
Malaysian Journal of Computer Science, Vol. 15 No. 2, December 2002, pp. 1-16

1

PARALLEL IMPLEMENTATION ON IMPROVED ERROR SIGNAL OF BACKPROPAGATION
ALGORITHM

Teh Noranis Mohd Aris
Department of Computer Science

Faculty of Computer Science and Information
Technology

Universiti Putra Malaysia
43400 UPM Serdang, Selangor

email: nuranis@fsktm.upm.edu.my

Md. Nasir Sulaiman
Department of Computer Science

Faculty of Computer Science and Information
Technology

Universiti Putra Malaysia
43400 UPM Serdang, Selangor
email: nasir@fsktm.upm.edu.my

Md. Yazid Mohd Saman
Kolej Universiti Terengganu

Universiti Putra Malaysia
email: yazid@uct.edu.my

Mohamed Othman
Department of Communication Technology and

Networking
Faculty of Computer Science and Information

Technology
Universiti Putra Malaysia

43400 UPM Serdang, Selangor
email: mothman@fsktm.upm.edu.my

ABSTRACT

Improved error signal of the backpropagation (BP) algorithm on single processors has shown a tremendous result
compared to its counterpart [1]. Further study on the improved BP algorithm is carried out on many processors,
which is implemented using the Sequent Symmetry SE30 machine. Data partitioning method, with columnwise block
striped and batch mode weight updating strategy, is applied on the BP algorithms. Twenty-six patterns consisting of
uppercase letters from ‘A’ to ‘Z’ are tested in terms of speed and recognition rates. The parallel version of the BP
algorithm produces good speedup as the numbers of processors are increased and a 100% recognition rate for
trained and untrained data is achieved.

Keywords: Standard BP, Improved BP, Mean Squared Error (MSE), Speedup, Data Partitioning, Columnwise

Block striped, Batch Mode Weight Updating

1.0 INTRODUCTION

Execution speed is very important in computational processing. A fast computational process is considered as an
effective and efficient system. Scientific and engineering problems deal with large volumes of data. These data can
be processed faster using parallel computers.

Neural network (NN) is one of the artificial intelligence areas that attempts to imitate the computational power of
the human brain [2]. Basically, NNs are mathematical models of information processing. NN has the ability to
perform numerous learning tasks such as recognition, feature extraction, statistical clustering and prediction. BP is
one of the popular NN algorithms [2]. The BP training process is time consuming. The two approaches used to
speed up the BP training process are improving the BP algorithm and implementing the BP algorithm using parallel
machines.

Shamsuddin [1, 3] has proposed an improved error signal for the BP algorithm running on a single CPU system. A
modified error function has been generated to increase the convergence rates of the BP training, replaced by the
MSE used in standard BP. The epoch size of the improved BP is less than the epoch size of the standard BP. As a
result, the execution time of the improved BP is much faster than the standard BP. However, as the input data sets
become larger, the execution time of the improved BP is slower. In this study, the improved BP is implemented on
parallel processors to produce a much faster version of the BP algorithm.

Aris, Sulaiman, Saman and Othman

1.1 Standard BP and Improved BP

BP is a multilayer feed forward network. It is also known as the gradient descent method to minimise the MSE of
the output computed by the network. Typically, the network consists of an input layer, one or more hidden layers of
computation nodes, and an output layer of computation nodes as illustrated in Fig. 1.

BP is a type of supervised learning network or is also known as learning with a teacher. In supervised learning, the
process of adjusting the weights in a NN is given a learning algorithm to follow. The target output for each training
set of input vectors is presented to the network. This process involves many cycles through the training data.
Besides, unsupervised learning is a type of learning that takes place without a teacher. In supervised learning
network, a learning algorithm may be given but target outputs are not.

The BP training algorithm
Step 1: Set up the BP n

Step 2: Read the input p

Step 3: Randomise weig

Step 4: Calculate activa




= ∑j fO

where, wkj is the weight fro

Step 5: Calculate the w

jiw αδ=∆
where, α is the learning r

Update the weights from o

ji wtw =)(
where, wji(t) is the weight

If a momentum term is add

)1(tw ji =+

where,

Input layer nodes Hidden layer nodes Output layer nodes
 (i1…..ia) (h1…..hb) (o1…..oc)

 .
 . . .
 . . .
 . .

 weights x weights y

i1

i2

ia

h1

hb

o1

o2

oc
2

Fig. 1: BP Architecture

 is as follows [1]:
etwork by defining the number of input, hidden and output nodes.

attern file and the target file.

hts and biases.

tion function for the hidden and output layer by using the following formula:




−

j
jikjow θ

m output Oi, θ j is the bias and f is the sigmoid function.

eight correction term jiw∆ from unit j to unit i using:

ij o

ate and jδ is the error gradient at unit j.

utput to hidden layer using the following formula:

jiji wt ∆+−)1(

from unit j to i at iteration t.

ed, the above equations change as follows:

)(
)(

)(tw
w

wE
tw ji

ji

j
ji ∆+

∂
∂

+ β
α

Parallel Implementation on Improved Error Signal of Backpropagation Algorithm

3

)1(+tw ji is the update weight from node j to node i at time t,

)(tw ji is the weight from node j to node i at time t,

∑=
∂

∂
,

)(
jj

ji

o
w

wE δ

))((jjjj otnetf −′=δ is the error signal for the output node,

∑′= jijijj wnetfo δ)(is the output layer output,

∆wji(t) = wji(t) - wji(t - 1) is the weight change at time t, β is the momentum term,

αk, (k = 1, 2, …, n) is the learning rate and depend on .
)(

jiw

wE

∂
∂

Step 6: Calculate the error term for the output layer as follows:

))(1(kkkkk otoo −−=δ

where ko is the actual output and kt is the target output unit k.

Calculate the error term for the hidden layer as follows:

∑−=
k

kjkjjk woo δδ)1(

where jδ is the error at unit k from hidden unit j.

Step 7: Compute the error function using the Mean Squared Error (MSE) formula:

∑ −=
k

kjkj otE 2)(
2

1

where E is the error function
tkj is the target output from node k to node j,
okj is the network output from node k to node j.
Test if E < error tolerance specified then stop the training process
else repeat steps 4 to 7.

The improved BP is produced, by modifying an error function of [4] to increase the convergence rates of the BP
training as:

∑= kmm ρ

with

)1(2 2

2

kk

k
k aa

E

−
=ρ

where

kkk atE −=

and

kE error at output unit k,

kt target value of output unit k,

ka an activation of unit k.

By taking derivatives for the updating weight using chain rule, the improved BP of the output layer is produced as:

k

k
k a

aE

+
−+

=
1

))31((2 2ρδ

and an error signal for the improved BP of the hidden layer is the same as the standard BP,

Aris, Sulaiman, Saman and Othman

4

)(jjkj aw∑ ′= σδδ

where

jw weight on connection between unit,

)(jaσ ′ a sigmoid function of
xe 21

1
−+

.

1.2 Sequent Symmetry SE30 Architecture

Computer technology is becoming more and more sophisticated. Many scientific and mathematical applications
require large volume of data. As the volume of data is becoming larger, the computing power of conventional
sequential computers is being improved. Technology has produced faster VLSI sequential processors, which are
combined together in multiprocessor computers to increase the computing power. Parallel processors are actually
sequential processors, which work together in the same computer system [5]. The Sequent Symmetry SE30, which is
used in this research, is an example of such multiprocessor system. The Sequent Symmetry SE30 is a type of
Multiple Instruction Stream, Multiple Data Stream (MIMD) shared memory multiprocessor or tightly coupled
machines, shown in Fig. 2. MIMD processors have its own control unit, local memory and arithmetic and logic unit.
All the processors execute different programs while solving different sub-problems of a single problem. This means
that the processors operate asynchronously. The processors access the shared memory through a common bus
structure.

Fig. 2: Sequent Shared Memory Architecture

The hardware configurations of the Sequent Symmetry SE30 parallel machine are as follows [6]:

• 10 processors each with 100 Mhz P54C Intel Pentium microprocessors.
• 1 high speed bus connected between cache memory and shared memory with peak data rates of 240 MB

per seconds.
• Support up to 4 VMEbus subsystem.
• 10 secondary cache memory, each with 2 MB.
• Support up to 441 SCSI devices.
• 64 MB RAM expandable to 3.5 GB.
• 2.1 GB Disk Storage expandable to 940 GB.

The following are the software that is supported by Sequent Symmetry parallel machine [6]:

• DYNIX/ptx operating system version 4.4.5 that supports utilities, library and system calls.
• UNIX system V Release 4.0 i384.
• C programming language and Sequent parallel library: microtask.h and parallel.h.

Shared Memory

High Speed Bus

Cache 1

Processor 1

Cache 2

Processor 2

Cache 10

Processor 10

Parallel Implementation on Improved Error Signal of Backpropagation Algorithm

5

The main purpose of parallel processing is to perform computations faster than can be done with a single processor
by using a number of processors concurrently [7].

2.0 DATA REPRESENTATION

There are two modes of operation in the NN simulation: training and test mode. The trained data use the training
mode and the test mode. Training data consists of complete input pattern. Untrained data use the test mode. In this
research, untrained data consists of patterns, which are 10% corrupted. The trained and untrained data are
represented in binary 0’s and 1’s.

The following is an example of a trained data sample of the letter ‘A’:

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1
1
1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

The following is an example of an untrained data sample of the letter ‘A’:

0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1
1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Each of the twenty-six uppercase letters tested is represented by a target output. The following is an example of an
output representation of the letter ‘A’:

0 1

3.0 METHODOLOGY

This research combines the technique of improving the improved BP algorithm and implementing the algorithm on
parallel processors to produce a faster speedup.

Aris, Sulaiman, Saman and Othman

6

An important characteristic, which affects the design of parallel NN algorithm, is the weight updating strategy.
Basically, there are three parallel NN strategies used, which is the pattern (on-line), batch and block mode strategy
described as follows [8]:

i. Pattern mode strategy: weight updating is done after the presentation of each training pattern.
ii. Batch mode strategy: weight updating is performed after the presentation of all the training patterns.
iii. Block mode strategy: weight updating is performed after the presentation of a subset of the training

patterns.

In this research, the batch strategy is adopted in the standard BP and improved BP. The batch mode is used because
it is well suited for parallelisation due to weight errors that can be calculated independently.

Training set parallelism is applied for this BP multilayer NN paradigm. In training set parallelism, the training set is
partitioned into several subsets, while the whole NN is duplicated on each processor. Each processor works with a
subset of the training set as shown in Fig. 3.

Fig. 3: Training Set Parallelism

4.0 IMPLEMENTATION AND RESULTS

The improved BP algorithm is parallelised using the columnwise block striped partitioning and coded using C
programming language. Comparison is made between the performance of standard BP and improved BP using
different numbers of hidden units. Comparison is also made in terms of number of cycles, which is fixed and also
complete cycles.

4.1 Parallel Algorithm

Parallel routines are implemented in the BP program. The m_set_procs routine is used to set a number of child
processes that will be used to execute a subprogram in parallel. The usclk_init is the Sequent system clock. Before a
subprogram can be executed in parallel new processes must be created first. The m_fork routine is used to create
new processes. The time is captured from the beginning of the BP training to the end of the BP training for each
pattern. After all the processes have completed the parallel execution, the m_kill_procs is used to kill the child
processes.

When m_fork routine is called, it initialises the shared memory and ensures that variables declared with keywords
such as shared and private in C are mapped to the appropriate memory area. In Fig. 4, the BP_Training subprogram
is forked and will be executed in parallel. Fig. 5 presents the portion of BP_Training subprogram. This figure
illustrates the columnwise block striped partitioning, the forward propagation and BP of error using either MSE or
improved BP formula, which is calculated in parallel.

Fig. 6 illustrates the declaration statements of the shared variables. The variables are declared as shared variables so
that all the processes executed in parallel can access the same memory location for that variable.

 V Processor 1
Pattern 1 to n

Pattern (n+1) to 2n Processor 2

Pattern [(P-1)n+1] to Pn Processor P

 . . .

 . . .

 . . .

Parallel Implementation on Improved Error Signal of Backpropagation Algorithm

/* BP Main Program */
main()
{
.
.
.
printf("Enter Number of Processors: ");
scanf("%d",&nprocs);
printf("\n");
m_set_procs(nprocs); /* set number of processes */

for (i = 0; errorfunc > ErrorFunc ;) /* execute until */

 /* < error tolerance */
 {
 for(j = 0; j < MaxPatternNo ; j++) /* process the patterns */
 {
 usclk_init();
 timer=getusclk(); /* starting time */
 m_fork(BP_Training,j); /* execute a subprogram */

 /* in parallel */
 timer=getusclk() - timer; /* ending time */
 total_time += (timer*0.000001); /* convert time to seconds */
 }
.
.
.
 }
m_kill_procs();
.
.
.
}
7

Fig 4: BP Main Program

Fig. 5: BP_Training Subprogram

/* BP Training Procedure */

void BP_Training(int p)
{
.
.
.
 nprocs=m_get_numprocs(); /* get number of processes */

/* columnwise block striped partitioning */

 bs1 = HiddenUnitNo/nprocs; /* block size for hidden units */
 if (HiddenUnitNo%nprocs != 0)
 bs1 += 1;
 bb1 = m_get_myid() * bs1; /* block begin for hidden units */
 be1 = bb1 + bs1 - 1; /* block end for hidden units */

 bs2 = OutputUnitNo/nprocs; /* block size for output units */
 if (OutputUnitNo%nprocs != 0)
 bs2 += 1;
 bb2 = m_get_myid() * bs2; /* block begin for output units */
 be2 = bb2 + bs2 - 1; /* block end for output units */

 bs3 = InputUnitNo/nprocs; /* block size for input units */
 if (InputUnitNo%nprocs != 0)
 bs3 += 1;
 bb3 = m_get_myid() * bs3; /* block begin for input units */
 be3 = bb3 + bs3 - 1; /* block end for input units */

Aris, Sulaiman, Saman and Othman

/* forward propagation */

for (i=bb1; (i<=be1&&i<HiddenUnitNo); i++)
 {
 o2[i] = calculate_in_output(p,i,w21,o1,bias2);
 }

m_sync();

for (i=bb2; (i<=be2&&i<OutputUnitNo); i++)
 {
 o3[i] = calculate_mid_output(i,w32,o2,bias3);
 }

m_sync();

/* Improved BP error */

for (i=bb2; (i<=be2&&i<OutputUnitNo); i++)
d3[i]=((t[p][i] - o3[i]) + (pow(t[p][i]-o3[i],2.0)/((2.0 * f(o3[i])) *
(1.0-pow(f(o3[i]),2.0)))) * (1.0-(3.0 *
pow(f(o3[i]),2.0))))/(1+f(o3[i]));

/* d3[i]=(t[p][i]-o3[i]) * o3[i] * (1-o3[i]); MSE */

m_sync();

for(i=bb1; (i<=be1&&i<HiddenUnitNo); i++)
 {
 d2[i]=calculate_sum(i,dw32,w32,d3,o2);
 }

m_sync();

for (i=bb2; (i<=be2&&i<OutputUnitNo); i++)
 {
 dbias2[i] = Eta * d3[i] + Alpha * dbias3[i];
 bias3[i] += dbias3[i];
 }

m_sync();

for(i=bb3; (i<=be3&&i<InputUnitNo); i++)
 for(j=0; j<HiddenUnitNo; j++)
 {
 dw21[j][i] = Eta * d2[j] * o1[p][i] + Alpha * dw21[j][i];
 w21[j][i] += dw21[j][i];
 }

m_sync();

for(i=bb1; (i<=be1&&i<HiddenUnitNo); i++)
 {
 dbias2[i] = Eta * d2[i] + Alpha * dbias2[i];
 bias2[i] += dbias2[i];
 }
m_sync();
}
8

Fig. 5 (Cont.): BP_Training Subprogram

Parallel Implementation on Improved Error Signal of Backpropagation Algorithm

9

Fig. 6: Shared Variables

The values of the parameters used in standard BP and improved BP are as follows:

α = 0.01, β = 0.9, e = 0.05,
where α is the learning rate,
 β is the momentum,
 e is the maximum error.

The network is considered well trained, where a 100% accuracy is produced, if the maximum error function is e <=
0.05.

The combination value of α = 0.01 and β = 0.9 is used because by experiments, these values produce a globally
optimum weights to a desired accuracy resulting in a decreasing error. Theoretically, in NN the objective is to
achieve the combination of α and β values that on average yield convergence to the network configuration that has
the best generalisation over the entire input space, with the least number of epochs [9].

The experiments are done, by using different number of hidden units. The following fixed values are used for input
and output units:

number of input units = 400,
number of output units = 26

The input patterns are represented in binary 0’s and 1’s explained earlier, consisting of 400 units. The target values
for the patterns have 26 units, which represents the twenty-six uppercase letters.

4.2 Results of Execution Time and Speedup

Table 1 illustrates the execution times of standard BP and improved BP running sequentially and in parallel with
different number of processors based on 10 cycles using 100 hidden units. The execution time of standard BP and
improved BP running sequentially are 37.79 seconds and 19.26 seconds. The result indicate that the execution time
of the improved BP is faster than the standard BP. When the same programs are applied using 8 processors, the
execution time is improved much better which results in 7.54 seconds for standard BP and 6.43 seconds for
improved BP. The standard BP speedup is 1.73 whereas the improved BP speedup is 1.52 using 2 processors.
Applying 8 processors results in a speedup of 5.42 for standard BP and 3.79 for improved BP. The execution times
of standard BP and improved BP versus the number of processors are plotted in Fig. 7. The speedup values versus
the number of processors are plotted in Fig. 8.

Table 2 illustrates the execution times of standard BP and improved BP based on 10 cycles and 200 hidden units,
running sequentially and in parallel. The execution time of standard BP and improved BP both running sequentially
are 86.27 seconds and 51.44 seconds. Using 8 processors reduces the execution time: 14.10 seconds for standard BP
and 12.51 seconds for improved BP. There is an increase of the execution time as the number of hidden units is
increased from 100 hidden units to 200 hidden units. The speedup of standard BP and improved BP using 2
processors are 1.95 and 1.68. The speedup is improved by applying 8 processors: 6.84 for standard BP and 4.35 for

/* Output, weight and bias declaration */
shared double **o1; /* Output for Input layer - i */
shared double *o2; /* Output for Hidden layer - j */
shared double *o3; /* Output for Output layer - k */
shared double **t; /* Target Output */
shared double **w21; * Weights from layer i to layer j */
shared double **dw21; /* Change of above weights */
shared double **w32; /* Weights from layer j to layer k */
shared double **dw32; /* Change of above weights */
shared double *bias2; /* Bias for layer j node */
shared double *dbias2; /* Change of above bias */
shared double *bias3; /* Bias for layer layer k node */
shared double *dbias3; /* Change of above bias */
shared double *d2; /* error signal for the hidden layer. */
shared double *d3; /* Change of above error signal */

Aris, Sulaiman, Saman and Othman

10

improved BP. The execution time values are plotted in Fig. 9. The speedup values for standard BP and improved
BP are plotted in Fig. 10.

Table 1: Execution Times (in seconds) and Speedup Values for Standard BP and Improved BP

based on 10 Cycles using 100 Hidden Units

of Processors

Standard BP
Execution Time

Improved BP
Execution Time

Standard BP
Speedup

Improved BP
Speedup

Sequential 37.79 19.26
1 40.91 24.39 1.00 1.00
2 23.56 15.96 1.73 1.52
3 16.81 11.76 2.43 2.07
4 13.18 9.39 3.10 2.59
5 10.58 8.17 3.86 2.98
6 9.09 7.25 4.49 3.36
7 8.33 6.97 4.90 3.49
8 7.54 6.43 5.42 3.79

Fig. 7: Standard BP and Improved BP Execution Times (in seconds) with 10 Cycles using 100 Hidden Units

Fig. 8: Standard BP and Improved BP Speedup values with 10 Cycles using 100 Hidden Units

0.00000

5.00000

10.00000

15.00000

20.00000

25.00000

30.00000

35.00000

40.00000

45.00000

1 2 3 4 5 6 7 8 9

No of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Standard BP

IeBP

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

7.00000

8.00000

9.00000

1 2 3 4 5 6 7 8 9

No of Processors

S
p

ee
d

 u
p

Standard BP

IeBP

Ideal

Parallel Implementation on Improved Error Signal of Backpropagation Algorithm

Table 2: Execution Times (in seconds) and Speedup Values for Standard BP and Improved BP
based on 10 Cycles using 200 Hidden Units

of Processors

Standard BP

Execution Time
Improved BP

Execution Time
Standard BP

Speedup
Improved BP

Speedup
Sequential 86.27 51.44

1 96.49 54.48 1.00 1.00
2 49.46 32.31 1.95 1.68
3 34.60 23.47 2.78 2.32
4 27.12 19.09 3.55 2.85
5 23.29 16.02 4.14 3.40
6 17.92 14.02 5.38 3.88
7 15.54 13.46 6.20 4.04
8 14.10 12.51 6.84 4.35

Fig. 9: Standard BP an

Fig. 10: Standard
d Improved BP Execution Times (in seconds) with 10 Cycles using 200 Hidden Units

0.00000

20.00000

40.00000

60.00000

80.00000

100.00000

120.00000

1 2 3 4 5 6 7 8 9

No of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Standard BP

IeBP
11

 BP and Improved BP Speedup Values with 10 Cycles using 200 Hidden Units

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

7.00000

8.00000

9.00000

1 2 3 4 5 6 7 8 9

No of Processors

S
p

ee
d

 u
p

Standard BP

IeBP

Ideal

Aris, Sulaiman, Saman and Othman

Table 3 represents the execution times of standard BP and improved BP based on 10 cycles and tested using 300
hidden units. As the number of hidden units are increased, the execution time of standard BP and improved BP
running sequentially are also increased: 147.57 seconds for standard BP and 90.39 seconds for improved BP. The
execution time, are improved by applying 8 processors: 21.54 seconds for standard BP and 19.45 seconds for
improved BP. The speedup for standard BP using 2 processors is 1.90 and is improved by using 8 processors, which
results in 6.87. The improved BP running on 2 processors is 1.75 and running on 8 processors is 4.71. The
execution time values are plotted in Fig. 11. The speedup values for the standard BP and improved BP are plotted in
Fig. 12.

Table 3: Execution Times (in seconds) and Speedup Values for Standard BP and Improved BP

based on 10 Cycles using 300 Hidden Units

of Processors

Standard BP
Execution Time

Improved BP
Execution Time

Standard BP
Speedup

Improved BP
Speedup

Sequential 147.57 90.39
1 148.19 91.73 1.00 1.00
2 77.89 52.19 1.90 1.75
3 51.41 36.32 2.88 2.52
4 39.15 29.19 3.78 3.14
5 32.17 25.97 4.60 3.53
6 26.89 22.86 5.51 4.01
7 23.31 20.14 6.35 4.55
8 21.54 19.45 6.87 4.71

Note: Speedup,
p

p T

T
S 1= , where T1 is the execution time for one processor,

 Tp is the execution time for p processors.

Fig. 11: Standard BP and

Table 4 and Table 5 illus
convergence using 100 and
units produced only 152 cyc
completing 276 cycles. The

Table 6 compares the numb
Improved BP only produced
units are increased to 300, th

12

 Improved BP Execution Times (in seconds) with 10 Cycles using 300 Hidden Units

trates the execution times and speedup values of improved BP based on network
300 hidden units. The complete cycle of the BP network to converge for 100 hidden
les. Whereas, by increasing the number of hidden units, the BP network converges after
 execution time and speedup values are plotted in Fig. 13 and Fig. 14.

er of cycles and execution times of improved BP and standard BP running sequentially.
 152 cycles compared to standard BP, which is 301 cycles. As the number of hidden
e cycles and execution time for improved BP and standard BP are also increased.

0.00000

20.00000

40.00000

60.00000

80.00000

100.00000

120.00000

140.00000

160.00000

1 2 3 4 5 6 7 8 9

No of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Standard BP

IeBP

Parallel Implementation on Improved Error Signal of Backpropagation Algorithm

Fig. 12: Standar

Table 4: Execu

Con

Table 5: Execu
Con

of
S

From the experimental res
the number of processors
compared to the standard
which are based on ten c
function derived by Sham
improved BP is less than
performance of improved
speedup as the number o
illustrated in Table 6, whe
hidden units is increased, t

10.00000
13

d BP and Improved BP Speedup values with 10 Cycles using 300 Hidden Units

tion Times (seconds) and Speedup Values for Improved BP Based on Network
vergence with cycles = 152 and error = 0.05 using 100 Hidden Units

of processors Execution Time (seconds) Speedup
Sequential 89.28

1 92.76 1.00
2 56.56 1.64
3 41.98 2.20
4 33.94 2.73
5 28.39 3.26
6 24.98 3.71
7 23.11 4.01
8 22.22 4.17

tion Times (seconds) and Speedup Values for Improved BP Based on Network
vergence with cycles = 276 and error = 0.05 using 300 Hidden Units

 processors Execution Time (seconds) Speedup
equential 184.85

1 189.38 1.00
2 99.83 1.89
3 71.63 2.64
4 56.12 3.37
5 44.21 4.28
6 39.43 4.80
7 38.81 4.87
8 35.28 5.36

ults, it was found that the speedup values for, the standard BP increases almost ideally as
, are increased. The speedup for improved BP also increases almost ideally but less
BP (refer to Fig. 8, Fig. 10 and Fig. 12 for the standard BP and improved BP speedup,

ycles). This is because improved BP converges faster than the standard BP. The error
suddin [1] causes the improved BP to converge fast. However, the execution time for
 the execution time for standard BP (refer to Table 1, Table 2 and Table 3). The

 BP in Table 4 and Table 5, which are based on complete convergence shows a good
f processors are increased. The efficiency and effectiveness of the improved BP is

re the number of cycles and execution time is less than the standard BP. As the number of
he execution time also increases.

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

7.00000

8.00000

9.00000

1 2 3 4 5 6 7 8 9

No of Processors

S
p

ee
d

 u
p

Standard BP

IeBP

Ideal

Aris, Sulaiman, Saman and Othman

Fig. 13: Improved BP Execution Times (in seconds) based on Network Convergence using 100 and 300 Hidden

Units

Fig. 14: Im

Table 6: C

Hidd
Uni
10
30

4.3 Results o

The effectivene
untrained data.
standard BP and
and the same p
produced by the
calculation of th
[10]. The outpu

9.00000

0 .00000

20 .00000

40 .00000

60 .00000

80 .00000

100 .00000

120 .00000

140 .00000

160 .00000

180 .00000

200 .00000

1 2 3 4 5 6 7 8

N o o f P rocessors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)
100 H idden U n its

300 H idden U n its
14

proved BP Speedup Values based on Network Convergence using 100 and 300 Hidden Units

omparison of Improved BP and Standard BP in terms of number of Cycles and Execution Time

Improved BP Standard BP en
ts Cycles Execution Time Cycles Execution Time
0 152 89.28 301 177.85
0 276 184.85 497 358.09

f Recognition Rates

ss of the BP network is measured in terms of percent of recognition rates for the trained and
 From the experimental results done on the Sequent Symmetry machine, recognition rates for the
 improved BP both produce 100% accuracy for the trained and untrained data using 33 hidden units
arameter values as explained earlier. The recognition rate is measured in terms of the output
 BP network. The output is in the range between, 0 to 1. The output, which is produced from the
e weights and biases in the BP training, has a strong strength if the output is greater or equal to 0.5
t results of trained data for the letter ‘A’, is shown in Fig. 15.

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

7.00000

8.00000

1 2 3 4 5 6 7 8

No of Proce s s ors

S
p

ee
d

 u
p

100 Hidden Units

300 Hidden Units

Ideal

Parallel Implementation on Improved Error Signal of Backpropagation Algorithm

Fig. 1

5.0 DISCUSSION

From the experimental results carried out, the spe
The standard BP based on ten cycles produces a sl
line compared to improved BP. This is due to the
of improved BP is less than standard BP. The num
less compared to standard BP. Most important, i
number of processors, are increased. This proves t
of the research work. Besides the speedup improv
also produces 100% accuracy. Speedup and accura
has achieved in this research work.

6.0 CONCLUSION

The combination to improve the BP algorithm and
in two ways. First, by improving the BP algorith
and therefore produces less execution time. Secon
execution time is reduced much more and there
processing.

REFERENCES

[1] S. M. Shamsuddin, M. N. Sulaiman and

Unsconstrained Isolated Handwritten Digits”

[2] O. L. Mangasarian and M. V. Solodov, “Ser

Pertubed Minimization, Optimization”. Opt
116.

o3[0] = 0.00
o3[1] = 0.00
o3[2] = 0.00
o3[3] = 0.00
o3[4] = 0.00
o3[5] = 0.00
o3[6] = 0.00
o3[7] = 0.00
o3[8] = 0.00
o3[9] = 0.00
o3[10] = 0.00
o3[11] = 0.00
o3[12] = 0.00
o3[13] = 0.00
o3[14] = 0.00
o3[15] = 0.00
o3[16] = 0.00
o3[17] = 0.00
o3[18] = 0.00
o3[19] = 0.00
o3[20] = 0.00
o3[21] = 0.00
o3[22] = 0.00
o3[23] = 0.00
o3[24] = 0.00
o3[25] = 0.99
15

5: Letter ‘A’ Output Results

edup of standard BP and improved BP increase almost ideally.
ightly better speedup because the speedup line is nearer the ideal
improved BP that converges faster. However the execution time
ber of complete cycles produced by improved BP is much more,
mproved BP running in parallel produces better speedup as the
he efficiency of parallel computing and leads to the contribution
ement, the recognition rates of the trained and untrained pattern
cy are two important factors in developing a NN application, that

 implementing it using parallel processors produces good results
m running sequentially, the cycle, are reduced, converges faster
d, by implementing the BP algorithm on parallel processors, the
fore produces a much better speedup compared to sequential

 M. Darus, “Higher Order Centralised Scale-Invariance for
. PhD Thesis. Universiti Putra Malaysia (2000).

ial and Parallel Backpropagation Convergence Via Nonmonotone
imization Methods and Software. Vol. 4, No. 2, (1994), pp. 103-

Aris, Sulaiman, Saman and Othman

16

[3] S. M. Shamsuddin, M. N. Sulaiman, and M. Darus, “An Improved Error Signal for the Backpropagation
Model for Classification Problems”. International Journal of Computer Mathematics. Vol. 76, 2001, pp.
297–305.

[4] B. L. Kalman and S. C Kwasny. “A Superior Error Function for Training Neural Network”. International

Joint Conference of Neural Network. Vol. 2, 1991, pp. 42-52.

[5] B. P. Lester, The Art of Parallel Programming. Eaglewood Cliffs, New Jersey: Prentice-Hall International

Edition (1993).

[6] Sequent Computer Systems, Sequent Multiprocessor Architecture Overview. USA: Sequent Computer

Systems, Inc. (1994).

[7] J. Jaja, An Introduction to Parallel Algorithms. Redwood City, California: Addison-Wesley Publishing

Company (1992).

[8] H. H. Ammar and Z. Miao, “Parallel Training Algorithms for a Neural Network Based Automated

Fingerprint Image Comparison System”. International Journal of Modelling and Simulation. Vol. 14, No. 1,
2000, pp. 3-25.

[9] S. Haykin, Neural Networks: A Comprehensive Faundation. New Jersey: Prentice Hall Inc. (1999).

[10] Z. Luo, “On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward

Networks”. Neural Computation. Vol. 3, (1991), pp. 226-245.

BIOGRAPHY

Teh Noranis Mohd Aris is a tutor at Department of Computer Science, Universiti Putra Malaysia (UPM). She
received her MSc. from the same university in 2001. Her research interest includes artificial intelligence and
parallel processing.

Md. Yazid Mohd Saman is currently a lecturer at Kolej Universiti Terengganu, UPM. He obtained his Ph.D. from
Loughborough University UK. His research interest includes programming, parallel processing and distributed
systems.

Md. Nasir Sulaiman is a lecturer in Computer Science Department, UPM. He was awarded his Ph.D. in Neural
Network Simulation from Loughborough University UK in 1994. Research interest includes neural networks,
parallel processing and information systems.

Mohamed Othman obtained his Ph.D. from Universiti Kebangsaan Malaysia. He is currently a lecturer and Head
Department of Communication Technology and Networking, UPM. His research interest includes artificial
intelligence, parallel processing, scientific computing, multigrid, expert system and logic programming.

	ABSTRACT
	Keywords:	Standard BP, Improved BP, Mean Squared Error (MSE), Speedup, Data Partitioning, Columnwise Block striped, Batch Mode Weight Updating
	
	
	The BP training algorithm is as follows [1]:
	Step 1:	Set up the BP network by defining the number of input, hidden and output nodes.
	Step 2:	Read the input pattern file and the target file.
	Step 3:	Randomise weights and biases.
	Step 4:	Calculate activation function for the hidden and output layer by using the following formula:

	Computer technology is becoming more and more sophisticated. Many scientific and mathematical applications require large volume of data. As the volume of data is becoming larger, the computing power of conventional sequential computers is being improve
	Standard BP Execution Time
	From the experimental results carried out, the speedup of standard BP and improved BP increase almost ideally. The standard BP based on ten cycles produces a slightly better speedup because the speedup line is nearer the ideal line compared to improved
	The combination to improve the BP algorithm and implementing it using parallel processors produces good results in two ways. First, by improving the BP algorithm running sequentially, the cycle, are reduced, converges faster and therefore produces less
	REFERENCES

