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ABSTRACT 
 
Formal specifications are now being used as a basis for communication, design, testing and verification of a 
software product.  For a formal specification to be used effectively, it must be valid, which means that it must be 
well-formed and reflects the user requirements.  The normal technique for validating a formal specification is by 
using formal reasoning.  However, the use of formal reasoning is extremely tedious and time consuming.  In this 
paper we explore alternative techniques for validating a Z formal specification.  In particular, we consider the 
concept of satisfiability as a weaker alternative to validity and discuss how testing can be used to check the 
satisfiability of a Z formal specification. 
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1.0 INTRODUCTION 
 
Formal specifications are now being used as a basis for communication, design, testing and verification of a 
software product.  For a formal specification to be used effectively, it must be valid.  A valid formal specification 
must fulfill two conditions.  First it must be well-formed, which means that statements in the formal specification 
must conform to the syntax and semantics of the formal specification language.  The second aspect, which is more 
important, is to ensure that the properties of the formal specification reflect the user requirements.  Having a valid 
formal specification is very important because the formal specification is taken as the basis for the software 
development. 
 
A formal specification consists of a state definition and a set of operations.  The initial state defines the set of states 
of the system from which the sequence of operations can be invoked.  An operation defines a set of rules that 
transform the initial state into another state.  The resultant state defines the set of states that satisfy the desired result 
after executing the operation.  An approach for validating a formal specification is to consider the state definition 
and the set of operations as a set of axioms describing a system.  A set of axioms is considered to be valid if it 
fulfills two important criteria: self-consistency and completeness. 
 
Definition: A set of axioms is said to be self-consistent if there is no statement in the formal specification that 
contradicts itself.  A set of axioms is said to be complete if there are enough statements to describe the behaviour of 
the system. 
 
The general problem of determining the self-consistency and completeness of an arbitrary set of axioms is known to 
be undecidable [1].  However, in practice it is normally possible to show that a set of axioms is self-consistent.  A 
standard approach in logic to prove consistency is by interpreting the theory being checked in another theory which 
consistency is assumed or has been established previously.  This approach is cumbersome and unattractive in 
practice.  Another approach is by using the Knuth-Bendix algorithm which determines the consistency of a set of 
axioms by treating the axioms as rewrite rules rather than equalities [2].  This set of axioms is demonstrated to be 
consistent if they exhibit the Church-Rosser property.  Informally, a set of rewrite rules is Church-Rosser if 
whenever one applies a rewrite rule to reduce a term, and then a rule to reduce the resulting term, etc, until there is 
no longer  an applicable rule, the final result does not depend upon the order in which the rules were applied.  An 
introduction to the Knuth-Bendix algorithm and its application in theorem proving can be found in a paper by Dick 
[3]. 
 
To show that a formal specification is complete is more difficult.  The exact meaning of completeness depends upon 
the environment in which one is working.  Generally, a set of axioms is said to be complete if every well-formed 
formula or its negation can be proved as a theorem.  Since it is not really necessary to show completeness for all 
formulas, the concept of sufficient completeness is normally being used. 
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Definition: A set of axioms is said to be sufficiently complete if and only if all theorems related to the external 
behaviours of the axioms can be derived from the axioms. 
 
In the development of formal specification, these external behaviours have to be described by the user. 
 
In the case of a Z formal specification, the self-consistency and completeness of a specification is normally 
determined by proving the initialisation theorem, investigating preconditions for all operational schemas and 
proving properties about the specification [4].  Proof of Initialisation Theorem demonstrates the feasibility of the 
state schema  by demonstrating the validity of the Initialisation Theorem.  This theorem is stated as:  
 
Initialisation Theorem: If State is the state schema of a system, and InitState is the initialisation of the system, 
then 
  ├ ∃State’ . InitState 
 
The theorem states that there really is a State’ system which satisfies the requirement of InitState.  If it is so, the 
state shcema is feasible, otherwise it is not. 
 
Operation describes the mechanism for transforming the system from “initial state” to “final state”.  An operation S 
can be described by using Hoare notation as 
  {P}  S  {Q} 
where P is a predicate describing the set of initial states which can guarantee that if the execution of S begun in any 
of the states, it will reach the final state described by predicate Q.  P is called the precondition of S.  Q in this case is 
called the postcondition.  Since precondition determines the condition under which each operation is applicable, it is 
necessary for the specifier to determine that the precondition for each operation is properly specified.  By 
calculating preconditions, we can identify the range of error conditions which may arise.  The consistency of an 
operation can be determined by checking whether the calculated precondition agrees with our intuition [5]. 
 
We have stated earlier that it is sufficient to determine the completeness of a formal specification by checking that 
all the external behaviour of the specification can be deduced from the specification.  In Z specification, all these 
external behaviours denote the properties of the system being specified.  These properties may be demanded in 
informal requirements for the specification, or they may be identified by the specifier as key points about the 
specification.  In order to show the completeness of a specification, we have to show that these properties can be 
derived from the specification. 
 
 
2.0 APPROACHES FOR VALIDATING A FORMAL SPECIFICATION 
 
The normal approach to validate a formal specification is by formal reasoning.  Since a formal specification is a set 
of axioms, the properties of the system can be considered as theorems to be derived from this set of axioms.  So the 
technique for proving these properties is similar to the technique of proving any mathematical theorem.  In general, 
a proof is constructed by reasoning from the axioms, giving a justification for each step that is made, arriving finally 
at the desired conclusion.  Reasoning may be carried out at many different levels depending on how rigorous we are 
trying to be.  At one end there is an informal proof which progresses are justified by appealing to generally accepted 
facts and to intuition.  At the other end of the scale is the completely formal proof, where a fixed set of rules must 
be strictly applied to justify each step. 
 
However, an experiment of using this approach in software development, conducted by Fields et al [6] indicates 
that: 
 

“Formally verifying specifications and development is extremely tedious and time consuming.  This is not a 
problem specific to mural but is more to do with the level of detail at which one is forced to work when doing 
‘fully formal’ development” 

 
Proponents of a liberal approach in formal methodology have argued that, in most cases it is not necessary to 
demonstrate the validity of the specification by using formal reasoning.  Other techniques for validating formal 
specification can also be used.   
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Formal technical review (FTR) is a class of reviews that include walkthrough, inspection, round-robin reviews and 
other small group technical assessments [7].  Each FTR is conducted as a meeting which focus on a specific part of 
the overall specification.  One type of FTR is called Fagan’s Inspection Method [8] that was developed by Michael 
Fagan at IBM in the 1970s.  FTR is a very effective way for validating specifications of other technical documents 
because although people are good at catching some of their own errors, large classes of errors escape the originator 
more easily than they escape anyone else.  Experiments of applying Fagan’s method by the Seismic Software 
Support Group (SSSG) at Shell Research in the Netherlands, have managed to uncover substantial errors in 11 
software requirement specifications totaling some 500 pages [9].  However, this approach is very informal and 
requires a lot of human effort. 
 
One approach to formalise FTR is the viewpoint resolution technique.  Viewpoint resolution is a process which 
identifies discrepancies between two different viewpoints, classifies and evaluates those discrepancies, and 
integrates the alternative solutions into a single representation [10].  One approach of using this technique is 
comprised of procedures to formalise viewpoints, procedures to analyse the formalised viewpoints, and a special 
language, VWP1, to represent viewpoints1.  Thus the viewpoint analysis strategy is basically a process for finding 
discrepancies between two rule bases, each one representing a different viewpoint. An advantage of the viewpoint 
resolution technique is that it is formal and thus the result of the analysis will be more reliable.  However, this 
technique requires more than one specification which must be produced by different specifiers. 
 
Symbolic execution was first proposed by King [12] as an alternative to the concept of dynamic testing.  Symbolic 
execution of a formal specification is similar to the symbolic execution of a program unit.  The idea of using 
symbolic execution techniques as a method for validating formal specifications has been proposed by Kemmerer 
[13] and a system for symbolic execution of a formal specification has been described by Kneuper [14].  An 
advantage of symbolic execution is that it allows one to deal with infinite domains.  It also lets the specifier to test a 
large number of cases at one time.  The main problem with symbolic execution is that predicates defining the 
current state can be unmanageable after executing a sequence of transforms, especially when the transforms contain 
conditional expressions that cannot be readily resolved.  Another disadvantage of using symbolic execution for 
validating formal specification is the danger that, even though the system might show a mistake, such as referencing 
a wrong variable, the user might not notice it.  This can happen in particular when the results of the symbolic 
execution look too familiar to the original specification. 
 
The testing technique for validating a formal specification executes the specification against test data.  This idea has 
been proposed by Kemmerer [13] and Jalote [15].  For the testing to be done, the formal specifications must be 
executable.  However, most formal specification notations are non-procedural and thus cannot be executed directly.  
So before this type of formal specification can be tested, it must be translated into a procedural form that can be 
executed. 
 
An experiment for testing a formal specification is described by Jalote [15]. In this experiment, Jalote has developed 
a system for testing the completeness of a formal specification.  This system is based on the axiomatic specification 
of an ADT (Abstract Data Type).  The specification language that is employed has two major components: syntactic 
specifications and semantic specifications.  The syntactic specification provides syntactic and type-checking 
information such as variables and their types, domain and range of operations.  Semantic specifications define the 
meaning of the operation by stating, in the form of axioms, the relationships between the operations.  A major cause 
of incompleteness of a specification is that some of the axioms are not provided. 
 
The advantage of testing is that this technique is well understood and thus, as compared with other techniques it is 
easier to use.  Another advantage of this technique is that the ability to execute formal specifications helps the 
specifier in understanding the specification.  The disadvantage of this technique is similar to the disadvantage of 
program testing, that is, it cannot be used to establish whether the program is really correct and free of errors. 
 
 
3.0 A TECHNIQUE FOR TESTING THE SATISFIABILITY OF A Z FORMAL SPECIFICATION 
 
In this section, we describe a technique that can be used to test the validity of a Z formal specification. 
 
As we have mentioned earlier, the purpose of validating a formal specification is to ensure that it reflects the user 
requirements.  Our technique is based on an alternative definition of the validity of a formal specification as given 

                                                           
1   VWP1 is a rule-based language, which is derived from the PRISM language [11] 
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by Kemmerer [13]. 
 
Definition: A formal specification F is considered to be valid if 

∀I  ∈  IMP(F)  .  (∀P  ∈   STATES(I)  .  INIT(P)  ⇒  RESULT(SEQ(P))). 
where IMP(F) is the set of all possible implementations of F, STATES(I) is the set of all possible states for 
implementation I, INIT is the initial state, SEQ is a sequence of operations and RESULT is the resultant state. 
 
This definition implies that a formal specification accurately reflects the user requirements if for every possible 
implementation of that specification, it is relevant to the user requirements.  An implementation is relevant to the 
user requirements if it gives the desired functionality.  That is, given the initial state, it will be transformed by a 
sequence of operations into the resultant state.   
 
However, it is not possible to determine the validity of a formal specification by checking that all possible 
implementations of that specification produce the desired result since this implies that we have to test for all 
implementations of the specification.  So, in practice, a more reasonable approach is to have the specification define 
the minimum critical requirements and to determine whether a formal specification is satisfiable with respect to the 
functional requirements.  We define satisfiability as follows: 
 
Definition: A formal specification is said to be satisfiable with respect to the functional requirements if there is 
some implementation of the specification that gives the desired functionality. 
 
In our approach for checking the satisfiability of a Z formal specification, this specification is implemented by 
translating it into an equivalent Prolog program.  Prolog is selected as the target language since both Z and Prolog 
are based on the first order predicate logic.  The program is done animated against some test data.  The process of 
animating Z specifications by using Prolog has been descibed in [16].  We are arguing that if the Prolog program 
which is equivalent to the specification exhibits the required behaviour as it is defined in the user requirements, then 
it can increase the level of confidence about the validity of the specification.  
 
We have stated that the validity of a Z specification is normally checked by checking the validity of the initialisation 
theorem, by investigating preconditions and also by checking the validity of the properties of the specification.  The 
initialisation theorem and properties of the specification are normally defined in a Z specification as predicates (or 
constraints) to the specification.  The satisfiability of these predicates can be checked by animating them. 
 
 
4.0 A CASE STUDY 
 
To demonstrate the feasibility of the technique, we will use a part of the specification for the Music Library System 
[17] as a case study. 
 
4.1 The Specification – The Music Library System 
 
A music library information system is used to keep information about members of a music library. 
 
The basic data types required by the system are: 
 Person: set of all people 
 Recording: set of all recording items 

Copy: set of all identifiers that can be used to identify the occurrence of all  recording items. 
 

In Z, these basic types are declared as: 
 [Person,Recording,Copy] 
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The state schema for the system is called MusicLib which is described as follows: 
 
         MusicLib 
    member: P Person 
    held: Copy → Recording 
    loan: Copy → Person 
    reservation: Recording → Person 
 
    dom loan ⊆ dom held 
    ran loan ⊆  member 
    dom reservation ⊆ ran held 
    ran reservation ⊆ member 
 
 
There are a number of operations that need to be done by the system. In this case study, we are going to consider 
only two operations: AddNewMember and RemoveMember. 
 
AddNewMember is an operation to add a new member into the system’s database.  Before this operation can be 
done, we have to make sure that the new member is not already in the database. 
 
      AddNewMember 
    ∆ MusicLib 
    mem? : Person 
 
    mem? ∉  member 
    member’ = member ∪  {mem?} 
    held’ = held 
    loan’ = loan 
    resevation’ = reservation 
 
 
RemoveMember is an operation to remove an existing member from the database. 
 
      RemoveMember 
    ∆ MusicLib 
    mem? : Persoan 
 
    mem? ∈  member 
    mem? ∉  ran loan 
    mem? ∉ ran reservation 
    member’ = member \ {mem?} 
    held’ = held 
    loan’ = loan 
    resrvation’ = reservation 
 
 
4.2 Translating a Z specification into Prolog 
 
Each schema of the specification is translated into a Prolog predicate.  We are going to use the translation technique 
as described in [16].  For example the state schema is translated into: 
 pMusicLib :- 
  update(vmember,V312), 
  update(vheld,V313), 
  update(vloan,V314), 
  update(vreservation,V315), 
  dom(V314,V700), 
  dom(V313,V701), 
  subset(V700,V701), 
  ran(V314,V702), 
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  subset(V702,V312), 
  dom(V315,V703), 
  ran(V313,V704), 
  subset(V703,V704), 
  ran(V315,V705), 
  subset(V704,V312), 
  memberof(vmember,V312), 
  memberof(vheld,V313), 
  memberof(vloan,V314), 
  memberof(vreservation,V315). 
 
where “update”, “dom”, “subset”, “ran” and “memberof” are Prolog predicates which we have defined in the 
Zprolog library.  V312 and V313 are examples of variables that are used to store the values of the operation.  The 
values of state variables are kept in Prolog’s database by using the structure.  However, in order to manipulate the 
values of these variables, they must be stored in the form of lists.  So, at the beginning of every schema, it is 
important to extract the data into a list form.  This is done by using Prolog’s predicate “update”.  At the end of the 
schema, new values must be written back into the database by using the predicate “memberof”. 
 
4.3 Proving The Initial State Theorem 
 
The Initial State Theorem for this specification can be stated as: 
 MusicLib InitMusicLib 
 
Based on the state schema, the initial state schema for the system can be defined as: 
 
     InitMusicLib  
    MusicLib 
 
    member = ∅ 
    held = ∅ 
    loan = ∅ 
    reservation = ∅ 
  
 
The satisfiability of the Initial State Theorem can be done by executing pInitMusicLib followed by pMusicLib as 
follows: 
 ? pInitMusicLib, pMusicLib 
 
The reply given by the Prolog interpreter is 
 yes 
indicating that the initial state given is an acceptable initial state. 
 
Suppose that we give a wrong initial state for the system as follows: 
 
     InitMusicLib2 
    MusicLib 
 
    member =  {m1} 
    held = {r1} 
    loan = ∅ 
    reservation = ∅ 
  
 
When we run the command 
 ? pInitMusicLib2, pMusicLib 
the reply is 
 no 
indicating that InitMusicLib2 is not a right initial state for the system. 
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4.4 Precondition Investigation 
 
A precondition for an operation schema AddNewMember can be found by removing the after-state variables and 
outputs from the signature and existentially quantifying them in the predicate.  So 
 
      preAddNewMember 
    member: P Person 
    held : Copy → Recording 
    loan: Copy→ Person 
    reservation: Recording→ Person 
    mem? : Person 
 
      MusicLib’• 
          (mem? ∉ member ∧ 
           member’ = member  ∪ {mem?} ∧ 
           held’ = held ∧ 
           loan’ = loan ∧ 
           resevation’ = reservation) 
 
 
Suppose that based on our intuition, we predict the precondition to be: 
 
     preAddNewMemberExpected  
    MusicLib 
   mem? : Person 
 
    mem?  ∉ member 
  
 
In order to check whether the expected precondition is the right precondition we have defined a Prolog predicate 
called equivalent which can be used to test whether two predicates are equivalent or not.  The definition of 
equivalent is given as: 
 
Definition: Two prolog predicates are equivalent if the effect of executing these predicates is the same. 
 
By using this predicate, we can test our expected precondition by executing the following Prolog query: 
 ? equivalent(pPreAddNewMember(a), pPreAddNewMemberExpected(a),R),  
 write(R). 
 
The reply from Prolog is  
 R = equiv 
indicating that our expected precondition is possibly the right precondition for that operation schema. 
 
However, suppose that we give a wrong expected precondition, for example 
 
    preAddNewMemberExpected2  
    MusicLib 
   mem? : Person 
 
    mem? ∈  member 
 
When we execute 
 ? equivalent(pPreAddNewMember(a), pPreAddNewMemberExpected(a),R),  
 write(R). 
The reply from Prolog is  
 R = not_equiv 
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4.5 Proof of Properties 
 
There are a few properties or external behaviors of the system.  One of them is: 

Successful addition of a new member to the system will increase the number of members in the system. 
 
In Z, this statement can be stated as 
 AddNewMember ∧ Success •  #member’ = #member + 1 
 
To validate this property, we have to convert each schema into Prolog.  The predicate 

#member’ = #member + 1 
 
is also converted into Prolog as: 
 predicate1 :- 
  cardinal(vmember,V301), 
  add(V301,1,V302), 
  cardinal(vmemberP,V303), 
  equal(V303,V302). 
 
We can run a Prolog query as: 
 ? pAddNewMember(a), Success, predicate1. 
 yes 
indicating that the property can be deduced from the specification. 
 
Suppose that we give a wrong property, for example 
 AddNewMember ∧ Success  • #member’ = #member – 1 
 
The predicate 

#member’ = #member - 1 
is converted into Prolog as: 
 
 predicate2 :- 
  cardinal(vmember,V301), 
  minus(V301,1,V302), 
  cardinal(vmemberP,V303), 
  equal(V303,V302). 
 
We can run a Prolog query as: 
 ? pAddNewMember(a), Success, predicate2. 
 no 
indicating that the predicate cannot be deduced from the specification. 
 
 
5.0 IMPLEMENTATION 
 
The system for testing the satisfiability of Z formal specifications, as shown in Fig. 1, consists of the following 
components: 
• Z compiler: the Z compiler, called zc accepts a Z formal specification (written in the Latex format) and does the 

syntax and type checking.  If no errors are found, it will translate the Z specification into an intermediate 
representation. 

• Z to Prolog translator (zp): accepts as input the intermediate representation and translates it into Prolog. 
• Z Prolog Library: consists of Prolog predicates that define all operators in Z. 
• Test predicates: consists of a few Prolog predicates that can be used in the testing process. 
 
 
 
 

 
Fig. 1: Z formal specification testing system 

 

Z 
specification zc zp Intermediate 

representation
Prolog 
predicates 
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The first implementation of zc and zp was first described in [16].  However, zc and zp have been reimplemented so 
that they can be used under Windows operating system. 
 
The specification to be tested needs to be translated into an intermediate representation by using zc.  If there are no 
errors in the specification, the output from zc can be translated into Prolog by using zp.  The testing can be done by 
using a Prolog interpreter for example the Quintus Prolog.  The Z Prolog library together with the Prolog program 
produced by zp need to be called. 
 
 
6.0 CONCLUSION 
 
In this paper we have discussed the use of testing in order to validate Z formal specifications.  We have described 
the technique by using a case study.  Although this technique cannot ensure the validity of a formal specification, it 
can be used to check the satisfiability of a formal specification.  In most cases, especially in the case of non-critical 
software development, the checking of satisfiability is sufficient to ensure that the software can be properly 
developed. 
 
 
REFERENCES 
 
[1] J. V. Guttag, “Notes on Types Abstraction (Version 2)”.  IEEE Trans Software Engineering, Vol. 6 No. 1, 

Jan 1980, pp. 13-23. 
 
[2] D. E Knuth and P. B. Bendix, “Simple Word Problem in Universal Algebra”, in Computational Problem in 

Abstract Algebra, Pergamon Press, 1970, pp. 263-297. 
 
[3] A. J. J. Dick, “An Introduction to Knuth-Bendix Completion”, The Computer Journal, Vol. 34, No. 1, Jan 

1991, pp 2-15. 
 
[4] B. Potter, J. Sinclair and D. Till, An Introduction to Formal Specification and Z.  Prentice-Hall, Inc. 1996. 
 
[5] J. M. Spivey, “Specifying a Real-Time Kernel”.  IEEE Software, Vol. 7, No. 5, Sept 1990, pp. 21-28. 
 
[6] B. Field, and M. Elvang-Gorasson, “A VDM Case Study in Mural”.  IEEE Trans Software Engineering, Vol. 

18, No. 4, April 1992, pp. 279-295. 
 
[7] R. S. Pressman, Software Engineering: A Practioner’s Approach.  McGraw-Hill, Inc. 2001. 
 
[8] M. E. Fagan, “Design and Code Inspection to Reduce Errors in Program Development”.  IBM System 

Journal, Vol. 15, No. 3, 1976, pp. 182-211. 
 
[9] E. P. Doolan, “Experience with Fagan’s Inspection Method”.  Software – Practice and Experience, Vol. 22, 

No. 2, Feb 1992, pp. 173-182. 
 
[10] J. C. S. Leite, and P. A. Freeman, “Requirement Validation Through Viewpoint Resolution”, IEEE Trans 

Software Engineering, Vol. 17, No. 12, Dec 1991, pp. 1253-1269. 
 
[11] S Ohlsson, and P. Langley, PRISM: Tutorial and Manual. Feb 1986.  Dept of Computer Science, Univ of 

California. 
 
[12] J. C. King, “Symbolic Execution and Program Testing”.  Communication of the ACM, Vol. 19, July 1976, pp. 

385-394. 
 
[13] R. A. Kemmerer, “Testing Formal Specifications to Detect Design Errors”.  IEEE Trans Software 

Engineering, Vol. 11, No. 1, Jan 1985, pp. 32-43. 
 
[14] R. Kneuper, “Symbolic Execution as a Tool for Validation of Specification”.  PhD Thesis, Manchester 

University, 1989. 



Testing the Satisfiability of Z Formal Specifications by Using Prolog 

51 

 
[15] P. Jalote, “Testing the Completeness of Specifiations”.  IEEE Trans Software Engineering, Vol. 15, No. 5, 

May 1989, pp. 526-531. 
 
[16] Abdullah bin Mohd Zin and E Foxley, “Software Tools for Animating a Z Specification”.  Sains Malaysiana, 

Vol. 24, No. 4, Dis 1995, pp. 67-89. 
 
[17] A. D. Heath, Introductory Logic and Formal Methods.  Alfred Waller Ltd, Publishers, 1994. 
 
 
BIOGRAPHY 
 
Abdullah Mohd Zin received his PhD from the University of Nottingham, United Kingdom in 1993.  He is 
currently attached as an Associate Professor at the Faculty of Information Science and Technology, Universiti 
Kebangsaan Malaysia. 
 
Zarina Shukur received her PhD from the University of Nottingham, United Kingdom.  She is currently a lecturer 
at the Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia. 
 


