Malaysian Journal of Computer Science, Vol. 15 No. 1, June 2002, pp. 77-83

A PROPOSED OBJECT SCHEMA MANAGEMENT TOOL

Tong Ming Lim Sai Peck Lee
School of Business and Information Technology Faculty of Computer Science & Information
Monash University Sunway Malaysia Technology
No 2 Jalan Kolej, Bandar Sunway University of Malaya
46150 Petaling Jaya 50603 Kuala Lumpur
Selangor Darul Ehsan Malaysia
Malaysia email: saipeck @fsktm.um.edu.my

ABSTRACT

Object Schema Management Tool (OSMT) is the primary graphical component in the Object Schema Management
Facility (OSMF) that provides services such as remove a class, add a class, delete a class and manage a class for a
business class domain [5]. In addition, the Object Schema Management Facility (OSMF) also contains a set of
language constructs for Object Schema Language (OSL), which manages Business Class Schemas (BCS) for
business domains in a persistence framework [1, 2, 3, 4]. This paper discusses the enhancements and
functionalities completed for the latest version of OSMT. A discussion on various approaches that a class schema is
managed and maintained in DBMSs currently is presented in the subsequent section. It gives an overview of a GUI-
based business class schema tool, the generation of business classes in a separate text file manually through the
Interface Definition Language (IDL) and the creation of business class schemas using OSL as proposed in this
research. Next, the OSMF component is examined in greater detail. The paper also examines pros and cons of the
OSMT component and discusses possible OSMT enhancements for the current OSMF component in the framework.

Keywords: Object Schema Management Tool, Object Schema Management Facility, Business Class Schema,
Object Schema Language

1.0 INTRODUCTION

The Object-oriented database management system (OODBMYS) is the database system of the next generation due to
its capability to handle complex information in CAD/CAM systems, multimedia systems and complex geographical
management systems [7, 8, 9]. Legacy database management systems such as relational database management
system (RDBMS) and multidimensional database management system (MDBMS) are lack of these features, hence,
in order to allow existing applications to slowly migrate to the object technology and take advantage of the
technology, emerging intermediate solutions such as object-relational database systems and object wrappers are
rushing into the market in order to fill up the migration gap. This research paper provides a closer view on the
improved version of the Object Schema Management Tool (OSMT) component in the Object Schema Management
Facility (OSMF) in an object wrapper [1, 2, 3, 4]. These enhanced features are integrating class interfaces and
methods’ code using OSMT, defining and managing relationships among classes, loading and saving of classes and
managing persistence objects of existing classes with OSMT.

2.0 BUSINESS CLASS SCHEMA MANAGEMENT

Business classes defined by developers must be easy to maintain and manage regardless of the type of database
management system and the type of object-oriented programming language in use. This section looks at three
different ways of managing business class schemas in the OSMF component. These three approaches are GUI-
based OSMT, interface definition language (IDL) proposed by Object Data Management Group (ODMG) [9] and
object schema language (OSL) proposed in this research. The class schema management facility proposed in this
paper has a few objectives. First of all, a developer must have the ease of generating and maintaining business class
schemas using a GUI tool. A GUI-based OSMT allows ease of class schema maintenance and productivity.
Secondly, in order to allow more flexibility for business application developers, an object schema language is
provided for manual changes. In addition, as the standard proposed by ODMG is revised, an object wrapper must
have the flexibility to adapt to the latest standard in its own pace as well as maintaining forward and backward
compatibility. Finally, the OSMT must not have limitations with respect to different database management systems
and object-oriented programming languages.

77

Lim and Lee

2.1 Interface Definition Language

The IDL proposed by ODMG is the standard to which most commercial OODBMS products comply [9]. IDL is a
complete business class schema definition language that allows a developer to capture and define the semantics of a
business domain [9]. The developers have to remember the IDL syntax in order to define the business class schema
correctly. Due to the fact that many commercial products do not come with a GUI tool that allows developers to
quickly and easily maintain and manage existing business class schema, managing business class schema could be
tedious. Hence, it is difficult to achieve high productivity and effectiveness.

As IDL standard is revised, improved and enhanced over the years, many new constructs and features are added into
the standard. One of the major concerns for developers is, as existing technology and standard are revised, it could
become difficult to maintain and could be incompatible with the current OSL in the wrapper. In addition, the object
wrapper framework needs to examine the existing handling and wrapping capabilities before accepting new features
and constructs proposed by the revised version of the IDL standard. Hence, in this research, the framework lays an
IDL-OSL version control component in order to validate the version and compatibility of the existing IDL-based
business class schemas. The object wrapper supports an IDL-based business class schema to be converted to the
proposed OSL class schema file through an IDL-OSL conversion component. This feature allows the object
wrapper framework to comply with the standard proposed by ODMG. As a result, the object wrapper framework
accepts IDL-based business class schemas. The IDL-OSL conversion component also allows the existing OSL-
based business class schemas to have backward compatibility with the older versions of IDL standard by validating
with the IDL-OSL version control component. Developers who are not interested to change their existing business
class schema do not have to modify their current class schema file. The version number control component keeps
track of and maintains a history of the older IDL and OSL standard. Hence, the version number is used to identify
different release of IDL and OSL. The IDL-OSL version control and conversion components also allow the object
wrapper framework to have its own growth pace. Fig. 1 presents various approaches managed by the proposed
object wrapper framework. It shows the process and flow for the generation of the IDL-based class schema file. As
IDL-based business class schema is sent to the class schema management facility, the IDL-based class schema is
validated by the IDL-OSL version number control component, converted by the conversion component, checked by
the OSL syntax checker and finally saved as an OSL-based business class schema file.

Process and Flow of Business Class Schema Creation

Manual creation of
GUI-based Business Class business class
Schema via GUI-based Manual creation of Schema using IDL
Management tool OSL-based 1
1 business class *
* schema file -

Saving/Updating in
OSL format

onversion
component

v

OSL syntax checker

Y

ClassModule.txt class schema file

Fig. 1: Various ways for the Process and Flow of Business Class Schema Creation
2.2 GUI-Based Object Schema Management Tool
A graphical business Object Schema Management Tool (OSMT) has the advantage of ease of use and ease of
maintenance. In the business application development environment, productivity and effectiveness are the most

critical aspects of software development. In this research, a GUI-based tool is considered as the most important
factor, which allows a developer to achieve high productivity and effectiveness in business class schema

78

A Proposed Object Schema Management Tool

management. Fig. 2 is the look of the GUI-based OSMT. It allows a developer to load and save a module of the
business class schemas. Each module could hold virtually unlimited number of business class schemas. As class
schemas are changed, changes could be made through the GUI-based tool and the modified version of the business
class schemas will be saved into a designated file. The business class schema file holds class schemas compiled in
OSL format. The OSL could be used to regenerate and reconstruct depending on the host OOPL.

i
Comment
Class Module test Select elass Load/Save
Class Name courses courses - Quit
ohitype persistence hd key || - Clear key
implements | |nil - +
extend hil > code
code+description
Add key | | Remove key |
attribute description fraction] > | Select atiribute l
datatype(generic+c...| string ‘ - ‘ _| collection inil - ‘descrimiun v|
[ttty 39 Clear Atri.. | [] Remove Attrib..
relToName relToType human -
reiTeCollection nil ‘ - ‘ relimverse ves -
relFriame relFrfype human - ‘ Clear Rela... ‘ [l Remove Relati...

=} select method |

‘ int get_creditHours() - |

Clear Meth... | [_] Remove Method

Clear Memory

4]

Update Memory Now

< v |

Filename: ClassMadule.txt | None

Fig. 2: A GUI-based Object Schema Management Tool

Methods for each class schema are typed and maintained through the GUI tool. The tool does not compile and
validate the validity of these methods. As the class schemas are saved, information is saved into ClassModule.txt
file in OSL format. Fig. 3 shows an example of class schemas saved in OSL format.

2.3 Object Schema Language

The object schema language (OSL) that is proposed in this research has a simple construct and syntax. The
following is an example of a business domain captured by OSL. Fig. 4 shows a transition diagram for the OSL
language set that is currently proposed and supported by the object wrapper framework.

An OSL class schema file consists of two parts. The first part consists of a module header. The module header has
a ‘module:’ tag, followed by the module name.

Each class schema starts with a ‘classname:’ tag. The ‘classname:’ tag defines a new class in the current module. It
is followed by a class name. Four class tags define the class’s attributes. The ‘objtype:’ tag defines either the class
is a ‘persistence’ or ‘transient’ object. The ‘extends:’ tag defines the class’s superclass. In this design, OSL only
supports single inheritance. If the current class does not inherit from any other classes, a ‘nil” is used. Any class
inherited by this class must be defined first. The ‘implements:’ tag defines as an interface class that contains only
methods stub to be implemented in the current class. This design is not implemented currently. Finally, ‘keys:’ tag
allows developers to define both compound key and simple key. A compound key is a key concatenated with
multiple attributes.

The class body is separated into two types. If an attribute is a simple class attribute, complex class attribute or
collection class attribute, it starts with an ‘attribute:’ tag. If it is a relationship attribute, it starts with ‘relToName:’
tag.

An attribute always starts with an ‘attribute:’ tag. It is followed by a ‘datatype:’ tag which defines either string, float
or int or a valid class name. If the data type is a class name, such class name must be defined first; otherwise, the
OSL syntax checker will return a class missing error. The next tag is ‘length:’. A ‘length:’ tag is always followed
by a numerical value that defines the size of this attribute. It is only used if it is a string attribute.

79

Lim and Lee

If the current attribute is a collection attribute, a ‘collection:’ tag is always followed after ‘attribute:’ tag.

/[This is a testing class file
module:test
"
classname:human,objtype:persistence,extends:nil,implements:nil, keys:nil
attribute:ic,datatype:string,length:30
attribute:placesborn,datatype:string,length:20
begin_method:
String get_ic()
{

return ic;
}
end_method
"
classname:address,objtype:persistence,extends:nil,implements:nil keys:nil
attribute:num,datatype:int,length:0
attribute:street,datatype:string,length:30
attribute:postcode,datatype:int,length:0
attribute:state,datatype:string,length: 10
attribute:country,datatype:string,length:20
begin_method:
String get_num()
{ return num; }
end_method
begin_method:
String get_country()
{ return country; }
end_method
"
classname:student,objtype:persistence,extends:human,implements:nil keys:nil
attribute:name,datatype:string,length:30
attribute:age,datatype:int,length:0
attribute:address,datatype:address,length:50
relToName:takes,relToType:courses,relToCollection:set,rellnverse:yes,relFrName:is_taken_by,relFrType:courses
begin_method:
address get_address() { return address; }
end_method
begin_method:
int get_age() { return age; }
end_method
"
classname:tutor,objtype:persistence,extends:student,implements:nil, keys:nil
attribute:salary,datatype:float,length: 10
attribute:subject_code,datatype:String,length:30
relToName:assists,relToType:courses,relToCollection:nil,rellnverse:yes,relFrName:has_tutor,relFrType:courses
begin_method:
float get_EPF()
{

return salary * 0.15;
}
end_method
"
classname:books,objtype:persistence,extends:nil,implements:nil keys:nil
attribute:title,datatype:string,length:30
attribute:publish_date,datatype:string,length: 10
begin_method:
String get_title()
{ return title; }
end_method
"
classname:lecturer,objtype:persistence,extends:human,implements:nil keys:name
attribute:name,datatype:string,length:30
attribute:qualification,datatype:string,length:30
attribute:specialized_area,datatype:string,length:50
attribute:has,collection:set,datatype:books,length:0
attribute:degrees,collection:set,datatype:string,length:30
begin_method:
String get_name()
{ return name; }
end_method
"
classname:courses,objtype:persistence,extends:nil,implements:nil keys:code, keys:code+description
attribute:code,datatype:string,length:30
attribute:description,datatype:string,length:30
attribute:credits,datatype:int,length:0
relToName:is_taken_by.relToType:student,relToCollection:set,rellnverse:yes,relFrName:takes,relFr Type:student
relToName:has_tutor,relToType:tutor,relToCollection:nil,rellnverse:yes,relFrName:assists,relFr Type:tutor
begin_method:
int get_creditHours()
{ return credits; }
end_method

Fig. 3: A sample OSL class schema

80

A Proposed Object Schema Management Tool

The value that a ‘collection:’ tag takes on is either bag, set or list. In this case, ‘datatype:’ tag can take on either
generic data type such as string, int or float, or a valid class defined earlier. A collection attribute does not use
‘length:’ tag at all. ‘length:” tag will be ignored if it is present.

If the attribute starts with ‘relToName:’ tag, it is a relationship attribute. It is followed by the name of the
relationship. The class that this link points to is defined using ‘relToType:’ tag. Immediately after ‘relToType:’ tag
and its valid class name, the developer needs to set either a ‘nil” or a valid collection type such as set, list and bag at
the ‘relToCollection:’ tag. OSL also allows a relationship to have a two-way traversal capability by specifying ‘yes’
for the value of the ‘rellnverse:’ tag; otherwise, just specify ‘no’. If ‘rellnverse:’ tag has a value ‘yes’, ‘relFrName:’
tag must specify the reverse relationship name, and this is followed by the ‘relFrType:’ tag which specifies the
reverse class name. Otherwise, ‘relFrName:’ and ‘relFrType’ are ignored if they are present.

As soon as a module is defined, the OSL proposed in this research is saved into a text file. It is designed to be
simple and easy to use. The GUI tool described in Section 2.2 allows a developer to manage and maintain business
class schemas without learning OSL for productivity and effectiveness. Fig. 4 shows a complete transition diagram
for the proposed OSL language implemented in this research.

module: | module name
**—l

classname: (B classname B objtype: || oObjectType [P extends: [P

’ ’ . ’ some defined .
some defined attribute
o H» implements: interface | | keys: »

3
string,int, float | 5
or class H» length: [numeric value

Y

: (9| attributename (B> datatype: [

L] 4,

collection: (- set.bag or list

E) b
Bl reiToName: [Pl PAUDUN | gl rororype: [g| VAIACESS | gy 'e'T‘i’::"m o Se[’bag;lﬁ“”-» relinverse: [yesorno [l relFrName: | 7 ’A’;"”’:‘e”e'v ! relFrType: || /AidCESS

Fig. 4: OSL transition diagram

3.0 ENHANCED FEATURES IN OSMT COMPONENT

The entire OSMF component proposed in this project is shown in Fig. 1. Developers have the flexibility to define
and manage business class schemas through the GUI tool, IDL or OSL. In Fig. 5, the full life cycle of the business
class schemas is shown.

The class schema stored in ClassModule.txt file is generated through a class schema generation engine (indicated as
a Generate Class box in Fig. 5). The OSMT component in the OSMF allows the developer to set the type of the host
OOPL in which these business classes will be generated. The OSMF component design has been proposed to
support three OOPLs currently. They are Java, C++ and Smalltalk. OSMF generates the business classes into a Java
file if it is set to generate into Java OOPL; namely ClassSchema.Java. During the generation process, each class
schema in the ClassSchema.Java file will automatically be appended with set_ and get_ methods for each attribute in
the class.

Methods defined through the GUI tool will be generated into the ClassSchema.Java file, also during the Generate
Class process. The OSMT component does not check for the host OOPL’s syntax. The content of the
ClassSchema.Java is compiled through the host OOPL compiler to determine whether it is syntactically and
semantically correct.

As objects are read from the persistence stores to the memory, these objects are bound to objects of their respective
classes through the predefined set_ methods in each class schema.

81

Lim and Lee

Whenever a business application is compiled and executed, ClassSchema.Java will be compiled and active in the
main memory. The content of the ClassModule.txt file will also be loaded into the main memory. They will be
active in the main memory throughout the entire life span of the application. A classTree instance is generated to
work with ClassModule, ClassSchema, ClassSchemaDetail, TableDbms, TableSchema and TableSchemaDetail
objects. These objects will work hand-in-hand with the class schemas in ClassSchema.Java in order to load and
unload persistence objects from and to the underlying DBMS.

ClassModule.txt class schema file

/ N
~,
\\

\\
\\
Generate Classes N
I Active-€lass Schema in ory
¥ L] L ClassModule
Java OOPL| | G4+ OOPL Spaalk
ClassSchema
[1 J
L] ClassSchema
Add get_ and set_ method to all Business ClassTree Detail
Class Schemas
TableDbms
* TableSchema
ClassSchema.Java TableSchema
Detail

Fig. 5: Flow of class schemas’ life cycle for a business domain in the proposed object wrapper framework

4.0 PROS AND CONS OF THE OSMT COMPONENT AND POSSIBLE ENHANCEMENTS

The proposed OSMF component in the object wrapper intends to handle both the IDL standard proposed by ODMG
and to provide high productivity through the GUI tool with OSL in order to maintain its framework development
pace for backward compatibility. Hence, the resulting component in the framework is tedious to construct and
develop. Nevertheless, it has the following advantages:

Comply and understand class schemas created using IDL

Ease of use through GUI-based class schema management tool

Ease of regenerating class schema to multiple OOPLs

Allow backward compatibility with the older IDL standard through OSL using version control

Allow the existing class schema to work through the OSL layer even though IDL standard is revised
and enhanced.

®po o

A few shortcomings are discovered during the implementation of the proposed OSMF component described above.
It is difficult to construct and develop for multiple languages platform. As IDL is revised, OSL has to be revised in
order to comply with the latest revised standard. In order to maintain multiple standard releases, large specification
files are required to keep with the older standard specification in order for the existing class schemas that have
limited features to continue functioning.

The OSMT component in OSMF has a few pros and cons as well. The pros of OSMT is that GUI user interface is
more intuitive to work with and easy to use with very little learning curve. The disadvantage of OSMT is the
complexity of development and coding.

OSMT is a GUI-based tool that helps users to maintain business classes easily with very little learning curve.
Nevertheless, in order to allow dynamic business requirements change after a business class domain has been
defined and implemented in the real world, process of migrating the existing persistence objects to the newly
defined business classes are no easy task at all. The tool is now going through another round of designing and
coding in order to cater for object migrating functionality as business classes are modified. Better OSMT will be
produced in the coming version.

82

A Proposed Object Schema Management Tool

REFERENCES

[1] Sai Peck, Lee and Tong Ming, Lim, “Classes and Objects Management Multidimensional DBMS Data
Model”, in IASTED International Conference Software Engineering (SE '97), San Francisco, California, 2-6
Nov. 1997.

[2] Sai Peck, Lee and Tong Ming, Lim, “Objects Collection Management in Multidimensional DBMS Data
Model”, in ISORC Kyoto International Conference Hall, Kyoto, Japan, April 20-22, 1998.

[3] Sai Peck, Lee and Tong Ming, Lim, “Objects to Multidimensional Database Wrapping Mechanism”, in
Annual AoM/laoM International Conference on Computer Science, Westgate Hotel, San Diego, California,
August 6-8, 1999.

[4] Sai Peck, Lee and Tong Ming, Lim, “An Object to RMDBMS Persistence Framework”, in REDECS2001
conferences, UNITEN-UPM, Kuala Lumpur, Oct. 22-25, 2001.

[5] Sai Peck, Lee and Tong Ming, Lim, “Object Schema Management Facilities in an Object Wrapper”, in
SERPO2 Las Vegas Multi Conferences, 23 — 27 June 2002.

[6] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1994.

[7] Elisa Bertino and Lorenzo Martino. Object-Oriented Database Systems. Addison-Wesley, 1998.

[8] Georg Lausen and Gottfried Vossen. Models and Languages of Object-Oriented databases, Addison-
Wesley, 1998.

[9] R.G.G. Cattell and Douglas Barry. The Object Data Standard: 3.0, Morgan Kaufmann Publishers, 1999.

BIOGRAPHY

Tong Ming Lim is a PhD candidate at the Faculty of Computer Science and Information Technology, University of
Malaya. He is working on the object-oriented wrapper in his final year. He worked in TAR College, as a GM and
IT Director in two commercial software houses for about 10 years. He is currently lecturing in Monash University,
Malaysia, on computer science courses such as database management system, artificial intelligence and computer
graphic programming. He is an ACM member and IEEE member since 1993. He could be reached by
lim.tong.ming @busit.monash.edu.my.

Sai Peck Lee is currently an associate professor at Faculty of Computer Science & Information Technology,
University of Malaya. She obtained her Master of Computer Science from University of Malaya in August 1990,
her Diplome d’Etudes Approfondies (D. E. A.) in Computer Science from University of Pierre et Marie Curie (Paris
VI) in July 1991 and her Ph.D. degree in Computer Science from University of Panthéon-Sorbonne (Paris I) in July
1994. Her current research interests include Software Engineering, Object-Oriented (OO) Methodology, Software
Reuse and Framework-based Development, Information Systems and Database Engineering, OO Analysis and
Design for E-Commerce Applications and Auction Protocols. She has published a number of research papers in
several computer science journals as well as in local and international conferences. She is a member of IEEE
Computer Society.

83

	ABSTRACT

