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ABSTRACT 
 
An efficient recursive algorithm has been developed to generate binary trees in B-order from 0-1 sequences.  The 
generation algorithm produces each tree in constant average time O(1).  The ranking and unranking algorithms 
with O(n) time complexity are also presented. 
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1.0 INTRODUCTION 
 
Binary trees are widely used to represent and maintain ordered data of various types.  There have been many 
algorithms published for listing binary trees.  In the tree generation problem initially, we present an equivalence 
between some set of integer sequences and all the binary trees with n internal nodes.  Once the equivalence is 
established, an algorithm is designed to generate all the sequences.  There exists a vast literature on the problem of 
generating binary trees (Gupta, 1993; Lucas, Roelants Van Baronaigien, and Ruskey, 1993; Pallo and Racca, 1985; 
Roelants Van Baronaigien, 1991; Rotem and Varol, 1978; Ruskey and Hu, 1997; Vajnovszki, 1998; Zaks, 1980).  In 
most published papers, the trees are encoded as 0-1 sequences and these sequences are generated (Gupta, 1993; 
Ruskey and Hu, 1977; Zaks, 1980). Any generation algorithm imposes an ordering on the set of trees.  The most 
well known orderings on binary trees are the A-order and the B-order (Pallo and Racca, 1985).  The A-order 
definition uses global information concerning the tree nodes whereas the B-order definition uses local information 
(Zaks, 1980). 
 

In (Ahrabian and Nowzari, 1998), the authors exhibit generating, ranking and unranking algorithms of binary trees 
in Ballot-order, with 0-1 sequences. It is noted that Ballot-order is an order for the codes not for binary trees and this 
order is the same as Ballot sequence (Rotem and Varol, 1978; Rotem, 1975). The running time of their generation 
algorithm is O(1) on the average per tree and for ranking and unranking algorithms is O(n2).  In this paper a new 
generation algorithm in B-order is given and also the new ranking and unranking algorithms with O(n) time 
complexity are presented. 
 
 
2.0 DEFINITIONS AND NOTATIONS 
 
We state here definitions and notations that we shall use throughout this paper.  In a rooted, ordered, unlabeled 
binary tree T, every node except the root has a parent.  Every internal node O has a left and a right child (the order is 
significant), and each of those children is also a tree called subtree of the internal node.  External nodes or leaves  
have no children (Knuth, 1973).  We denote by TL and TR  the left and right subtrees of tree T ≠  , and |T | shows 
the number of nodes in the tree T.  Let r

T
 be the degree of the root of tree T, i.e. r

T
 = 0 if T  and r

T
 = 2 otherwise. 

 
Definition 1.  Two trees T and T′ are in B-order, T<T′ if: 
 

1) r
T
  < r

T
 , or 

2) r
T
 = r

T’
  and TL < LT ′ , or 

3) r
T
 = r

T’
  and TL  = LT ′  and  T

R
 < RT ′ . 
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Definition 2.   Two trees T and T′ are in A-order, T<T′ if: 

 
1)  | T |<|T′ |,  or 
2)  |T |=|T′ |, and T

L
 < T

L
′ , or  

3)  |T |=|T′ |  and T
L
 = T

L
′ , and  T

R
 < T

R
′ , 

 
It should be noted that we use Definition 1 throughout this work.  Definition 1 and 2 are not equivalent.  For 
example; T<T′ (by Definition 2) but T′<T (by Definition 1) for the trees T and T′ in Fig. 1. 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 1: Ordering of two trees T and T′ 

 
Definition 3.  Let T be a binary tree of n internal nodes; it is represented by n ones and n zeros.  This code is 
constructed by labeling the internal nodes of the tree by 1, and the external nodes by 0, and then traversing the 
binary tree by pre-order (staring from the root, for each node recursively visit a node, move left, and move right).  
Since the last digit is always zero, therefore this digit is discarded. 
 
For example the corresponding code for the tree in Fig. 2, is represented with 11100011001100 (as we can see by 
Definition 3, last zero is ignored). 

 
Fig. 2: A7-node binary tree 

 
Theorem 1. A 0-1 sequence n

ixX 2
1}{=  is feasible iff: 

1) it has n 0's and n 1's, and 
2) the number of ones in any prefix the sequence is equal to 

or greater than the number of zeros (dominating property). 
 

Theorem 2. The following sets are in a 1-1 correspondence with one another: 
1) all binary trees with n internal nodes, 
2) all 0-1 sequences n

ixX 2
1}{=  which are feasible. 
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It is clear that the number of the above sequences is equal to  
 









+

=
n
n

n
Cn

2
1

1
. 

 
Let Xn be the set of all bit strings with n zeros and n ones having the dominating property.  The elements of Xn are 
also a classic way to represent well-formed parentheses (W.F.P in short) strings (Lucas, Roelants Van Baronaigien, 
and Ruskey, 1993; Bultena and Ruskey, 1998; Germain and Pallo, 1996).  By definition, W.F.P is the word of the 
language generated by the grammar 

λ||)( SSSS → , 
 
where λ is the empty word. We can represent a W.F.P. string with n left and n right parentheses by a 0-1 sequence, 
which is obtained by replacing the left parentheses by a 1 and the right parentheses by a 0 (Zaks, 1980; Er, 1983). 
 
 
3.0 GENERATION ALGORITHM 
 
In this section, a recursive algorithm is given to produce a list of tree sequences.  The algorithm produces the tree 
sequences by interchanging any adjacent 10 by 01.  The generation sequence starts with the string nn 01 .  By the 
first possible right interchange the n th 1 in the string is shifted one position to the right and the next sequence is 
obtained, continuously the other sequences are generated by shifting this 1 until we get to 11 01 −− nn  1 0.  Later we 
repeat the above process for the remaining 1's. 
 
The generation algorithm GenX-Seq illustrated in Fig. 3 has double underlying recursions and initially is called with: 

,1,,01 −=== nlnkX nn  and 1=q .  The construction process is demonstrated by the recursion tree Tn 
(for n = 4) in Fig. 4. 

 
Procedure GenX-Seq (X: Xseq ; k, l, q : Integer ) ; 
Begin  

   If( nk < )Then Begin 
    lknx −−2  := 0 ; 
    12 +−− lknx  := 1 ; 
   End ; 
   WriteSeq ( X ); 
   If( 1>k )Then Begin 
    GenX-Seq( ,X ),1,1 lk − ; 
    If )( kl < And )( ql <  Then 
       GenX-Seq( ,X ),1, qlk + ; 
   End; 
  End; 
 

Fig. 3: Generation algorithm in the reverse order of B-order 
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Fig. 4: The recursion binary tree Tn , for n = 4 

 
 
4.0 ANALYSIS OF THE ALGORITHM 
 
With regard to the underlying recursions in the algorithm the time complexity of the algorithm, can be obtained 
from the following recursive formula: 

 









−+
>>++−+

=
=

.),1,1(1
,),1,(),1,1(1

,11
),,(

otherwiselkGx
lqandlkifqlkGxlkGx

kif
qlkGx  

 
Where ),,( qlkGx denotes the number of times that the algorithm GenX-Seq is recalled with the parameters 'k' , 'l' , 
and 'q' .  Here 1 stands for the unique generated code in each recalling of the algorithm.  Since in the first time the 
algorithm is called with k = n , l = n - 1, and q = 1, therefore we can write: Gx (k,  l,  1) = 1 + Gx (k - 1, 1,  l). 
 
Lemma 1.  For ,and1 klk ≤≥  
 

∑
<
=

−+=
l

kj
j

jkGxlkGx
1

).1,,1(1)1,,(  

 
Since the third parameter )1,,( lkGx is a constant value, therefore we denote it with k

lG , and we have: 
 

,1
1

1∑
<
=

−+=
l

kj
j

k
j

k
l GG  

 
where 1

1G  is equal to 1. 

11110000

11101000

11011000

10110100

10111000

11001100

11100100

1101010011100010 

11010010 

101011001011001011001010

10101010
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Now if we show that n
nG 1−  is equal to nC  the verification of the algorithm is proven. 

 
Lemma 2.  For 1≥k  and kl ≤  
 

1
1

−
− += k

l
k
l

k
l GGG , 

 
where 10 =kG . 
 
Theorem 3.  The total number of generated codes by Gen X-Seq is equal to nC . 
 
Proof:  Employing Lemma 2, we can write: 
 

1
1

+
+−








 +
=

k
lk

l
lk

G k
l . 

 
Clearly 
 









+

==− n
n

n
CG n

n
n

2
1

1
1 .  

 
In order to generate nC  sequences, the algorithm is repeated nC  times, and each time one code is generated.  
Therefore the algorithm generates each sequence in constant average time O(1). 
 
 
5.0 RANKING AND UNRANKING ALGORITHMS 
 
To represent a binary tree as an integer, we need to know its index with respect to the generation scheme of the 
procedure GenX-Seq.  This is achieved by the ranking algorithm.  The ordering of the generation is according to the 
pre-order traversal of the recursion binary tree Tn.  This recursion binary tree can be transformed to an equivalent 
recursion tree.  The equivalent recursion tree T'n to the recursion binary tree Tn for n = 4 is illustrated in Fig. 5. 

 

 

 

 

 

 
 

Fig. 5: The recursion tree T'n transformed from Tn, for n = 4 
 
Clearly, pre-order traversal of the recursion binary tree is the same as the depth-first search of the equivalent 
recursion tree, here moving to the left children of the recursion tree Tn is equivalent to moving down on the levels of 
recursion tree T'n , and moving to the right children is equivalent to moving on the adjacent subtrees.  The first level 
of the tree shows all possible right shifts of the first zero, and the second level shows all possible right shifts of the 

10110100 10101100 1100110011010100

10111000

11100100 

10101010 10110010110010101101001011100010 

11011000

11111000

11101000 
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second zero, and so on.  Clearly, the number of nodes in the jth level of tree T'n is equal to the number of nodes in 
the jth subtree of T'n.  
 
In order to compute the rank of a tree, we count the number of generated trees before this tree.  From Lemma 2, kG0  
is equal to 1, therefore 

,
0

1∑
<
=

−=
l

kj
j

k
j

k
l GG  

and 

.
1

0

1
1 ∑

−

=

−
− ==

n

j

n
j

n
nn GGC  

 
By the definition of k

lG  and considering T'n, it is clear that k
lG  counts the number of sequences beginning with k - 

l + 1 consecutive ones.  Therefore we can easily observe that 11
0 =−nG  counts the root of T'n and 

)11(1 −≤≤− njG n
j counts the number of nodes in the jth subtree of T'n.  Let im  denotes the number of ones in 

the right side of the ith zero of any sequence.  The numbers ),,( 1 nmm L  would be used for computing the rank of 

a tree corresponding to the sequence.  Any tree code appears in the 1m th subtree of T'n and ∑ −

=
−1

0
11m

j
n
jG would 

show the number of nodes of generated codes in the previous subtree.  If we consider the 1m th subtree as an 

independent tree then 2m  will show that the tree code has appeared in the 2m th subtree in the tree and recursively 

∑ −

=
−1

0
22m

j
n
jG  will show the number of generated codes before this subtree and so on.  With regard to the value of 

r, the values of im  can be obtained.  Consequently we can write: 

∑∑
−

=

−

=

−+=
1

1

1

0
1

n
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m

j

in
j

i

Gr . 

 

Using Lemma 2, we have ∑ −

=
−
−

− =
1

0 1
i

i

m

j
in

m
in

j GG  , and we can write : 

∑
−

=

−
−+=

1

1
11

n

i

in
mi

Gr . 

 
Using the above formula, an algorithm for computing the rank of a tree sequence can be implemented to run in time 
O(n).  This algorithm is given in Fig. 6.  It is assumed that the values of ),1( nlkGk

l ≤≤ , are computed in 
advance and stored in a two dimensional array. 
 
The unranking algorithm given in Fig. 7 performs the reverse operations of the ranking algorithm.  For a given r as a 
rank, the corresponding sequence ),,( 21 nxxX L= is computed by the following operations: initially all ix 's 

)21( ni ≤≤ are set to zero, and we let  m = n - 1, k = n, and for any )21( nii ≤≤  the values of k
mG  are 

compared with r and if r> k
mG  then ix  is set to 0 and r is changed to r - k

mG  and k is decremented, otherwise ix  is 
set to 1 and m is decremented.  Considering the above discussion, the complexity of the unranking algorithm is O(n). 
 
 
6.0 CONCLUSION 
 
An efficient recursive algorithm for the generation of the 0-1 sequences in B-order is presented.  The algorithm has 
two underlying recursions and a binary recursion tree presents the construction process of the generation algorithm.  
The maximum depth of the underlying recursion tree in the algorithm is O(n), therefore the stack space required for 
the algorithm is also O(n).  Each node of the recursion tree shows a sequence generation and the total number of 
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nodes in the recursion tree is equal to Cn.  Therefore, the algorithm generates each sequence in constant average time 
O(1).  The time complexity of the ranking and unranking algorithms is O(n). 
 

Function Rank (X: Xseq ) :  Integer  ; 
Var r, m, k, i : Interger ; 
Begin  

 
;1:;1:

;:;0:
−==

==
nmi
nkr

 

   While )2( ni ≤  And )0( ≥m  Do Begin 

   If )1( =ix Then 

          1: −=mm ; 
      Else Begin 

      ;: k
mGrr +=  

  ;1: −= kk  
   End ; 
   ;1: += ii  
     End ; 
     Rank ;1: += r  
  End; 
 

Fig. 6: Rank algorithm 
 
 
  Function Unrank (r : Integer ) : Xseq  ; 
  Var X : Xseq  ;  k , m , i  : Integer ; 

Begin  
 For 1:=i  To n2  Do 

    ;0:=ix  

 1:=i ; 1: −= nm ; nk =: ; 

 While )2( ni ≤  And )0( ≥m  Do Begin 

    If )( k
mGr > Then Begin 

    ;0=ix  

     k
mGrr −=:  ; 

    1: −= kk ; 
   End 
   Else Begin 

     1:=ix  ; 

     1: −= mm  ; 
   End : 

    1: += ii  ; 
 End ; 
 Unrank :=X ; 
End ; 

 
Fig. 7: Unrank algorithm 
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