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ABSTRACT 
 
Improved error signal of the backpropagation (BP) algorithm on single processors has shown a tremendous result 
compared to its counterpart [1].  Further study on the improved BP algorithm is carried out on many processors, 
which is implemented using the Sequent Symmetry SE30 machine.  Data partitioning method, with columnwise block 
striped and batch mode weight updating strategy, is applied on the BP algorithms.  Twenty-six patterns consisting of 
uppercase letters from ‘A’ to ‘Z’ are tested in terms of speed and recognition rates.  The parallel version of the BP 
algorithm produces good speedup as the numbers of processors are increased and a 100% recognition rate for 
trained and untrained data is achieved. 
 
Keywords: Standard BP, Improved BP, Mean Squared Error (MSE), Speedup, Data Partitioning, Columnwise 

Block striped, Batch Mode Weight Updating 
 
 
1.0 INTRODUCTION 
 
Execution speed is very important in computational processing.  A fast computational process is considered as an 
effective and efficient system. Scientific and engineering problems deal with large volumes of data.  These data can 
be processed faster using parallel computers. 
 
Neural network (NN) is one of the artificial intelligence areas that attempts to imitate the computational power of 
the human brain [2].  Basically, NNs are mathematical models of information processing.  NN has the ability to 
perform numerous learning tasks such as recognition, feature extraction, statistical clustering and prediction.  BP is 
one of the popular NN algorithms [2].  The BP training process is time consuming.  The two approaches used to 
speed up the BP training process are improving the BP algorithm and implementing the BP algorithm using parallel 
machines. 
 
Shamsuddin [1, 3] has proposed an improved error signal for the BP algorithm running on a single CPU system.  A 
modified error function has been generated to increase the convergence rates of the BP training, replaced by the 
MSE used in standard BP.  The epoch size of the improved BP is less than the epoch size of the standard BP.  As a 
result, the execution time of the improved BP is much faster than the standard BP.  However, as the input data sets 
become larger, the execution time of the improved BP is slower.  In this study, the improved BP is implemented on 
parallel processors to produce a much faster version of the BP algorithm. 
 



Aris, Sulaiman, Saman and Othman 

1.1 Standard BP and Improved BP 
 
BP is a multilayer feed forward network.  It is also known as the gradient descent method to minimise the MSE of 
the output computed by the network.  Typically, the network consists of an input layer, one or more hidden layers of 
computation nodes, and an output layer of computation nodes as illustrated in Fig. 1. 
 
BP is a type of supervised learning network or is also known as learning with a teacher.  In supervised learning, the 
process of adjusting the weights in a NN is given a learning algorithm to follow.  The target output for each training 
set of input vectors is presented to the network.  This process involves many cycles through the training data. 
Besides, unsupervised learning is a type of learning that takes place without a teacher.  In supervised learning 
network, a learning algorithm may be given but target outputs are not. 
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Fig. 1: BP Architecture 
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)1( +tw ji   is the update weight from node j to node i at time t, 

)(tw ji  is the weight from node j to node i at time t, 
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Step 6: Calculate the error term for the output layer as follows: 

))(1( kkkkk otoo −−=δ  

where ko  is the actual output and kt  is the target output unit k. 

 
Calculate the error term for the hidden layer as follows: 

∑−=
k
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where jδ  is the error at unit k from hidden unit j. 

 
Step 7: Compute the error function using the Mean Squared Error (MSE) formula: 
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k
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2
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where E is the error function 
tkj is the target output from node k to node j, 
okj is the network output from node k to node j. 
Test if E < error tolerance specified then stop the training process 
else repeat steps 4 to 7. 
 
The improved BP is produced, by modifying an error function of [4] to increase the convergence rates of the BP 
training as: 
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kE error at output unit k, 

kt target value of output unit k, 

ka an activation of unit k. 

 
By taking derivatives for the updating weight using chain rule, the improved BP of the output layer is produced as: 
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and an error signal for the improved BP of the hidden layer is the same as the standard BP, 
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1.2 Sequent Symmetry SE30 Architecture 
 
Computer technology is becoming more and more sophisticated.  Many scientific and mathematical applications 
require large volume of data.  As the volume of data is becoming larger, the computing power of conventional 
sequential computers is being improved.  Technology has produced faster VLSI sequential processors, which are 
combined together in multiprocessor computers to increase the computing power.  Parallel processors are actually 
sequential processors, which work together in the same computer system [5].  The Sequent Symmetry SE30, which is 
used in this research, is an example of such multiprocessor system.  The Sequent Symmetry SE30 is a type of 
Multiple Instruction Stream, Multiple Data Stream (MIMD) shared memory multiprocessor or tightly coupled 
machines, shown in Fig. 2.  MIMD processors have its own control unit, local memory and arithmetic and logic unit.  
All the processors execute different programs while solving different sub-problems of a single problem.  This means 
that the processors operate asynchronously.  The processors access the shared memory through a common bus 
structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2: Sequent Shared Memory Architecture 
 
The hardware configurations of the Sequent Symmetry SE30 parallel machine are as follows [6]: 

• 10 processors each with 100 Mhz P54C Intel Pentium microprocessors. 
• 1 high speed bus connected between cache memory and shared memory with peak data rates of 240 MB 

per seconds. 
• Support up to 4 VMEbus subsystem. 
• 10 secondary cache memory, each with 2 MB. 
• Support up to 441 SCSI devices. 
• 64 MB RAM expandable to 3.5 GB. 
• 2.1 GB Disk Storage expandable to 940 GB. 

 
The following are the software that is supported by Sequent Symmetry parallel machine [6]: 

• DYNIX/ptx operating system version 4.4.5 that supports utilities, library and system calls. 
• UNIX system V Release 4.0 i384. 
• C programming language and Sequent parallel library:  microtask.h and parallel.h. 
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The main purpose of parallel processing is to perform computations faster than can be done with a single processor 
by using a number of processors concurrently [7]. 
 
 
2.0 DATA REPRESENTATION 
 
There are two modes of operation in the NN simulation: training and test mode.  The trained data use the training 
mode and the test mode.  Training data consists of complete input pattern.  Untrained data use the test mode.  In this 
research, untrained data consists of patterns, which are 10% corrupted.  The trained and untrained data are 
represented in binary 0’s and 1’s. 
 
The following is an example of a trained data sample of the letter ‘A’: 
 

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 
0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

 
The following is an example of an untrained data sample of the letter ‘A’: 
 

0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 
0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 
1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 
0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

 
Each of the twenty-six uppercase letters tested is represented by a target output.  The following is an example of an 
output representation of the letter ‘A’: 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
 
 
3.0 METHODOLOGY 
 
This research combines the technique of improving the improved BP algorithm and implementing the algorithm on 
parallel processors to produce a faster speedup. 
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An important characteristic, which affects the design of parallel NN algorithm, is the weight updating strategy.  
Basically, there are three parallel NN strategies used, which is the pattern (on-line), batch and block mode strategy 
described as follows [8]: 

i. Pattern mode strategy: weight updating is done after the presentation of each training pattern. 
ii. Batch mode strategy: weight updating is performed after the presentation of all the training patterns. 
iii. Block mode strategy: weight updating is performed after the presentation of a subset of the training 

patterns. 
 
In this research, the batch strategy is adopted in the standard BP and improved BP.  The batch mode is used because 
it is well suited for parallelisation due to weight errors that can be calculated independently. 
 
Training set parallelism is applied for this BP multilayer NN paradigm. In training set parallelism, the training set is 
partitioned into several subsets, while the whole NN is duplicated on each processor.  Each processor works with a 
subset of the training set as shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
                                                                                             
 
 
 
 
 
 
 

Fig. 3: Training Set Parallelism 
 
 
4.0 IMPLEMENTATION AND RESULTS 
 
The improved BP algorithm is parallelised using the columnwise block striped partitioning and coded using C 
programming language.  Comparison is made between the performance of standard BP and improved BP using 
different numbers of hidden units.  Comparison is also made in terms of number of cycles, which is fixed and also 
complete cycles. 
 
4.1 Parallel Algorithm 
 
Parallel routines are implemented in the BP program.  The m_set_procs routine is used to set a number of child 
processes that will be used to execute a subprogram in parallel.  The usclk_init is the Sequent system clock. Before a 
subprogram can be executed in parallel new processes must be created first.  The m_fork routine is used to create 
new processes.  The time is captured from the beginning of the BP training to the end of the BP training for each 
pattern.  After all the processes have completed the parallel execution, the m_kill_procs is used to kill the child 
processes. 
 
When m_fork routine is called, it initialises the shared memory and ensures that variables declared with keywords 
such as shared and private in C are mapped to the appropriate memory area.  In Fig. 4, the BP_Training subprogram 
is forked and will be executed in parallel.  Fig. 5 presents the portion of BP_Training subprogram.  This figure 
illustrates the columnwise block striped partitioning, the forward propagation and BP of error using either MSE or 
improved BP formula, which is calculated in parallel. 
 
Fig. 6 illustrates the declaration statements of the shared variables.  The variables are declared as shared variables so 
that all the processes executed in parallel can access the same memory location for that variable. 
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Pattern 1 to n                                                       
 
 
 
Pattern (n+1) to 2n                                                                                                                 Processor 2 
 
 
 
Pattern [(P-1)n+1] to Pn                                                                                                        Processor P 
 
 

 
                .  .  . 

 
                 .  .  . 

 
                .  .  . 



Parallel Implementation on Improved Error Signal of Backpropagation Algorithm 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

/* BP Main Program */ 
main() 
{ 
. 
. 
. 
printf("Enter Number of Processors: "); 
scanf("%d",&nprocs); 
printf("\n"); 
m_set_procs(nprocs); /* set number of processes */ 
 
for (i = 0; errorfunc > ErrorFunc ;)  /* execute until */ 

   /* < error tolerance */ 
  { 
   for(j = 0; j < MaxPatternNo ; j++) /* process the patterns */ 
     { 
  usclk_init(); 
            timer=getusclk(); /* starting time */  
    m_fork(BP_Training,j); /* execute a subprogram */ 

      /* in parallel */ 
  timer=getusclk() - timer; /* ending time */ 
       total_time += (timer*0.000001); /* convert time to seconds */ 
      } 
. 
. 
. 
   } 
m_kill_procs(); 
. 
. 
. 
} 
7 

Fig 4: BP Main Program 

Fig. 5: BP_Training Subprogram 

/* BP Training Procedure */ 
 
void BP_Training(int p) 
{ 
.  
. 
. 
  nprocs=m_get_numprocs(); /* get number of processes */ 
 
/* columnwise block striped partitioning */ 
 
  bs1 = HiddenUnitNo/nprocs; /* block size for hidden units */ 
  if (HiddenUnitNo%nprocs != 0) 
    bs1 += 1; 
  bb1 = m_get_myid() * bs1; /* block begin for hidden units */ 
  be1 = bb1 + bs1 - 1; /* block end for hidden units */ 
 
  bs2 = OutputUnitNo/nprocs; /* block size for output units */ 
  if (OutputUnitNo%nprocs != 0) 
    bs2 += 1; 
  bb2 = m_get_myid() * bs2; /* block begin for output units */ 
  be2 = bb2 + bs2 - 1; /* block end for output units */ 
 
  bs3 = InputUnitNo/nprocs; /* block size for input units */ 
  if (InputUnitNo%nprocs != 0) 
    bs3 += 1; 
  bb3 = m_get_myid() * bs3; /* block begin for input units */ 
  be3 = bb3 + bs3 - 1; /* block end for input units */ 
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/* forward propagation */ 
 
for (i=bb1; (i<=be1&&i<HiddenUnitNo); i++) 
   { 
     o2[i] = calculate_in_output(p,i,w21,o1,bias2); 
   } 
 
m_sync(); 
 
for (i=bb2; (i<=be2&&i<OutputUnitNo); i++) 
   { 
     o3[i] = calculate_mid_output(i,w32,o2,bias3);  
   } 
 
m_sync(); 
 
/* Improved BP error */ 
 
for (i=bb2; (i<=be2&&i<OutputUnitNo); i++) 
d3[i]=((t[p][i] - o3[i]) + (pow(t[p][i]-o3[i],2.0)/((2.0 * f(o3[i])) *
(1.0-pow(f(o3[i]),2.0)))) * (1.0-(3.0 * 
pow(f(o3[i]),2.0))))/(1+f(o3[i]));  
 
/* d3[i]=(t[p][i]-o3[i]) * o3[i] * (1-o3[i]); MSE */  
 
m_sync(); 
 
for(i=bb1; (i<=be1&&i<HiddenUnitNo); i++) 
   { 
     d2[i]=calculate_sum(i,dw32,w32,d3,o2); 
   } 
 
m_sync(); 
 
for (i=bb2; (i<=be2&&i<OutputUnitNo); i++) 
   { 
     dbias2[i] = Eta * d3[i] + Alpha * dbias3[i]; 
     bias3[i] += dbias3[i]; 
   } 
 
m_sync(); 
 
for(i=bb3; (i<=be3&&i<InputUnitNo); i++) 
     for(j=0; j<HiddenUnitNo; j++) 
        { 
          dw21[j][i] = Eta * d2[j] * o1[p][i] + Alpha * dw21[j][i]; 
          w21[j][i] += dw21[j][i]; 
        } 
 
m_sync(); 
 
for(i=bb1; (i<=be1&&i<HiddenUnitNo); i++) 
   { 
     dbias2[i] = Eta * d2[i] + Alpha * dbias2[i]; 
     bias2[i] += dbias2[i]; 
     } 
m_sync(); 
} 
8 

Fig. 5 (Cont.): BP_Training Subprogram 
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Fig. 6: Shared Variables 
 
The values of the parameters used in standard BP and improved BP are as follows: 

α = 0.01,  β = 0.9,  e = 0.05, 
where α is the learning rate, 
 β is the momentum, 
 e is the maximum error. 
 
The network is considered well trained, where a 100% accuracy is produced, if the maximum error function is  e  <= 
0.05. 
 
The combination value of α = 0.01 and β = 0.9 is used because by experiments, these values produce a globally 
optimum weights to a desired accuracy resulting in a decreasing error.  Theoretically, in NN the objective is to 
achieve the combination of α and β values that on average yield convergence to the network configuration that has 
the best generalisation over the entire input space, with the least number of epochs [9]. 
 
The experiments are done, by using different number of hidden units.  The following fixed values are used for input 
and output units: 

number of input units = 400, 
number of output units = 26 

 
The input patterns are represented in binary 0’s and 1’s explained earlier, consisting of 400 units.  The target values 
for the patterns have 26 units, which represents the twenty-six uppercase letters. 
 
4.2 Results of Execution Time and Speedup 
 
Table 1 illustrates the execution times of standard BP and improved BP running sequentially and in parallel with 
different number of processors based on 10 cycles using 100 hidden units.  The execution time of standard BP and 
improved BP running sequentially are 37.79 seconds and 19.26 seconds.  The result indicate that the execution time 
of the improved BP is faster than the standard BP.  When the same programs are applied using 8 processors, the 
execution time is improved much better which results in 7.54 seconds for standard BP and 6.43 seconds for 
improved BP.  The standard BP speedup is 1.73 whereas the improved BP speedup is 1.52 using 2 processors.  
Applying 8 processors results in a speedup of 5.42 for standard BP and 3.79 for improved BP.  The execution times 
of standard BP and improved BP versus the number of processors are plotted in Fig. 7.  The speedup values versus 
the number of processors are plotted in Fig. 8. 
 
Table 2 illustrates the execution times of standard BP and improved BP based on 10 cycles and 200 hidden units, 
running sequentially and in parallel.  The execution time of standard BP and improved BP both running sequentially 
are 86.27 seconds and 51.44 seconds.  Using 8 processors reduces the execution time: 14.10 seconds for standard BP 
and 12.51 seconds for improved BP.  There is an increase of the execution time as the number of hidden units is 
increased from 100 hidden units to 200 hidden units.  The speedup of standard BP and improved BP using 2 
processors are 1.95 and 1.68.  The speedup is improved by applying 8 processors: 6.84 for standard BP and 4.35 for 

 
/* Output, weight and bias declaration */ 
shared double  **o1;    /* Output for Input layer - i */ 
shared double  *o2;      /* Output for Hidden layer - j */ 
shared double  *o3;      /* Output for Output layer - k */ 
shared double  **t;       /* Target Output */ 
shared double  **w21;  * Weights from layer i to layer j  */ 
shared double  **dw21; /* Change of above weights */ 
shared double  **w32;  /* Weights from layer j to layer k */ 
shared double  **dw32; /* Change of above weights */ 
shared double  *bias2;   /* Bias for layer j node */ 
shared double  *dbias2; /* Change of above bias */ 
shared double  *bias3;   /* Bias for layer layer k node */ 
shared double  *dbias3; /* Change of above bias */ 
shared double  *d2;    /* error signal for the hidden layer. */ 
shared double  *d3;   /* Change of above error signal */ 
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improved BP.  The execution time values are plotted in Fig. 9.  The speedup values for standard BP and improved 
BP are plotted in Fig. 10. 

 
Table 1: Execution Times (in seconds) and Speedup Values for Standard BP and Improved BP 

based on 10 Cycles using 100 Hidden Units 
 

# of Processors 
 

Standard BP 
Execution Time 

Improved BP 
Execution Time 

Standard BP 
Speedup 

Improved BP 
Speedup 

Sequential 37.79 19.26   
1 40.91 24.39 1.00 1.00 
2 23.56 15.96 1.73 1.52 
3 16.81 11.76 2.43 2.07 
4 13.18 9.39 3.10 2.59 
5 10.58 8.17 3.86 2.98 
6 9.09 7.25 4.49 3.36 
7 8.33 6.97 4.90 3.49 
8 7.54 6.43 5.42 3.79 

 

 
Fig. 7: Standard BP and Improved BP Execution Times (in seconds) with 10 Cycles using 100 Hidden Units 

 

 
Fig. 8: Standard BP and Improved BP Speedup values with 10 Cycles using 100 Hidden Units 
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Table 2: Execution Times (in seconds) and Speedup Values for Standard BP and Improved BP 
based on 10 Cycles using 200 Hidden Units 

 
# of Processors 

 
Standard BP 

Execution Time 
Improved BP 

Execution Time 
Standard BP 

Speedup 
Improved BP 

Speedup 
Sequential 86.27 51.44   

1 96.49 54.48 1.00 1.00 
2 49.46 32.31 1.95 1.68 
3 34.60 23.47 2.78 2.32 
4 27.12 19.09 3.55 2.85 
5 23.29 16.02 4.14 3.40 
6 17.92 14.02 5.38 3.88 
7 15.54 13.46 6.20 4.04 
8 14.10 12.51 6.84 4.35 

 

 
Fig. 9: Standard BP an

 

 
Fig. 10: Standard
d Improved BP Execution Times (in seconds) with 10 Cycles using 200 Hidden Units 
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 BP and Improved BP Speedup Values with 10 Cycles using 200 Hidden Units 
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Table 3 represents the execution times of standard BP and improved BP based on 10 cycles and tested using 300 
hidden units.  As the number of hidden units are increased, the execution time of standard BP and improved BP 
running sequentially are also increased: 147.57 seconds for standard BP and 90.39 seconds for improved BP.  The 
execution time, are improved by applying 8 processors: 21.54 seconds for standard BP and 19.45 seconds for 
improved BP.  The speedup for standard BP using 2 processors is 1.90 and is improved by using 8 processors, which 
results in 6.87.  The improved BP running on 2 processors is 1.75 and running on 8 processors is 4.71.  The 
execution time values are plotted in Fig. 11.  The speedup values for the standard BP and improved BP are plotted in 
Fig. 12. 

 
Table 3: Execution Times (in seconds) and Speedup Values for Standard BP and Improved BP 

based on 10 Cycles using 300 Hidden Units 
 

# of Processors 
 

Standard BP 
Execution Time 

Improved BP 
Execution Time 

Standard BP 
Speedup 

Improved BP 
Speedup 

Sequential 147.57 90.39   
1 148.19 91.73 1.00 1.00 
2 77.89 52.19 1.90 1.75 
3 51.41 36.32 2.88 2.52 
4 39.15 29.19 3.78 3.14 
5 32.17 25.97 4.60 3.53 
6 26.89 22.86 5.51 4.01 
7 23.31 20.14 6.35 4.55 
8 21.54 19.45 6.87 4.71 

Note: Speedup, 
p

p T

T
S 1=  , where T1 is the execution time for one processor, 

 Tp  is the execution time for p processors. 
 

 
Fig. 11: Standard BP and
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trates the execution times and speedup values of improved BP based on network 
300 hidden units.  The complete cycle of the BP network to converge for 100 hidden 
les.  Whereas, by increasing the number of hidden units, the BP network converges after 
 execution time and speedup values are plotted in Fig. 13 and Fig. 14. 

er of cycles and execution times of improved BP and standard BP running sequentially.  
 152 cycles compared to standard BP, which is 301 cycles.  As the number of hidden 
e cycles and execution time for improved BP and standard BP are also increased. 
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Fig. 12: Standar
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Table 5: Execu
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From the experimental res
the number of processors
compared to the standard 
which are based on ten c
function derived by Sham
improved BP is less than
performance of improved
speedup as the number o
illustrated in Table 6, whe
hidden units is increased, t

10.00000
13 

d BP and Improved BP Speedup values with 10 Cycles using 300 Hidden Units 

tion Times (seconds) and Speedup Values for Improved BP Based on Network 
vergence with cycles = 152 and error = 0.05 using 100 Hidden Units 

 
of processors Execution Time (seconds) Speedup 
Sequential 89.28  

1 92.76 1.00 
2 56.56 1.64 
3 41.98 2.20 
4 33.94 2.73 
5 28.39 3.26 
6 24.98 3.71 
7 23.11 4.01 
8 22.22 4.17 

 
 

tion Times (seconds) and Speedup Values for Improved BP Based on Network 
vergence with cycles = 276 and error = 0.05 using 300 Hidden Units 

 
 processors Execution Time (seconds) Speedup 
equential 184.85  

1 189.38 1.00 
2 99.83 1.89 
3 71.63 2.64 
4 56.12 3.37 
5 44.21 4.28 
6 39.43 4.80 
7 38.81 4.87 
8 35.28 5.36 

ults, it was found that the speedup values for, the standard BP increases almost ideally as 
, are increased.  The speedup for improved BP also increases almost ideally but less 
BP (refer to Fig. 8, Fig. 10 and Fig. 12 for the standard BP and improved BP speedup, 

ycles).  This is because improved BP converges faster than the standard BP.  The error 
suddin [1] causes the improved BP to converge fast.  However, the execution time for 
 the execution time for standard BP (refer to Table 1, Table 2 and Table 3).  The 

 BP in Table 4 and Table 5, which are based on complete convergence shows a good 
f processors are increased.  The efficiency and effectiveness of the improved BP is 

re the number of cycles and execution time is less than the standard BP.  As the number of 
he execution time also increases. 
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Fig. 13: Improved BP Execution Times (in seconds) based on Network Convergence using 100 and 300 Hidden 
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proved BP Speedup Values based on Network Convergence using 100 and 300 Hidden Units 
 

omparison of Improved BP and Standard BP in terms of number of Cycles and Execution Time 
 

Improved BP Standard BP en 
ts Cycles Execution Time Cycles Execution Time 
0 152 89.28 301 177.85 
0 276 184.85 497 358.09 

f Recognition Rates 

ss of the BP network is measured in terms of percent of recognition rates for the trained and 
 From the experimental results done on the Sequent Symmetry machine, recognition rates for the 
 improved BP both produce 100% accuracy for the trained and untrained data using 33 hidden units 
arameter values as explained earlier.  The recognition rate is measured in terms of the output 
 BP network.  The output is in the range between, 0 to 1.  The output, which is produced from the 
e weights and biases in the BP training, has a strong strength if the output is greater or equal to 0.5 
t results of trained data for the letter ‘A’, is shown in Fig. 15. 

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

7.00000

8.00000

1 2 3 4 5 6 7 8

No of Proce s s ors

S
p

ee
d

 u
p

100 Hidden Units

300 Hidden Units

Ideal



Parallel Implementation on Improved Error Signal of Backpropagation Algorithm 

 

 
Fig. 1

 
 
5.0 DISCUSSION 
 
From the experimental results carried out, the spe
The standard BP based on ten cycles produces a sl
line compared to improved BP.  This is due to the 
of improved BP is less than standard BP.  The num
less compared to standard BP.  Most important, i
number of processors, are increased.  This proves t
of the research work.  Besides the speedup improv
also produces 100% accuracy.  Speedup and accura
has achieved in this research work. 
 
 
6.0 CONCLUSION 
 
The combination to improve the BP algorithm and
in two ways.  First, by improving the BP algorith
and therefore produces less execution time.  Secon
execution time is reduced much more and there
processing. 
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