach to support the 
modeling and enacting of software processes.  Using Ambriola’s classification discussed earlier, LIMBO is the 
specification language whilst PATE is the implementation language.  It is possible to obtain a PATE process model 
by successive refinement of a LIMBO specification.  In the context of this paper, because LIMBO serves as a 
specification language for PATE, LIMBO will not be discussed further. 
 
In PATE, a process model is constructed in terms of a hierarchy of agents.  Each agent is connected to its own 
blackboard when the agent is activated.  Agents react to the presence of tuples (mainly Prolog facts) on their 
blackboards by removing tuples, and inserting tuples into their own blackboards or other blackboards that they know 
of through a customisable service provided by the PSEE. 
 
The behavior of an agent is defined by a theory consisting of a set of action and reaction patterns along with a 
sequential Prolog program (called the Knowledge base).  Each pattern defines a stimulus and response pair.  The 
stimulus consists of a Read guard and an In guard.  The response consists of a Body and a Success set. Optionally, a 
Failure set can also be specified. 
 
A pattern can fire when the tuples (in terms of Prolog facts) in the agent’s blackboard satisfy the read and the in 
guards; these tuples will be consumed and removed from the agent’s blackboard.  Whenever several patterns can 
fire, one is chosen non-deterministically and the specified actions are performed (i.e. the related pattern body and the 
sequential Prolog program will be executed).  The execution of the pattern body and the sequential Prolog program 
is achieved in such a way that no side effects are allowed to the agent’s blackboard whose pattern is fired (as this 
can only be done by the success set or the failure set).  
 
The most common use of the sequential Prolog program in terms of supporting a software process is to invoke 
external tools to manipulate artifacts.  Finally, depending on the outcome of the execution of both the pattern body 
and the sequential Prolog program, some tuples (i.e. a success or a failure set) will be inserted back onto the 
blackboard whose name is specified by that pattern.  This sequence of pattern firing can then go on for other agents 
until the enactment is completed.  
 
Blackboards can be dynamically created or destroyed during the course of enactment.  Creation of a new blackboard 
can be achieved by an agent inserting an activation goal (i.e. Prolog facts) along with a termination condition (also 
Prolog facts) and a list of connected agents in its own blackboard.  Destruction of a blackboard occurs when the 
success set or the failure set matches with the blackboard termination condition also expressed as Prolog facts, as a 
result of firing a pattern.  In this case, all the tuples in the blackboard will disappear and all connection to agents will 
be aborted. 
 
Analysis of LIMBO and PATE 
 
In terms of modeling support, the modeling of activities and their constraints are indirectly supported by specifying 
the theory of each agent (i.e. the action and reaction patterns and the knowledge base).  This can be achieved either 
from the LIMBO specification (and later refined to PATE) or directly in PATE.  How role representation is 
supported in PATE is not clear.  Tools can be invoked in pattern bodies or in the knowledge base.  Artifacts are 
accessed in terms of identifiers through some standard services provided by the PSEE.  Parallel activities can be 
readily supported because agents are effectively executing threads communicating using multiple tuple spaces. 
However, modularisation and abstraction of process models are not supported in PATE. 
 
In terms of enactment support, a process model expressed in PATE can be enacted in a distributed environment.  
However, PATE does not support dynamic allocation of resources.  In terms of evolution support, PATE does not 
support reflection. No support is provided for the collection of enactment data nor for the human dimension issues. 
 
3.3 BM and PWI PML 
 
Base Model (BM) and Process Wise Integrator Process Management Language (PWI PML) are the two PMLs for 
the PSEE called PADM [6].  BM adopts temporal logics semantics; PWI PML adopts object-oriented technology.  
Using Ambriola’s classification, BM can be seen as a process specification language whilst PWI PML can be seen 
as a process implementation language. 
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Because BM and PWI PML are two compatible PMLs, it is possible to gradually refine the process model specified 
by BM into PWI PML.  In doing so, a special tool called the BM stepper can be used to assist checking of the BM 
specification against the problem description and the refinement of the process model in PWI PML.  Because this 
paper concentrates on enactable PMLs, discussion of BM will not be developed further as it mainly serves as a 
specification language for PWI PML. 
 
PWI PML is an object-oriented PML.  The primary construct for supporting the modeling and enacting of software 
processes is the role.  The concept of a role in PWI PML carries a more subtle meaning than that defined earlier.  
PWI PML defines two types of roles: User Roles and System Roles.  A user role corresponds to the identification of 
skills for performing a particular activity in a software process whilst a system role may correspond to some 
abstractions of an activity or a user role. 
 
A software process model in PWI PML is a set of executing role instances connected by interactions (described 
below).  A role is a subclass of the pre-defined PML Role class.  Within the subclass the following properties must 
be specified for modeling and enacting software processes: 

i. Resources describe the data objects (e.g. artifacts and tool definitions) belonging to the role.  These data 
objects can be derived from some pre-defined classes in PWI PML. 

ii. Assocs provides references to the communication channels linking one role object to another. 
iii. Actions define the list of interactions and activities which are performed by the role.  Actions may be 

thought of as sub-activities of a role.  Each of these actions has a name, and is guarded by when 
conditions which must be satisfied before the action can be performed. 

iv. Categories contain conditions to determine the start and stop conditions of a role. 
 
Enactment is achieved by instantiating roles, and a role may also instantiate other roles.  Each role instance has a 
separate thread of control with its own local data.  Role instances communicate using message passing via typed 
one-way asynchronous communication channels. 
 
Analysis of BM and PWI PML 
 
In terms of modeling support, the modeling of activities and their constraints are supported using the specification 
language BM and later refined into PWI PML.  In particular, activities can be abstracted as a sub-class of the Role 
class, with each sub-activity representing some actions properties in the role.  Parallelism between activities is 
supported as each role has its own separate thread.  The representation roles described in the previous section are 
represented as user roles and are considered as resources of the system roles.  Similarly, artifacts and tools are also 
considered as resources of the system roles.  Finally, modularisation and abstraction in PWI PML are supported by 
the role definitions. 
 
In terms of enactment support, PWI PML supports enactment in a distributed environment.  However, PWI PML 
does not seem to directly support dynamic allocation of resources although user roles can be bound to system roles 
dynamically.  In terms of evolution support, PWI PML provides support for reflection.  No support is provided in 
PWI PML for the collection of enactment data nor for the human dimension issues identified earlier.  
 
3.4 MERLIN 
 
MERLIN [20] is a Prolog-like PML.  In MERLIN, the act of modeling a software process is assisted by entity 
relationship diagrams (a type of diagram which mainly depicts dependencies amongst artifacts) and state charts (a 
special type of state transition diagram which depicts the allowable transitions of an activity or an artifact from its 
creation to its completion along with the conditions under which a transition may occur).  Based on the created 
entity relationship diagrams and state charts, a process model is then mapped to Prolog rules and facts as a 
knowledge base about that particular process.  A special kind of fact is used to describe roles (work_on and 
responsibilities facts), artifacts and tools (document facts) as well as activities (task rules).  Similar to MSL 
discussed in Section 3.1, enactment of a process model expressed by MERLIN is achieved by the PSEE runtime 
engine using a forward chaining mechanism to automate an activity that does not involve human intervention, and a 
backward chaining mechanism to select a particular activity for software engineers based on the role they play. 
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With the information gathered by the backward chaining mechanism, the MERLIN PSEE runtime engine 
incrementally builds a work context for the software engineers who perform the activity, in the form of a simplified 
entity relationship diagram which shows only the artifacts and tools necessary to complete the activity.  In MERLIN 
PSEE, softwares engineer may interact with this diagram in a hypertext manner to perform their work. 
 
Analysis of MERLIN 
 
In terms of modeling support, the modeling of activities and their constraints, roles, artifacts and tools are supported 
by specialised PROLOG facts.  Parallel activities are supported by the PSEE runtime engine.  However, it is not 
clear how the modularisation and abstraction of process models are supported in MERLIN. 
 
In terms of enactment support, the process model expressed by MERLIN can be enacted in a distributed 
environment.  However, MERLIN does not support dynamic allocation of resources.  In terms of evolution support, 
MERLIN does not support reflection.  For evaluation support, no support is provided for the collection of enactment 
data.  Concerning human dimension support, although MERLIN is a textual language, state charts and entity 
relationship diagrams can be used to help construct the MERLIN process model.  MERLIN provides limited support 
for awareness.  Process awareness is supported but not user awareness.  The support for process awareness is 
achieved by the MERLIN PSEE runtime engine which automatically builds a work context from the specified 
Prolog facts (utilising the backward chaining mechanism) in terms of only giving a software engineer the necessary 
artifacts and tools needed to complete the activity.  Finally, MERLIN provides no support for process visualisation. 
 
3.5 SPELL 
 
SPELL, the PML for the PSEE called EPOS [11], is an object-oriented PML derived from the Prolog programming 
language.  In SPELL, the main support for software processes is provided by two pre-defined classes: TaskEntity 
and DataEntity.  TaskEntity forms the root of the task type hierarchy whilst DataEntity forms the root of the data (or 
artifact) type hierarchy. 
 
Every SPELL task type must be a subclass of TaskEntity which defines a number of predefined attributes that can 
be tailored to the needs of the process model.  Among the important type level attributes within a task type are: 

i. Pre- and post-conditions: The pre- and post-conditions attributes in a task type are divided into static and 
dynamic pre- and post-conditions.  They are specified in first order predicate logic (as in Prolog).  Static 
pre-conditions and post-conditions are constraints mainly used to build the network of tasks.  This is 
accomplished by the runtime planner using forward and backward chaining.  Dynamic pre-conditions and 
post-conditions are constraints asserted before and after task executions, and are used to dynamically 
trigger tasks. 

ii. Code: The code attribute defines the steps that are performed when the task is executed.  A task’s code 
(specified in Prolog) is responsible for satisfying the dynamic post-conditions.  When the code attribute is 
empty (i.e. not specified), the task type is assumed to be composite – that is, the task is not performed by 
a specific piece of code, but rather by executing subtasks (explained below). 

iii. Decomposition: The decomposition attribute relates to the code attribute described earlier as it allows 
subtasks to be specified.  In SPELL, the subtasks may also be a network of tasks.  Like the parent task, 
the network of subtasks is also created by the runtime planner using the static pre- and post conditions 
discussed earlier. 

iv. Formal: The formal attribute permits the specification of the input and output artifacts required for the 
task. 

v. Executor: The executor attribute allows the tools used in the task to be specified. 
vi. Role: The role attribute represents the role for the task. 

 
In addition to these attributes, the TaskEntity class also defines a number of meta-level attributes and methods, 
essentially allowing further customisation of the TaskEntity class in terms of its execution.  These meta-level 
attributes and methods will not be discussed here as they are mainly there to provide support for the reflection 
facility in SPELL.  Nevertheless, one important aspect that can be specified at this level is triggers, which are special 
operations invoked before or after the occurrence of a method.  Triggers specify the constraints defining when the 
trigger “codes” should be executed with respect to the method call.  With triggers, various internal states of the task 
executions can be captured and modified if needed.  SPELL also defines a family of types derived from the 
DataEntity class for specifying artifacts.  Typical types used for software processes are a text type and a binary type 
which can be further specialised to other types (such as c-source and object-file). 
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For process enactment in SPELL, the runtime support system provided by the PSEE consists of two parts: the 
runtime planner and the runtime execution manager.  As discussed earlier, the runtime planner generates a network 
of tasks from the static pre- and post-conditions by utilising forward and backward chaining similar to MSL; the top-
level network of tasks must be generated by the runtime planner before enactment commences but the detailed level 
network of subtasks can be generated incrementally.  The runtime manager executes the given task network (by 
executing the specified code attribute in the task type) and works closely with the runtime planner such that, when a 
composite task is encountered, the runtime manager invokes the runtime planner to detail out that composite task 
based on its static pre- and post-conditions.  In this way, SPELL allows the detailed network of tasks to be generated 
only when it is needed. 
 
Analysis of SPELL 
 
In SPELL, support for modeling of activities is provided by inheriting the TaskEntity class and specifying the 
various pre-defined attributes discussed earlier.  Parallel activities are supported in SPELL and are handled 
automatically by the runtime planner and the runtime manager.  The activity constraints are defined by the static and 
dynamic pre- and post-conditions.  Role and tool abstractions are supported through the role and executor attributes 
of the TaskEntity class.  Artifacts are typed and stored in an object-oriented database called EPOS-DB.  
Modularisation and abstraction facilities are also supported through the code and decomposition attributes of the 
TaskEntity class. 
 
In terms of enactment support, the process model expressed by SPELL can be enacted in a distributed environment.  
SPELL does not directly support dynamic allocation of resources but process models (and resource allocation) can 
be evolved while enactment is taking place through SPELL’s reflection facility.  No support is provided for the 
collection of enactment data nor for the human dimension issues identified earlier. 
 
3.6 MASP/DL 
 
Model for Assisted Software Process Description Language (MASP/DL) [7] is the PML for the PSEE called ALF.  
In MASP/DL, a software process model is modeled as a number of “fragments” called the MASP descriptions.  Each 
MASP description models a software process as five components: 

i. The Object Model describes the data model representing artifacts. 
ii. The Operator Model represents an abstraction of the actual activities which a software engineer needs to 

perform in a software process, in terms of operator types.  Operator types allow an individual activity to 
be described in terms of pre-conditions and post-conditions along with a definition of tools. 

iii. The Characteristics specify a set of consistency constraints on the process state which are maintained by 
the runtime engine during the course of enactment; if they are violated, an exception condition is raised. 

iv. The Rule Model defines some trigger reactions for predefined events that occur during process enactment. 
The events include database operations (e.g. read, write) and other user defined events. 

v. The Ordering Model specifies the flow of control of the operators.  Operators may be executed in parallel, 
alternatively or sequentially. 

 
Because a MASP description is generic, it must be instantiated (and compiled to a special format called IMASP) 
before enactment can be achieved.  Instantiation of an MASP description corresponds to the assignment of actual 
tools and artifacts in the operator and object models.  It should be noted that a particular software process model can 
consist of a number of MASP descriptions (or fragments) with each description defining a number of related 
activities.  So, before enactment can be achieved, each MASP description must be instantiated (and compiled) 
individually.  In this manner, instantiation and enactment may interleave so that the part of the software process that 
has already been enacted may be taken into account to instantiate a further part. 
 
Analysis of MASP/DL 
 
In terms of modeling support, the modeling of activities and their constraints in MASP/DL are supported in the 
operator and rule models.  Parallelism of activities is supported in the ordering model.  The representation of roles is 
not supported at the PML level as this is achieved at the PSEE level.  Artifacts are described in the object model.  
Tools are described in the rule model along with the defined triggers.  Finally, modularisation and abstraction are 
supported by the MASP descriptions. 
 
For enactment support, MASP/DL supports enactment in a distributed environment.  However, MASP/DL does not 
really support dynamic allocation of resources.  This is because resources for each activity defined in a particular 
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MASP/DL description must be allocated before enactment of that MASP/DL description can commence, although 
such allocations can be made based on the outcome of the instantiation and enactment of the earlier parts.  In terms 
of evolution support, MASP/DL does not support reflection.  Also, no support is provided for the collection of 
enactment data nor for the human dimension issues identified earlier. 
 
3.7 ADELE and TEMPO 
 
ADELE and TEMPO [5] are two PMLs for the PSEE called ADELE-TEMPO, which is a commercial database 
product.  To understand how the modeling and enacting of software processes is supported by the first PML, 
ADELE, it is necessary to understand the basic architecture of its PSEE.  The PSEE consists of a centralised 
database which provides long transaction support for artifacts involved in the software development project.  Each 
participating software engineer in the project is provided with their own Work Environment by the PSEE, where 
artifacts (organised in terms of files and directories) can be checked out.  A software process is then modeled in 
ADELE as a set of defined events and triggers on the artifacts in the Work Environment. 
 
ADELE events and triggers are based on the event-action-condition (ECA) rules.  Triggers may fire on any of four 
events – PRE, POST, ERROR and AFTER – with respect to a particular activity.  In each of the events, some actions 
(e.g. in terms of some database transactions or invoking of external tools) can be specified.  PRE triggers are 
evaluated at the beginning of an execution of an activity.  If successful, the specified action is executed.  Similarly, 
POST triggers are evaluated after the completion of an activity.  ERROR triggers are considered when a transaction 
fails and AFTER triggers are applied after a transaction succeeds. 
 
According to Belkhatir [5], because ADELE is too low level and difficult to understand, the second PML called 
TEMPO was developed.  TEMPO defines a process model based on the concept of role and connection (described 
below).  Although a user role is supported, the concept of role in TEMPO carries a subtler meaning than the one 
defined earlier.  A role allows redefinition of behavioral properties of an artifact based on the defined work context, 
that is, the operations that can be done on that artifact and the rules that control these operations.  Roles, in turn, are 
connected to other roles through a defined connection, essentially the synchronisation protocol based on temporal-
event-condition-action (TECA) rules (i.e. extended ECA rules with timing dependencies).  
 
Analysis of ADELE and TEMPO 
 
In terms of modeling support, the modeling of activities and their constraints is indirectly supported in TEMPO by 
defining roles and their connections.  In ADELE, modeling of activities and their constraints are also indirectly 
supported although at a very low level in terms of the ECA rules.  Tools can be invoked from the action part of the 
TECA rules in TEMPO (and ECA rules in ADELE) as a result of a condition being fulfilled.  In both ADELE and 
TEMPO, artifacts are defined as objects in the ADELE database.  In TEMPO, parallel activities are supported by 
connections defined by TECA rules (and ECA rules in ADELE).  Finally, modularisation and abstraction are only 
supported by TEMPO (through the abstraction of roles). 
 
In terms of enactment support, process models expressed by TEMPO and ADELE can be readily enacted in a 
distributed environment.  However, neither TEMPO nor ADELE supports dynamic allocation of resources.  In terms 
of evolution support, TEMPO and ADELE do not support reflection.  For evaluation support, no support is provided 
for the collection of enactment data.  As far as the support for the human dimension, TEMPO provides (limited) 
support for process awareness.  In TEMPO, process awareness is achieved by giving the work context of a task.  No 
support is provided for user awareness, process visualisation, and virtual meetings identified earlier. 
 
3.8 APPL/A 
 
APPL/A [27], the PML for the PSEE called Arcadia.  Being based on ADA, APPL/A inherits many features from 
that language including its type system, module definition style (package), and task communication paradigm 
(rendezvous).  To support a software process, APPL/A extends the ADA programming language with shared 
persistence relations, concurrent triggers on relation operations, enforceable predicates on relations, and 
transaction-like statements. 
 
Relations are syntactically similar to ADA package definitions and package bodies.  Within a relation, persistent 
storage of data may be defined.  Triggers are similar to ADA tasks and hence are capable of handling multiple 
threads of control.  Unlike ADA tasks, triggers automatically react to events related to operations on the data defined 
in a relation.  Enforced predicates are Boolean expressions which act as post conditions on the operation of a 
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relation; no operations may violate the enforced predicate.  Transaction-like statements control access to relations 
and may affect the enforcement of predicates. 
 
Analysis of APPL/A 
 
In terms of the modeling support, APPL/A does not provide support for all of the PML characteristics identified in 
Table 1.  Modeling of activities and their constraints are supported in APPL/A via relations with enforceable 
predicates.  Parallel activities are supported by exploiting triggers.  No direct support is provided for role 
representations, artifacts, and tools; rather these can be represented using the ADA type mechanism.  Abstraction 
and modularisation in APPL/A is mainly based on the ADA procedures and packages. 
 
For enactment support, it is not clear whether or not APPL/A supports enactment in a distributed environment.  
Additionally, APPL/A does not support dynamic allocation of resources.  In terms of evolution support, APPL/A 
does not support reflection, only offline process evolution as recompilation is necessary.  Finally, no support is 
provided for the collection of enactment data nor for the human dimension issues identified earlier. 
 
3.9 Dynamic Task Nets 
 
Dynamic Task Nets [17], the visual PML for the PSEE called Dynamite.  Dynamic Task Nets describe a software 
process as graphs consisting of nodes representing tasks connected together with arcs (called relations).  There are 
three types of relations: 

i. Control-flow relations impose an acyclic ordering of the activities to be enacted. 
ii. Data flow relations are used for data (mainly artifacts) transmitted between connected tasks. 
iii. Feedback flow relations are used to enable feedback from a successor task back to its predecessor. 

 
There is also another relation supported by Dynamic Task Nets called successor relations.  Unlike the three relations 
described above, successor relations refer to nodes rather than arcs.  When a task is augmented with a successor 
relation, that task is said to have multiple versions.  What this means is that when such a task has to be reactivated 
(e.g. as a result of feedback relations), a new task version may be created depending on whether the previous version 
of the task has completed or not.  If the task has already completed, a new version of the task is created requiring a 
new assignment of a software engineer.  If the task has not yet been completed, the runtime system automatically 
updates the tasks with the new version of the artifacts. 
 
In Dynamic Task Nets, tasks and their corresponding relations can be defined dynamically.  The behavior of each 
individual task (called a task net) can be customised in the sense that a task can execute even when its predecessor 
tasks have not completed (called simultaneous concurrent engineering) or when certain input artifacts are available.  
However, the task completion can only be allowed if predecessor tasks have already been completed.  In Dynamic 
Task Nets, this customisation is achieved by modifying the enactment conditions defined in the PROGRESS 
specification, which itself is an executable graph rewriting system that Dynamic Task Nets map to for achieving 
enactment. 
 
Analysis of Dynamic Task Nets 
 
In terms of modeling support, the modeling of activities and their constraints are supported by the task nets and their 
relations, and can be customised at the PROGRESS specification level.  The representation of roles is not directly 
supported at the PML level.  Artifacts are considered as part of the input and output interface to a task.  Tools 
abstraction is not supported directly although can be defined at the PROGRESS specification level.  Finally, 
modularisation and abstraction are supported by the nodes themselves in the sense that each task net can be 
decomposed into other smaller task nets (although Dynamic Task Nets does not visually differentiate between 
decomposable task nets and atomic ones). 
 
In terms of enactment support, Dynamic Task Nets support enactment in a distributed environment.  Because the 
creation of task nets in Dynamic Task Nets is dynamic, it naturally supports dynamic allocation of resources.  In 
terms of evolution support, Dynamic Task Nets does not support reflection.  No support is provided for the 
collection of enactment data.  In terms of human dimension support, Dynamic Task Nets employs a visual PML.  No 
other support is provided to address the other human dimension issues identified earlier. 
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3.10 LATIN 
 
Language to tolerate Inconsistencies (LATIN) [13] is a PML for the PSEE called SENTINEL.  LATIN describes a 
software process as a global part and a set of task types.  A global part contains global variables, a global invariant 
(described below), the declaration of the task types that will be instantiated during enactment, and the description of 
the main task.  When the process enactment starts, an interpreter for the main task is created.  All other tasks are 
instantiated by the main task or, in turn, by previously instantiated tasks (i.e. their predecessors). 
 
A task type is composed of the following parts: 

i. A header defines the name of the task type along with its parameter list.  Instantiation of a task type 
consists of assigning the initial state of the task instance. 

ii. An import section defines all variables imported from other task types. 
iii. A declaration section declares the local types and variables.  The basic data types in LATIN can be 

integer, real, string, Boolean, enumerated, as well as user defined data types such as records and sets. 
iv. An export section lists the names of all the variables exported to other tasks. 
v. An init section lists all initial values assigned in terms of resource assignments during instantiation. 

vi. A set of transitions which govern the actual enactment of task type instances (described below).  
Transitions can be associated with invoking of external tools. 

vii. A set of invariants which serves as special conditions that must hold true in any state of the activity 
described by the task type. 

 
The behavior of a task type is described by transitions.  Transitions are further characterised by a precondition, 
called an ENTRY, and a body.  The ENTRY defines the conditions which fire the corresponding transition whilst a 
body defines actions (e.g. invoking a tool) and value assignments (e.g. updating variables) through an EXIT clause. 
 
LATIN actually offers two types of transitions: normal transitions and exported transitions.  A normal transition is 
automatically executed by the runtime system as soon as an ENTRY evaluates to true.  An exported transition is 
executed upon the request from the user even if its ENTRY evaluates to false.  In such a case, a transition is said to 
fire illegally.  The outcome of such a firing is that enactment can now be allowed to deviate from the specified 
process model, hence introducing inconsistencies.  In LATIN, enactment can continue as long as the invariants of 
that task type still hold.  But if one of the invariants is violated, enactment is suspended and a reconciliation activity 
is started to allow reconciliation of the actual process and the process model. 
 
Analysis of LATIN 
 
In terms of modeling support, the modeling of activities is supported as a set of task types.  The constraints for each 
activity are specified by the transitions.  Task types may execute in parallel.  The representation of roles is not 
directly supported at the PML level.  Artifacts can be supported by the user defined types.  Tools can be specified 
and invoked in the transition’s action.  Finally, modularisation and abstraction are supported by each individual task 
type. 
 
In terms of enactment support, LATIN supports enactment in a distributed environment.  Although task types can be 
dynamically instantiated during enactment by the main task or the previously instantiated task, LATIN does not 
support dynamic allocation of resources.  This is because resources need to be assigned to the task types as part of 
their init section before the overall enactment commences as LATIN does not provide any feature which allows 
assignment of resources while enactment is taking place.  As far as evolution support, LATIN does not support 
reflection.  For evaluation support, no support is provided in LATIN for the collection of enactment data.  Finally, 
no support is provided for the human dimension issues identified earlier. 
 
3.11 JIL 
 
JIL [28] is a PML derived from the authors’ experiences in developing APPL/A [27].  The main construct in JIL is 
the step.  A JIL step represents a step in a software process, that is, a task which a software engineer or a tool is 
expected to perform.  A JIL process model can be viewed as a composition of JIL steps.  The elements that 
constitute a JIL step include: 

i. Object and declarations section consists of the declaration of artifacts used in the step (consisting of 
ADA-like types). 

ii. Resource Requirements section specifies the resources needed by the step, including people, software and 
hardware. 
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iii. Sub-steps set section provides a list of sub-steps that contribute to the realisation of the step. 
iv. Proactive control specification section defines the order in which sub-steps may be enacted.  This is 

achieved through special JIL keywords such as ORDERED, UNORDERED and PARALLEL. 
v. Reactive control specification of the conditions or events in response to which sub-steps are to be 

executed.  This is specified through special JIL keywords such as REACT. 
vi. Pre-conditions, constraints and post-conditions section:  A set of artifact consistency conditions that must 

be satisfied prior to, during, and subsequent to the execution of the step. 
vii. Exception handler section: A set of exception handlers for local exceptions, including handlers for artifact 

consistency violations (e.g. pre-condition violations). 
 
Apart from local exception handlers which allow a process to react within its own scope, JIL also supports global 
exception handlers.  Global exception handlers allow a process to react to an exception in another process by 
treating such exceptions as events which can be handled directly by the reactive control specification. 
 
Analysis of JIL 
 
In terms of modeling support, the modeling of activities is supported by a composition of JIL steps.  The constraints 
for each step can be specified as pre- and post-conditions.  The step ordering constraints (e.g. parallel activities) can 
be supported using specialised constructs (e.g. ORDERED, UNORDERED, PARALLEL).  The representation of 
roles is not directly supported at the PML level.  Artifacts can be supported by the ADA-like types; JIL also allows 
artifact consistency to be checked as pre- or post-conditions of a step.  Tools can be invoked directly through the 
reactive control specification.  Finally, modularisation and abstraction are supported by the JIL step. 
 
In terms of enactment support, it is not clear whether or not JIL supports enactment in a distributed environment.  
Also, JIL does not support dynamic resource allocation.  As far as evolution support is concerned, no support is 
provided for reflection.  No support is provided in JIL for the collection of enactment data nor for the human 
dimension issues identified earlier. 
 
3.12 Little JIL 
 
Little JIL [29] is a PML based on JIL. Unlike JIL, Little JIL is a visual PML.  Like JIL, Little JIL maintains the 
notion of a step from JIL. 
 
A process model in Little JIL can be viewed as a tree of steps whose leaves represent the smallest specified units of 
work and whose structure represents the way in which this work will be coordinated.  As shown in Fig. 1, the Little 
JIL step notation has a number of components including: 

i. Step name section: Every step must be given a name. 
ii. Interface badge section: Resources needed in the step are carried through this badge.  In Little JIL, 

resources include the assignment of software engineers, permissions to use the tools, as well as artifacts. 
Resources are also typed and always associated with some access rights. 

iii. Pre-requisite and post-requisite badge section: Here, pre-conditions and post-conditions for the step are 
specified. 

iv. Control-flow badge section: Little JIL allows four types of control-flow to be specified in a step.  They 
are sequential, parallel, choice and try.  Sequential and parallel control-flows allow sequential and 
parallel steps to be specified.  Choice control-flow allows some choices of alternative steps to be specified 
in a step.  Try control-flow is associated with handler badges (described below) to allow an exception to 
be caught. 

v. Handler badge section: Handler badges are used to indicate and fix exceptional errors during enactment. 
In Little JIL, exceptions are passed up the process model tree until a matching handler is found. 

vi. Reaction badge section: Reaction badges are a form of reactive control similar to JIL.  A reaction badge is 
always associated with a message which is generated in response to some events.  Because a message is 
global in scope, any execution step can receive the message and act accordingly if matches are found. 

 
In terms of its enactment, a step goes through several states.  Normally, a step is posted when assigned to a software 
engineer, then it progresses to a started state, and eventually it will be in a completed state.  If a step fails to be 
started as a result of resource exceptions being thrown, a step may be retracted (and potentially reposted) or 
terminated with exception. 
 



A Survey and Analysis of Process Modeling Languages 

83 

 
 

Fig. 1: Little JIL Step Notation 
 
Analysis of LITTLE JIL 
 
In terms of modeling support, the modeling of activities is supported by the Little JIL steps.  The constraints for 
each step can be specified in the pre-requisite and post-requisite badges.  Parallel activities can be defined by 
selecting the proper control-flow badge.  The representation of roles is not directly supported at the PML level.  In 
Little JIL, artifacts are typed and have associated access rights.  Like artifacts, tools abstraction is also associated 
with an interface badge.  Finally, Little JIL does not support modularisation and abstraction of the process models. 
 
In terms of enactment support, Little JIL supports enactment in a distributed environment.  However, Little JIL does 
not seem to support dynamic resource allocation, although the authors claim such support is provided (discussed 
below).  In terms of evolution support, Little JIL does not support reflection.  No support is provided in Little JIL for 
the collection of enactment data.  In terms of human dimension support, Little JIL employs visual notation.  No 
support is provided for process awareness, user awareness and process visualisation. 
 
3.13 CSPL 
 
CSPL [8] is a PML that adopts an ADA95-like syntax.  Being based on ADA95, CSPL inherits many features from 
that language including its type system, module definition style (package), and task communication mechanism.  
Additionally, CSPL adds a number of predefined types and extensions to enable the modeling of software processes 
which include: 

i. Event type and inform statements: The event type allows description of an event status of an activity (e.g. 
approved, completed).  The value of an event derived from event type can be asynchronously assigned by 
CSPL inform statements. 

ii. Doc type: Doc Type, the base type of all object types in CSPL, allows the description of artifacts and their 
associated attributes, which can be extended by inheritance. 

iii. Work assignment statements are CSPL statements which allow activities, tools and roles to be assigned to 
one or more software engineers. 

iv. Communication related statements allow synchronisation and ordering of tasks with other tasks, similar to 
the ADA95 rendezvous. 

v. Program Units allow assignment of a human to a role (through a Role Unit), assignment of an actual tool 
to a tool (through a Tool Unit), and description of dependencies amongst artifacts (through a Relation 
Unit). 

 
To support enactment, the CSPL compiler translates the process model expressed in CSPL into a UNIX shell script. 
 
Analysis of CSPL 
 
In terms of modeling support, the modeling of activities and their constraints are supported by the ADA95-like task 
specification.  Parallel activities are supported through the communication related statements essentially ordering the 
tasks specified in CSPL.  The representation of roles is supported by the role unit.  Artifacts can be supported by the 
ADA-like types.  Tools can be defined through the tool unit.  Finally, modularisation and abstraction are supported 
by utilising package specification. 
 
In terms of enactment support, CSPL supports enactment in a distributed environment.  However, CSPL does not 
support dynamic resource allocation.  In terms of evolution support, CSPL does not provide support for reflection – 
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only offline process evolution is supported.  For evaluation support, no support is provided for the collection of 
enactment data.  In terms of the human dimension, no support is provided for the issues identified earlier.  
 
3.14 APEL 
 
APEL [14] is a visual PML.  The central construct in APEL is an activity of which there are two types: an activity 
representing a task for an individual; and a multi-instance activity representing a task for a group of people.  
Visually, an activity provides an interface to define input and output artifacts as well as the roles involved in a 
particular activity.  Artifacts, activities and roles are typed and they are defined in a separate view using Object 
Modeling Techniques (OMT) diagrams, essentially class diagrams with some defined relationships (e.g. is-a or has-
a).  The various states which artifacts and activities go through during enactment can also be represented using state 
transition diagrams.  
 
In APEL, a process model is composed of a set of activities connected together by control-flow and data flow arcs as 
well as And and Or connectors which carry the usual semantics.  Activities can be decomposed until atomic 
activities are reached.  To achieve process enactment, APEL relies on the concepts of event and event capture which 
can be defined on activities or artifacts.  An event and event capture are defined by pairs comprising an event 
definition and a logical expression.  An event is captured by an activity or an artifact when it matches the event 
definition and the logical expression is true.  All events in APEL are broadcast and they are generated automatically. 
 
The notable feature of APEL is that activities and their sub-activities, as well as the flow of artifacts, are shown to 
the user during enactment (through a desktop paradigm) in order to give the sense of awareness (discussed below) 
about other activities.  In addition, the user may also interact with the desktop paradigm to perform the activity. 
Finally, unlike other PMLs, APEL also supports measurement of the process model by employing the Goal Question 
Metric Model [4], essentially consisting of self-defined goals, questions related to the process models achieving 
those goals, and metrics to quantify such questions. 
 
Analysis of APEL 
 
In terms of modeling support, the modeling of activities and their constraints is supported in APEL by the activities 
and their events and event captures.  Parallel activities can be defined by And and Or connectors.  Roles, artifacts 
and tools are typed and also expressed as part of the process models using OMT diagrams.  Finally, modularisation 
and abstraction are supported as activities that can be further decomposed into sub-activities. 
 
For enactment support, APEL supports enactment in a distributed environment.  No support is provided for dynamic 
resource allocation.  In terms of evolution support, APEL does not support reflection.  Process evolution can only be 
achieved offline; this is assisted by a process state server which maintains the state of a process model’s enactment.  
In terms of evaluation support, APEL supports the collection of enactment data through adaptation of the Goal 
Question Metric Model [4].  In terms of the human dimension, APEL provides (limited) support for awareness. 
Process awareness is supported but not user awareness.  Process awareness is achieved by giving the work context 
of the overall activity and its sub-activities along with the flow of artifacts.  Likewise, process visualisation can also 
be achieved in the same way.  However, no support is provided for virtual meetings. 
 
3.15 PROMENADE 
 
Process-oriented Modeling and Enactment of Software Developments (PROMENADE) [24, 30] is a PML derived 
from the Unified Modeling Language [25], a language for supporting the object-oriented analysis and design of 
software systems.  In PROMENADE, software processes are modeled using predefined classes (called the 
PROMENADE reference model) consisting of: 

i. Document Class represents artifacts involved in the software development. 
ii. Communication Class represents any document used for communication. 
iii. Task Class represents an activity in a software process. 
iv. Agent Class represents an entity playing an active part in a software process. 
v. Tool Class represents any entity implemented through a software tool. 
vi. Resource Class represents any supplementary help provided during enactment of a software process 

(e.g. an online tutorial). It should be noted that the word resource in this case carries a different meaning 
to that used earlier. 

vii. Role Class represents identification of the skills of software engineers. 
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In a process model, the connections between instances of these classes are expressed using UML association 
relationships.  In PROMENADE, the most important class is the task class.  The task class may be customised to 
include the definition of shell scripts, the definition of task parameters consisting of input and output artifacts and 
the definition of task pre- and post-conditions.  A task class may also be further broken down to sub-classes 
consisting of other task classes, either by aggregation or composition. 
 
PROMENADE has not yet provided support for enactment as work is still on-going to provide additional language 
extensions.  Nevertheless, process enactment is planned in PROMENADE by utilising its support for precedence 
relationships, which are textually expressed in each task class in the process model using a variation of the UML 
Object Constraint Language (OCL).  Using the precedence relationships, the ordering of tasks can be defined to 
allow enactment of some actions according to a plan, defined in terms of pre-conditions and post-conditions, and 
connections to other task classes.  Strong precedence dictates that the current task must successfully complete before 
the following task can be started.  Weak precedence allows following tasks to start even if the current task has not 
yet been completed.  PROMENADE is also being extended to provide support for reactive control-flows that is, 
enactment of some actions in response to events. 
 
Analysis of PROMENADE 
 
In terms of modeling support, the modeling of activities is supported by the class diagrams and their association 
relationship.  The constraints for each activity are specified in the class diagram as pre- and post-conditions 
expressed by using a variation of the UML Object Constraint Language.  Parallelism can be expressed in 
PROMENADE by specifying the precedence relationship in each task class.  The representation of roles and 
artifacts are supported by the role and artifact classes respectively.  The abstraction of tools is supported by a tool 
class and an agent class.  Tools also can be invoked directly through the shell script defined in the task class.  
Finally, modularisation and abstraction are supported by aggregations and composition. 
 
In terms of enactment support, it is not clear whether PROMENADE will support enactment in a distributed 
environment, and dynamic allocation of resources.  Concerning evolution, the authors claim that PROMENADE 
will adopt reflection.  No support is provided in PROMENADE for the collection of enactment data.  In terms of 
human dimension support, apart from being a visual PML, no other support is provided. 
 
 
4.0 DISCUSSION 
 
Based on the analysis of PMLs given in the previous section, this section summarises the description of existing 
PMLs.  Although only enactable PMLs are considered, some of the categorisations of PMLs (e.g. modeling support, 
evaluation support) should also be applicable to non-enactable PMLs, although this is not investigated further here. 

 
Table 2 presents the digest of the analysis of PMLs discussed earlier.  The table highlights those features that are 
common to PMLs, and those that are not, and therefore identifies areas for research into PMLs that address new 
combinations of features which can be explored further. 
 
Referring to Table 2, it can be seen that existing PMLs are deficient in a number of the identified areas: human 
dimension issues; dynamic allocation of resources; collection of enactment data; and support for reflection.  These 
deficiencies will be discussed next. 
 
The first perceived deficiency in the surveyed PMLs is in terms of providing support for human dimension issues.  
As identified in Table 2, issues in terms of the support for visual notations, user awareness, process awareness, 
process visualisation, and virtual meetings seems to be neglected by most of the surveyed PMLs.  Modeling and 
enacting of software processes requires much human intervention during its lifecycle – for example, process 
engineers (e.g. project managers) model the activities within a software process for enactment, and software 
engineers perform the activities during enactment.  Therefore, it seems appropriate to place emphasis on the 
importance of human dimension issues. 
 
The second perceived deficiency in the surveyed PMLs is in terms of the support for dynamic allocation of 
resources.  The motivation behind supporting dynamic allocation as a feature of a PML and its underlying semantics 
is to ensure that resources are allocated based on the dynamic needs of a particular project, and as late as when the 
activity is about to be started.  In this way, the process engineer can be given flexibility to allocate resources based 
on the current situation. 
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Table 2: Analysis of PMLs 
 

 
 

LEGENDS 
 

Implemented feature 
 

Non supported feature 
 

Not enough information 

 
 
 
 
S 
L 
A 
N 
G 

L 
I 
M
B 
O 
&
P 
A 
T 
E 

B 
M
&
  
P 
W
I  
 
P 
M
L 

 
 
 
M
E 
R 
L 
I 
N 

 
 
 
S 
P 
E 
L 
L 

 
 
M
A 
S 
P 
/ 
D 
L 

A 
D 
E 
L 
E  
& 
T 
E 
M 
P 
O 

 
 
A 
P 
P 
L 
/ 
A 

 
 
D 
Y 
N 
A 
M
I 
T 
E 

 
 
 
 
L
A
T
I 
N

 
 
 
 
 
J 
I 
L

L 
I 
T 
T 
L 
E 
  
J 
I 
L 

 
 
 
 
C
S
P
L 

 
 
 
 
A
P
E
L 

 
P
R
O
M
E
N
A
D
E 

Sequential and 
parallel activities as 
well as their 
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√ 

 
√ 

 
√ 

 
√ 

 
√ 
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√ 

 
√

 
√

 
√ 

 
√ 

 
√ 
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Input and output 
artifacts 

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Role representations X X √ √ √ X √ X X X √ √ √ √ √ 
External tools √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

 
 
 
Modeling 
Support 

Abstraction and 
modularisation 

√ X √  √ √ √ √ √ √ √ X √ √ √ 

Enactment in a 
distributed 
environment 

√ √ √ √ √ √ √  √ √  √ √ √   
Enactment 

Support 
Dynamic allocation of 
resources 

 X  X  X X X √ X X X X X X

Evolution 
Support 

Reflection √ X √ X √ X X X X X X X X X X

Evaluation 
Support 

Collection of 
enactment data 

X X X X X X X X X X X X X √ X

Visual notations √ X X X X X X X √ X X √ X √ √ 
User awareness X X X X X X X X X X X X X X X
Process awareness X X X √ X X √ X X X X X X √ X
Process visualisation X X X X X X X X X X X X X √ X

 
Human 

Dimension 
Support 

Virtual meetings X X X X X X X X X X X X X X X
 
The third perceived deficiency in the surveyed PMLs is in terms of the support for the collection of enactment data. 
Only APEL provides this support, that is, based on the Goal Question Metrics [4].  By supporting collection of 
enactment data, systematic and objective evaluation of a particular process model can be made.  In turn, this 
evaluation could be used as “indicators” to support process improvement. 
 
Finally, the fourth perceived deficiency in the existing PMLs is in terms of providing support for reflection.  The 
main reason that reflection is required as a feature of PML is to support evolution of a process model through a 
meta-process [1, 9, 10].  In doing so, enactment of the existing activities must not be affected.  With reflection, the 
enacting process model can be accessed as data to be modified by the meta-process, hence allowing the evolution of 
a process model to occur while enactment is taking place. 
 
The above analysis has identified a novel combination of features which existing PMLs do not provide, thus 
identifying an area for new PML research.  This combination of features includes the support for: 

 Visual notations 
 User awareness 
 Process awareness 
 Process visualisation  
 Virtual meetings 
 Dynamic allocation of resources 
 Collection of enactment data 
 Reflection 

√

X
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To address the support for the above features, we are investigating a new visual PML called the Virtual Reality 
Process Modeling Language (VRPML) [32-35].  The main features of the language are that it exploits visual 
notations, integrates with a virtual environment in order to address user awareness, process awareness, and 
visualisation issues as well as supports dynamic allocation of resources by manipulating its enactment model.  As far 
as implementation is concerned, the first version of the language definition has been completed (described in [34]), 
and the prototype implementation is still under development. 
 
 
5.0 CONCLUSION 
 
In conclusion, this paper has presented a critical analysis of existing PMLs by identifying each language’s strong 
points and weaknesses.  Hopefully, this analysis forms a useful guideline for the future design of PMLs. 
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