
Malaysian Journal of Computer Science, Vol. 17 No. 1, June 2004, pp. 24-31

24

GENERATION OF BINARY TREES IN B-ORDER FROM (0-1) SEQUENCES

Hayadeh Ahrabian
Department of Mathematics and Computer Science

Faculty of Science, University of Tehran
Tehran, Iran

Tel. and Fax: 6412178
email: ahrabian@khayam.ut.ac.ir

Abbas Nowzari-Dalini
Department of Mathematics and Computer Science

Faculty of Science, University of Tehran
Tehran, Iran

Tel. and Fax: 6412178
email: nowzari@khayam.ut.ac.ir

ABSTRACT

An efficient recursive algorithm has been developed to generate binary trees in B-order from 0-1 sequences. The
generation algorithm produces each tree in constant average time O(1). The ranking and unranking algorithms
with O(n) time complexity are also presented.

Keywords: Binary trees, B-order, 0-1 Sequences, Recursion

1.0 INTRODUCTION

Binary trees are widely used to represent and maintain ordered data of various types. There have been many
algorithms published for listing binary trees. In the tree generation problem initially, we present an equivalence
between some set of integer sequences and all the binary trees with n internal nodes. Once the equivalence is
established, an algorithm is designed to generate all the sequences. There exists a vast literature on the problem of
generating binary trees (Gupta, 1993; Lucas, Roelants Van Baronaigien, and Ruskey, 1993; Pallo and Racca, 1985;
Roelants Van Baronaigien, 1991; Rotem and Varol, 1978; Ruskey and Hu, 1997; Vajnovszki, 1998; Zaks, 1980). In
most published papers, the trees are encoded as 0-1 sequences and these sequences are generated (Gupta, 1993;
Ruskey and Hu, 1977; Zaks, 1980). Any generation algorithm imposes an ordering on the set of trees. The most
well known orderings on binary trees are the A-order and the B-order (Pallo and Racca, 1985). The A-order
definition uses global information concerning the tree nodes whereas the B-order definition uses local information
(Zaks, 1980).

In (Ahrabian and Nowzari, 1998), the authors exhibit generating, ranking and unranking algorithms of binary trees
in Ballot-order, with 0-1 sequences. It is noted that Ballot-order is an order for the codes not for binary trees and this
order is the same as Ballot sequence (Rotem and Varol, 1978; Rotem, 1975). The running time of their generation
algorithm is O(1) on the average per tree and for ranking and unranking algorithms is O(n2). In this paper a new
generation algorithm in B-order is given and also the new ranking and unranking algorithms with O(n) time
complexity are presented.

2.0 DEFINITIONS AND NOTATIONS

We state here definitions and notations that we shall use throughout this paper. In a rooted, ordered, unlabeled
binary tree T, every node except the root has a parent. Every internal node O has a left and a right child (the order is
significant), and each of those children is also a tree called subtree of the internal node. External nodes or leaves
have no children (Knuth, 1973). We denote by TL and TR the left and right subtrees of tree T ≠ , and |T | shows
the number of nodes in the tree T. Let r

T
 be the degree of the root of tree T, i.e. r

T
 = 0 if T and r

T
 = 2 otherwise.

Definition 1. Two trees T and T′ are in B-order, T<T′ if:

1) r
T
 < r

T
 , or

2) r
T
 = r

T’
 and TL < LT ′ , or

3) r
T
 = r

T’
 and TL = LT ′ and T

R
 < RT ′ .

Generation of Binary Trees in B-Order from (0-1) Sequences

25

Definition 2. Two trees T and T′ are in A-order, T<T′ if:

1) | T |<|T′ |, or
2) |T |=|T′ |, and T

L
 < T

L
′ , or

3) |T |=|T′ | and T
L
 = T

L
′ , and T

R
 < T

R
′ ,

It should be noted that we use Definition 1 throughout this work. Definition 1 and 2 are not equivalent. For
example; T<T′ (by Definition 2) but T′<T (by Definition 1) for the trees T and T′ in Fig. 1.

Fig. 1: Ordering of two trees T and T′

Definition 3. Let T be a binary tree of n internal nodes; it is represented by n ones and n zeros. This code is
constructed by labeling the internal nodes of the tree by 1, and the external nodes by 0, and then traversing the
binary tree by pre-order (staring from the root, for each node recursively visit a node, move left, and move right).
Since the last digit is always zero, therefore this digit is discarded.

For example the corresponding code for the tree in Fig. 2, is represented with 11100011001100 (as we can see by
Definition 3, last zero is ignored).

Fig. 2: A7-node binary tree

Theorem 1. A 0-1 sequence n

ixX 2
1}{= is feasible iff:

1) it has n 0's and n 1's, and
2) the number of ones in any prefix the sequence is equal to

or greater than the number of zeros (dominating property).

Theorem 2. The following sets are in a 1-1 correspondence with one another:
1) all binary trees with n internal nodes,
2) all 0-1 sequences n

ixX 2
1}{= which are feasible.

 Ahrabian and Dalini

 26

It is clear that the number of the above sequences is equal to









+

=
n
n

n
Cn

2
1

1
.

Let Xn be the set of all bit strings with n zeros and n ones having the dominating property. The elements of Xn are
also a classic way to represent well-formed parentheses (W.F.P in short) strings (Lucas, Roelants Van Baronaigien,
and Ruskey, 1993; Bultena and Ruskey, 1998; Germain and Pallo, 1996). By definition, W.F.P is the word of the
language generated by the grammar

λ||)(SSSS → ,

where λ is the empty word. We can represent a W.F.P. string with n left and n right parentheses by a 0-1 sequence,
which is obtained by replacing the left parentheses by a 1 and the right parentheses by a 0 (Zaks, 1980; Er, 1983).

3.0 GENERATION ALGORITHM

In this section, a recursive algorithm is given to produce a list of tree sequences. The algorithm produces the tree
sequences by interchanging any adjacent 10 by 01. The generation sequence starts with the string nn 01 . By the
first possible right interchange the n th 1 in the string is shifted one position to the right and the next sequence is
obtained, continuously the other sequences are generated by shifting this 1 until we get to 11 01 −− nn 1 0. Later we
repeat the above process for the remaining 1's.

The generation algorithm GenX-Seq illustrated in Fig. 3 has double underlying recursions and initially is called with:

,1,,01 −=== nlnkX nn and 1=q . The construction process is demonstrated by the recursion tree Tn
(for n = 4) in Fig. 4.

Procedure GenX-Seq (X: Xseq ; k, l, q : Integer) ;
Begin

 If(nk <)Then Begin
 lknx −−2 := 0 ;
 12 +−− lknx := 1 ;
 End ;
 WriteSeq (X);
 If(1>k)Then Begin
 GenX-Seq(,X),1,1 lk − ;
 If)(kl < And)(ql < Then
 GenX-Seq(,X),1, qlk + ;
 End;
 End;

Fig. 3: Generation algorithm in the reverse order of B-order

Generation of Binary Trees in B-Order from (0-1) Sequences

27

Fig. 4: The recursion binary tree Tn , for n = 4

4.0 ANALYSIS OF THE ALGORITHM

With regard to the underlying recursions in the algorithm the time complexity of the algorithm, can be obtained
from the following recursive formula:









−+
>>++−+

=
=

.),1,1(1
,),1,(),1,1(1

,11
),,(

otherwiselkGx
lqandlkifqlkGxlkGx

kif
qlkGx

Where),,(qlkGx denotes the number of times that the algorithm GenX-Seq is recalled with the parameters 'k' , 'l' ,
and 'q' . Here 1 stands for the unique generated code in each recalling of the algorithm. Since in the first time the
algorithm is called with k = n , l = n - 1, and q = 1, therefore we can write: Gx (k, l, 1) = 1 + Gx (k - 1, 1, l).

Lemma 1. For ,and1 klk ≤≥

∑
<
=

−+=
l

kj
j

jkGxlkGx
1

).1,,1(1)1,,(

Since the third parameter)1,,(lkGx is a constant value, therefore we denote it with k

lG , and we have:

,1
1

1∑
<
=

−+=
l

kj
j

k
j

k
l GG

where 1

1G is equal to 1.

11110000

11101000

11011000

10110100

10111000

11001100

11100100

1101010011100010

11010010

101011001011001011001010

10101010

 Ahrabian and Dalini

 28

Now if we show that n
nG 1− is equal to nC the verification of the algorithm is proven.

Lemma 2. For 1≥k and kl ≤

1
1

−
− += k

l
k
l

k
l GGG ,

where 10 =kG .

Theorem 3. The total number of generated codes by Gen X-Seq is equal to nC .

Proof: Employing Lemma 2, we can write:

1
1

+
+−








 +
=

k
lk

l
lk

G k
l .

Clearly









+

==− n
n

n
CG n

n
n

2
1

1
1 .

In order to generate nC sequences, the algorithm is repeated nC times, and each time one code is generated.
Therefore the algorithm generates each sequence in constant average time O(1).

5.0 RANKING AND UNRANKING ALGORITHMS

To represent a binary tree as an integer, we need to know its index with respect to the generation scheme of the
procedure GenX-Seq. This is achieved by the ranking algorithm. The ordering of the generation is according to the
pre-order traversal of the recursion binary tree Tn. This recursion binary tree can be transformed to an equivalent
recursion tree. The equivalent recursion tree T'n to the recursion binary tree Tn for n = 4 is illustrated in Fig. 5.

Fig. 5: The recursion tree T'n transformed from Tn, for n = 4

Clearly, pre-order traversal of the recursion binary tree is the same as the depth-first search of the equivalent
recursion tree, here moving to the left children of the recursion tree Tn is equivalent to moving down on the levels of
recursion tree T'n , and moving to the right children is equivalent to moving on the adjacent subtrees. The first level
of the tree shows all possible right shifts of the first zero, and the second level shows all possible right shifts of the

10110100 10101100 1100110011010100

10111000

11100100

10101010 10110010110010101101001011100010

11011000

11111000

11101000

Generation of Binary Trees in B-Order from (0-1) Sequences

29

second zero, and so on. Clearly, the number of nodes in the jth level of tree T'n is equal to the number of nodes in
the jth subtree of T'n.

In order to compute the rank of a tree, we count the number of generated trees before this tree. From Lemma 2, kG0
is equal to 1, therefore

,
0

1∑
<
=

−=
l

kj
j

k
j

k
l GG

and

.
1

0

1
1 ∑

−

=

−
− ==

n

j

n
j

n
nn GGC

By the definition of k

lG and considering T'n, it is clear that k
lG counts the number of sequences beginning with k -

l + 1 consecutive ones. Therefore we can easily observe that 11
0 =−nG counts the root of T'n and

)11(1 −≤≤− njG n
j counts the number of nodes in the jth subtree of T'n. Let im denotes the number of ones in

the right side of the ith zero of any sequence. The numbers),,(1 nmm L would be used for computing the rank of

a tree corresponding to the sequence. Any tree code appears in the 1m th subtree of T'n and ∑ −

=
−1

0
11m

j
n
jG would

show the number of nodes of generated codes in the previous subtree. If we consider the 1m th subtree as an

independent tree then 2m will show that the tree code has appeared in the 2m th subtree in the tree and recursively

∑ −

=
−1

0
22m

j
n
jG will show the number of generated codes before this subtree and so on. With regard to the value of

r, the values of im can be obtained. Consequently we can write:

∑∑
−

=

−

=

−+=
1

1

1

0
1

n

i

m

j

in
j

i

Gr .

Using Lemma 2, we have ∑ −

=
−
−

− =
1

0 1
i

i

m

j
in

m
in

j GG , and we can write :

∑
−

=

−
−+=

1

1
11

n

i

in
mi

Gr .

Using the above formula, an algorithm for computing the rank of a tree sequence can be implemented to run in time
O(n). This algorithm is given in Fig. 6. It is assumed that the values of),1(nlkGk

l ≤≤ , are computed in
advance and stored in a two dimensional array.

The unranking algorithm given in Fig. 7 performs the reverse operations of the ranking algorithm. For a given r as a
rank, the corresponding sequence),,(21 nxxX L= is computed by the following operations: initially all ix 's

)21(ni ≤≤ are set to zero, and we let m = n - 1, k = n, and for any)21(nii ≤≤ the values of k
mG are

compared with r and if r> k
mG then ix is set to 0 and r is changed to r - k

mG and k is decremented, otherwise ix is
set to 1 and m is decremented. Considering the above discussion, the complexity of the unranking algorithm is O(n).

6.0 CONCLUSION

An efficient recursive algorithm for the generation of the 0-1 sequences in B-order is presented. The algorithm has
two underlying recursions and a binary recursion tree presents the construction process of the generation algorithm.
The maximum depth of the underlying recursion tree in the algorithm is O(n), therefore the stack space required for
the algorithm is also O(n). Each node of the recursion tree shows a sequence generation and the total number of

 Ahrabian and Dalini

 30

nodes in the recursion tree is equal to Cn. Therefore, the algorithm generates each sequence in constant average time
O(1). The time complexity of the ranking and unranking algorithms is O(n).

Function Rank (X: Xseq) : Integer ;
Var r, m, k, i : Interger ;
Begin

;1:;1:

;:;0:
−==

==
nmi
nkr

 While)2(ni ≤ And)0(≥m Do Begin

 If)1(=ix Then

 1: −=mm ;
 Else Begin

 ;: k
mGrr +=

 ;1: −= kk
 End ;
 ;1: += ii
 End ;
 Rank ;1: += r
 End;

Fig. 6: Rank algorithm

 Function Unrank (r : Integer) : Xseq ;
 Var X : Xseq ; k , m , i : Integer ;

Begin
 For 1:=i To n2 Do

 ;0:=ix

 1:=i ; 1: −= nm ; nk =: ;

 While)2(ni ≤ And)0(≥m Do Begin

 If)(k
mGr > Then Begin

 ;0=ix

 k
mGrr −=: ;

 1: −= kk ;
 End
 Else Begin

 1:=ix ;

 1: −= mm ;
 End :

 1: += ii ;
 End ;
 Unrank :=X ;
End ;

Fig. 7: Unrank algorithm

Generation of Binary Trees in B-Order from (0-1) Sequences

31

REFERENCES

[1] D. K. Gupta, “A Note on The Generation of Binary Trees”. International Journal of Computer Mathematics,

Vol. 48, 1993, pp. 149-152.

[2] J. Lucas, D. Roelants Van Baronaigien and F. Ruskey, “On Rotations and the Generation of Binary Trees”.

Journal of Algorithms, Vol. 15 No. 3, 1993, pp. 343-366.

[3] J. Pallo and R. Racca, “A Note on Generating Binary Tree in A-order and B-order”. International Journal of

Computer Mathematics, Vol. 18, 1985, pp. 27-39.

[4] D. Roelants Van Baronaigien, “A Loopless Algorithm for Generating Binary Trees Sequences”. Information

Processing Letters, Vol. 39 No. 4, 1991, pp. 189-194.

[5] D. Rotem and Y. L. Varol, “Generation of Binary Trees from Ballot-sequences”. Journal of the ACM, Vol.

25 No. 3, 1978, pp. 396-404.

[6] F. Ruskey and T. C. Hu, “Generating Binary Tree Lexicographically”. SIAM Journal on Computing, Vol. 6

No. 4, 1977, pp. 745-758.

[7] V. Vajnovszki, “On The Loopless Generation of Binary Tree Sequences”. Information Processing Letters,

Vol. 68 No. 3, 1998, pp. 113-117.

[8] S. Zaks, “Lexicographic Generation of Ordered Tree”. Theoretical Computer Science, Vol. 10 No. 1, 1980,

pp. 63-82.

[9] H. Ahrabian and A. Nowzari-Dalini, “On the Generation of Binary Trees, from (0-1) Codes”. International

Journal of Computer Mathematics, Vol. 69, 1998, pp. 243-251.

[10] D. Rotem, “On a Correspondence Between Binary Tree and Certain Type of Permutation”. Information

Processing Letters, Vol. 4 No. 3, 1975, pp. 58-61.

[11] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, (2nd ed.), Reading, MA,

Addison-Wesley, 1973.

[12] B. Bultena and F. Ruskey, “An Eades-McKay Algorithm for Well-Formed Parentheses String”. Information

Processing Letters, Vol. 68 No. 5, 1998, pp. 255-259.

[13] C. Germain and J. Pallo, “Two Shortest Path Metrics on Well-Formed Parentheses Strings”. Information

Processing Letters, Vol. 60 No. 6, 1996, pp. 283-287.

[14] M. C. Er, “A Note on Generating Well-Formed Parentheses String Lexicographically”. The Computer

Journal, Vol. 26 No. 3, 1983, pp. 205-207.

BIOGRAPHY

Hayadeh Ahrabian is an Associate Professor of the Department of Mathematics and Computer Science, University
of Tehran and is currently the Director of Graduate Studies and Director of the Computer Science Group in this
department. Her research interests include combinatorial algorithms, parallel algorithms, DNA computing, and
genetic algorithms.

Abbas Nowzari-Dalini received his Ph.D. in computer science from the University of Tehran in 2004. He has been
a lecturer in the Department of Mathematics and Computer Science, University of Tehran for nearly 10 years. His
research interests include combinatorial algorithms, parallel algorithms, DNA computing, neural networks, and
computer networks.

