
Malaysian Journal of Computer Science, Vol. 15 No. 1, June 2002, pp. 15-27

15

REGISTER OPTIMISATION BY EQUIVALENCE ANALYSIS

Mohamed Fettach, Lahcen Elarroum and Abdellatif Hamdoun
Faculty of Sciences Ben M‘sik, University Hassan II, Casablanca, Morocco

LTI, Faculté des Sciences Ben M’sik
BP 7955, Sidi Othmane, Casablanca, Maroc

Tel. : 212 22 70 46 71
Fax : 212 22 70 46 75

email: fettachm@yahoo.fr
 elarroum@yahoo.fr
 alhamdoun@yahoo.fr

ABSTRACT

Traditionally, the register allocation is based on the lifetime analysis of variables. A register can be shared by
multiple variables if they have mutually disjointed lifetime intervals. In this paper we attempt to extend the register
sharing by another type of analysis called equivalence analysis. After the register allocation by a conventional
register allocation algorithm such as left edge algorithm, some incompatible registers can possibly have the same
content or their contents can be included in the contents of some other registers in any state of a design. Such
registers are totally or partially equivalent and they can be merged into a single register. Our approach offers then
a supplement potential for the register optimisation. Hence, it is allowed to go beyond minimisation by lifetime
analysis. However, it does not only optimise the number of registers but also reduces the interconnection cost and
the number of functional units previously allocated. Therefore, it reduces the implementation cost and improves the
design performance.

Keywords: High-level synthesis, Register optimisation, Equivalence analysis, Interconnection cost

1.0 INTRODUCTION

High-Level Synthesis (HLS) is the design process which transforms a behavioural description of a digital design
into its description of Register Transfer Level (RTL) structure [1]. Two major tasks are usually distinguished in
HLS: Scheduling and Hardware allocation. Scheduling is the process of partitioning arithmetic and logic operations
into states (or control steps) such that operations scheduled in the same state can be executed concurrently.
Hardware allocation is the process of selecting hardware units, that is, functional units (fu) to perform the arithmetic
and logic operations, registers to store value of variables, and connections between the functional units and registers
for data value transfers. The goal of the hardware allocation is to minimise the total amount of hardware elements.
Hardware allocation is usually subdivided into three interdependent subtasks: (1) functional unit assignment, (2)
register allocation and (3) data transfer allocation. The results of one subtask will affect the performance of the
others significantly.

This paper is concerned with the register allocation. Value of variables which are generated in one state and used in
a later state must be stored in registers. Although we can trivially allocate a distinct register to each variable, a
register can be shared by multiple variables if their lifetimes do not overlap. The lifetime of a variable is the time of
a period in which the value of the variable must be saved in a register. Register allocation is the problem of
mapping variables onto a minimum set of registers according to their lifetime analysis. In order to minimise the
number of registers, the possibility of register sharing is used. However, having less registers does not necessarily
guarantee that the final design will be optimal. The register merging can have a direct impact on interconnection
cost. Indeed, after register merging, more traffic is needed between functional units and registers that results in an
increase of interconnection cost.

Many techniques [2-9] have been developed for allocating as few registers as possible taking advantage of the
register sharing possibility between different variables. However, after the register allocation by a conventional
register allocation algorithm such as the clique partitioning algorithm [3] and [4], the left edge algorithm [5] or the
bipartite weighted matching algorithm [6], some incompatible registers can possibly have the same content (totally
equivalent registers) or their contents can be included in the contents of some other registers (partially equivalent
registers). Our approach allows us to identify and to merge such registers. It is based on the equivalence analysis

Fettach, Elarroum and Hamdoun

 16

that is a novel method of register optimisation. It consists of partitioning registers whose utility phases overlap, in
classes such as any class regroups the totally or partially equivalent registers. Registers of a same class can be
replaced by a single register. The utility phase of a register is a subset of states during which the register is useful.
If we assume that each variable is allocated to a same register, then the utility phase of a register represents the
amount of the lifetimes of variables allocated to this register. The utility phase of a register Ri can be represented by
an interval <SS(Ri), ES(Ri)>, where the Starting State of the register Ri (SS(Ri)) is the state at which the register Ri
is defined and the Ending State of the register Ri (ES(Ri)) is the state at which the register Ri is used for the last time.
The equivalence analysis is allowed to go beyond minimisation by compatibility analysis in merging some
incompatible registers. Two registers are said to be incompatible if they are useful simultaneously, e.g. if their
utility phases overlap. Three cases are possible for utility phases of incompatible registers (Fig. 1). In the first case
(Fig. 1(a)), the two registers Ri and Rj can be merged if they are equivalent in any state of their utility phase. In the
second case (Fig. 1(b)), the register Rj can be replaced by the register Ri if they are equivalent in any state of the
utility phase in common. In the last case, we can decompose the utility phases of the registers Ri and Rj into three
segments (Fig. 1(c)). Since the registers Ri and Rj are compatible in segments 1 and 3, they can be merged into a
single register if they are equivalent in any state of the segment 2. However, the register merging based on the
equivalence analysis does not require additional interconnect elements, but on the contrary, it allows to save
registers, buses and functional units as will be proved subsequently. Therefore, after the register allocation has been
carried out by a conventional register allocation algorithm, our approach performs a postprocessing step to complete
the register optimisation. The equivalence analysis has been used in the theory of automaton to minimise the
number of states [10] and [11].

This paper is structured as follows: Sections 2 and 3 describe the totally and partially equivalence analysis
respectively. Section 4 discusses the impact of register merging on the interconnection cost. Section 5 concludes
the paper. Finally, some definitions of terms used in the paper are included in the Appendix.

2.0 TOTAL EQUIVALENCE

Some registers can possibly have the same content in any state of digital design. Since the state graph can be
cyclic, the content of a register in a state can be different at every passage by this state (except the initialisation of
the corresponding variable). Therefore, a register cannot have one same content in any state of a design. However,
it is not necessary to know the explicit content of any register in the different states. We only need to know if
contents of two registers are identical or not in any state of the design. To solve this problem, we will state the
following theorems:

Theorem 1:
Two registers Ri and Rj, defined by the two following operations: Ri = Ri1 opi Ri2 and Rj = Rj1 opj Rj2 which are
scheduled in a same state Sk, are equivalent in this state if:

opi and opj are of the same type,
registers Ri1 and Rj1 are equivalent , and
registers Ri2 and Rj2 are equivalent.

 Rj Ri

 (a) (c)

1
………………………

2
………………………

3

Rj Ri

 (b)

Ri Rj

Fig. 1: Possible cases of incompatible registers

Register Optimisation by Equivalence Analysis

17

Proof:
Since the registers Ri1 and Rj1 on the one hand, the registers Ri2 and Rj2 on the other hand are equivalent, they have
the same content. Since the two operations opi and opj are of the same type and operands being the same, it is
obvious that results can be the same.

If the operations opi and opj are commutative, and the registers Ri1 and Rj1 and/or Ri2 and Rj2 are not equivalent, we
can exchange the operands of one operation (for example the operation opi) and then verify if the pairs of registers
(Ri1, Rj2) and (Ri2 and Rj1) are equivalent.

Theorem 2:
Two incompatible registers Ri and Rj are totally equivalent if they are equivalent in any state where at least one of
them is defined.

Proof:
So that one can speak of the equivalence between two registers in a state, it is necessary that one of them is defined
in this state. If the two registers Ri1 and Rj1 are equivalent in any state Sk where at least one of these registers is
defined, they are totally equivalent.

2.1 Implication Graphs

According to theorem 1, in order for the registers Ri and Rj to be equivalent, it is necessary that Ri1 and Rj1 on the
one hand, Ri2 and Rj2 on the other hand are also equivalent. Since, the registers Ri1 and Rj1 (item for the registers
Ri2 and Rj2) can be defined by others operations:

Ri1 = Ri11 opi1 Ri12;
Rj1 = Rj11 opj1 Rj12;

The registers Ri1 and Rj1 are equivalent if:
· opi1 and opj1 are of the same type,
· registers Ri11 and Rj11 are equivalent, and
· registers Ri12 and Rj12 are equivalent.

This procedure will be repeated for all corresponding used pairs of registers (Ri11, Rj11), (Ri12, Rj12), …etc. However,
given that the number of registers in a design is limited, this procedure converges rapidly. We can modelise this
procedure by a directed graph (Fig. 2). The nodes represent the pairs of registers and any edge directed from a node
Xm to a node Xn means that the registers corresponding to the node Xn are equivalent if the registers corresponding
to the node Xm are equivalent. One can say that Xm implies Xn and the graph is known as an Implication Graph.
Similar graphs are used in the reduction of states in a sequential machine [11].

2.2 Equivalence Table

To determine the equivalent registers, we construct a table called an equivalence table. The lines and columns of
the equivalence table are the registers of the design. This table is triangular because the equivalence relation
between registers is reflexive and symmetrical. Every cell (i, j) of the equivalence table contains: 0 if the registers
Ri and Rj are not directly equivalent, 1 if the registers Ri and Rj are directly equivalent, or the pairs of registers used
by the source operations of the registers Ri and Rj. However, the equivalence table can be completely specified
while applying the following rule:

Two registers Ri and Rj are equivalent if and only if they are not implied by any pair of registers as no
equivalent.
Indeed, the no equivalence of a pair of registers can imply the no equivalence of all pairs where these
registers are reused. The non-existence of the no equivalence for a pair of registers permits us to suppose that
these registers are equivalent.

2.3 Algorithm

The totally equivalence analysis is described by the algorithm 1. It is done separately for every type of operation.
For each state of the state graph, we establish the equivalence relations between the registers defined by the
operations scheduled in this state. Then, we construct the equivalence table. In order to completely specify the
equivalence table, we construct the implication graphs. The equivalence table completely specified is then treated
from the left to the right in an iterative way. For each iteration, we treat a column of the table. For each column, we
determine an equivalence class of the corresponding register. The equivalence classes represent the maximal sets of

Fettach, Elarroum and Hamdoun

 18

equivalent registers. The complexity of this algorithm is O(n_o.n_s.r2), where n_o is the number of operations, n_s
is the number of states and r is the number of registers.

Algorithm 1
For every type of operations, do

1. For every state of the state graph, establish the equivalence relations between registers defined by
operations scheduled in this state,

2. Construct the equivalence table,
3. Construct the implication graphs,
4. Specify completely the equivalence table,
5. The equivalence table will be treated from the left to the right,

a- Set i = 1,
b- Determine equivalence classes, as:

Ci = {Ri} ∪ {Rj / Tij = 1; j = i+1, i+2,..., r}
where Tij is the value in the cell (i, j) of the equivalence table and r is the number of registers,

c- Point all elements of Ci,
d- Increment i, if i = r then stop, else continue,
e- If Ri is pointed then return to step (d), else return to step (b).

__

2.4 Example

Fig. 3 shows an example of a state graph. In this graph we have noted only operations of the addition type. Note
that states without operations are states where operations of others types are scheduled. For any state, we establish
the equivalence relations between the registers defined by the operations scheduled in this state. From these
equivalence relations, we construct the equivalence table (Table 1).

(Ri22, Rj22)

(Ri21, Rj21)

(Ri12, Rj12)

(Ri11, Rj11)

(Ri1, Rj1)

(Ri, Rj)

(Ri2, Rj2)

 1

 2

4

5

 3

6

7

Fig. 2: An example of an Implication Graph

Register Optimisation by Equivalence Analysis

19

Table 1: The equivalence table incompletely specified

R2 (R1, R2)
R3 (R1, R3) & (R5, R6) (R2, R3) & (R5, R6)
R4 0 0 0
R5 0 0 0 0
R6 0 0 0 0 (R2, R3) & (R5, R6)

 R1 R2 R3 R4 R5

The equivalence table (Table 1) is incompletely specified. In particular, the registers R1 and R3 are equivalent if the
pairs of registers (R1, R3) and (R5, R6) are equivalent. Similarly, the registers R2 and R3 are equivalent if the pairs of
registers (R2, R3) and (R5, R6) are equivalent. These pairs of registers are not explicitly no equivalent. Then, we try
to completely specify the equivalence table. We obtain the following implication graphs:

We remark that one node can implicate itself. Since there is not explicit no equivalence, all pairs of registers are
assumed equivalent. The equivalence table is now completely specified (Table 2).

(R1, R2)

(R1, R3)

(R2, R3)

(R5, R6)

Fig. 3: An example of a State Graph

R4 = R1 + R2 ;

R5 = R5 + 2 ;
R6 = R6 + 2 ;

R5 = R3 + R4 ;
R6 = R2 + R4 ;

R1 = R1 + R5 ;
R2 = R2 + R5 ;
R3 = R3 + R6 ;

Ri = 0, i = 1, 2, 3, …, 6. 1

4

2

3 5

6

8

9

7

Fettach, Elarroum and Hamdoun

 20

Table 2: The equivalence table completely specified

R2 1

R3 1 1
R4 0 0 0
R5 0 0 0 0
R6 0 0 0 0 1
 R1 R2 R3 R4 R5

Finally, we obtain the following equivalence classes: C1 = {R1, R2, R3}, C2 = {R4}, C3 = {R5, R6}. Therefore, we
need only three registers instead of five: r1 = {R1, R2, R3}, r2 = {R4}, r3 = {R5, R6}.

3.0 PARTIAL EQUIVALENCE

In the total equivalence analysis, we have assumed that all registers have the same bit width. However, the registers
in a digital design do not necessarily have the same bit width. Hence, the content of a register can be included in the
content of another register, such registers are partially equivalent. The partial equivalence analysis allows us to
improve the register optimisation while increasing the number of equivalent registers. There are three possible cases
to have the content of a register Rj included in the content of a register Ri (Fig. 4).

3.1 First Case

The part of register Ri whose content is identical to the register Rj is completely on the right of Ri (Fig. 4(a)).

Since the arithmetic and logic operations transmit bits from the right side towards the left one, we can complete the
length of the register Rj by arbitrary bits to have two registers with the same bit width. The part added to register Rj
plays no role, we can choose it identical to the corresponding part of register Ri. Thus, this case can amount to the
one of the total equivalence studied previously. The registers Ri and R’j in Fig. 4(a) are totally equivalent and they
can be replaced by one register.

Fig. 4: Possible cases in partial equivalence analysis

(a)

R’j

Rj

Ri

(b)

Ri

Rj

(c)

Rj

Ri

Register Optimisation by Equivalence Analysis

21

3.2 Second Case

The part of register Ri identical to register Rj is completely on the left side of Ri (Fig. 4(b)).

The problem consists in finding a rule permitting to know if two registers Ri and Rj are partially equivalent. We will
limit it to operations of the following form: Ri:= Ri op c, where c is a constant.

Definition:

Let Ri and Rj be two registers with different bit widths. Let wi and wj denote the bit widths of registers Ri and Rj

respectively, with wi > wj. We suppose that registers Ri and Rj are defined in a state Sk by:
Ri := Ri op x;
Rj := Rj op' y;

The registers Ri and Rj are partially equivalent in the state Sk, if the operation op modifies the part of register Ri
identical to register Rj in the same way as the operation op' modifies register Rj.

However, it is impossible to establish a general rule for two different operations op and op'. Therefore, we will
search for a relative rule for every type of operation.

3.2.1 Addition

Example: Let us suppose that registers Ri and Rj are defined in the state Sk by the following operations:

Ri := Ri + 16;
Rj := Rj + 2;

We also suppose that registers Ri and Rj possess 8 and 5 bits respectively, and they are partially equivalent in the
previous states. We can represent registers Ri and Rj as well as operations as shown in Fig. 5.

Fig. 5: An example of the partial equivalence with addition operation

We remark that everything that is on the left of the dotted vertical line is identical for the two registers. Although
expressions of operations that define registers Ri and Rj are different, the registers are partially equivalent in the state
Sk. Adding 16 to register Ri corresponds to adding 2 to register Rj.

Rule 1:
If the following operations are scheduled in a same state Sk:

Ri := Ri + x;
 Rj := Rj + y;
then registers Ri and Rj are partially equivalent in the state Sk if x = y.2m, where m is the difference of bit widths of
the two registers (m = wi - wj).

If we add a constant that is a multiple of 2m to the content of register Ri, then there is no carry that passes from the
mth bit of register Ri to the part of register Ri identical to the content of register Rj.

Examples:
Let us assume that registers Ri and Rj have the following bit widths wi = 8 and wj = 6, (m = wi - wj = 2). If registers
Ri and Rj are defined by the following operations:
1. Ri := Ri + 8;

Rj := Rj + 2;
Then, registers Ri and Rj are partially equivalent, since 8 = 2.22 = 2.2m.

+ 1 0 0 0 0

Ri Ri := Ri + 16;

+ 1 0

Rj Rj := Rj + 2;

Fettach, Elarroum and Hamdoun

 22

2. Ri := Ri + 5;
 Rj := Rj + 1;
 Then, registers Ri and Rj are not partially equivalent, since 5 ≠1.22.

Remark:
Unlike the operation of addition, it is impossible to obtain a general rule for the operations of subtraction (Ri := Ri -
x; Rj := Rj - y). It is necessary to consider two possible cases for each operation, (Ri >x and Ri <x) for the first
operation and (Rj >y and Rj <y) for the second operation. In general, we can have the two cases in a same state Sk,
since the state graph can be cyclic and the content of the register Ri (or Rj) can be changed at every passage by the
state Sk. For this reason, we will not study the partial equivalence for the operation of subtraction.

3.2.2 Multiplication

Let us suppose that the following operations, that define registers Ri and Rj, are scheduled in a same state Sk:

Ri := Ri * x;
Rj := Rj * y;

Rule 2:
The two registers Ri and Rj are partially equivalent in the state Sk if Ri = Rj . 2

m and x = y, where m is an integer.

Indeed, so that the operation (Rj * x) modifies the part of the register Ri identical to the content of the register Rj in
the same way as the operation (Rj * y) modifies the register Rj, it is necessary that the sum of the partial products
does not give a carry to add to the part of register Ri identical to register Rj.

Example:
Let < Rk > denotes the content of a register Rk.
If < Ri > = 16, < Rj > = 2 and the two registers are defined by the following operations in a state Sn:

Ri := Ri * 3;
Rj := Rj * 3;

Then, the registers Ri and Rj are partially equivalent in the state Sn. The content of register Rj is included in the
content of register Ri as shown in Fig. 6.

Fig. 6: An example of the partial equivalence with multiplication operation

3.2.3 Right Shift

Rule 3:
Since, the content of register Rj is included in the one for register Ri, the registers Ri and Rj are partially equivalent
in the state Sk for n operations of shift, such as n <wj, where wj is the bit width of the register Rj.

Ri 0 1 0 0 0

Rj 1 0

Ri := Ri * 3 ; 0 1 1 0 0 0

Rj := Rj * 3 ; 1 1 0

Register Optimisation by Equivalence Analysis

23

Example: division by 2.

If < Ri > = 16, < Rj > = 2 and the two registers Ri and Rj are defined by the following operations in a state Sn:

Ri:= Ri / 2;
Rj := Rj / 2;

Then, the registers Ri and Rj are partially equivalent in the state Sn, since the content of register Ri is included in the
content of register Ri.

3.3 Third Case

The part of the register Ri identical to the register Rj is somewhere between the corresponding positions to the first
and the last cases (Fig. 4(c)).

Since, we can add some arbitrary bits on the left of register Rj, we recover the second case while adding on the left
of register Rj the corresponding part of register Ri. So the third case amounts to the second case.

3.4 Algorithm

The partial equivalence analysis is described by the Algorithm 2. It is done in the same way as the total
equivalence analysis. They differ by the type of equivalence relations to establish between registers. The
complexity of this algorithm is O(n_o.n_s.r2), where n_o is the number of operations, n_s is the number of states and
r is the number of registers.

Algorithm 2
For every type of operations, do

1. For every state of the state graph establish the equivalence relations between registers defined by
operations scheduled in the current state,

2. Construct the equivalence table,
3. The equivalence table will be treated from the left to the right,

a. Set i = 1,
b. Determine equivalence classes, as:

Ci = {Ri} ∪ {Rj / Tij = 1; j = i+1, i+2,..., r}
where Tij is the value in the cell (i, j) of the equivalence table and r is the number of registers,

c. Point all elements of Ci,
d. Increment i, if i = r then stop, else continue,
e. If Ri is pointed then return to step (d), else return to step (b).

4.0 IMPACT ON INTERCONNECTION COST

We will focus our discussion on the interconnection between functional units and registers. As stated earlier, the
register merging can have a direct impact on interconnection cost. Indeed, it can cause additional data transfers
which require additional interconnection elements. It especially occurs if the register merging is based on the utility
phase analysis where the contents of the registers to be merged are not necessarily the same, as shown in Fig. 7.
Since, the two operations of addition are scheduled in different states Si and Sj, they can be bound to a same
functional unit fu (see Fig. 7(b)). If the registers R11 and R21 (the registers R12 and R22 respectively) have disjoint
utility phases, they can be merged into a single register. Fig. 7(b) and Fig. 7(c) show the Register-Transfer Logic
(RTL) structure before and after the register merging respectively. We remark that the RTL structure after merging
has less registers but at the expense of two added connections. However, if the registers to be merged have the same
content, e.g. if they are totally equivalent, then the register merging in this case does not require additional
interconnection elements but unlike, it allows immediate saving of registers, buses and functional units, as illustrated
by the example in the Fig. 8. Since the two operations of addition are scheduled in a same state Sk, they are bound
to two functional units fu1 and fu2. The registers R1 and R2 are equivalent in the state Sk if the registers R11 and R21
on the one hand and the registers R12 and R22 on the other hand are equivalent (Theorem 1). If all these pairs of
registers are equivalent in any state of the design, then these registers can be merged. If we compare the RTL
structure before merging (Fig. 8(b)) with the RTL structure after merging (Fig. 8(c)), we remark that the latter one
has less registers, functional units and interconnections than the former one. Thus, the register merging based on

Fettach, Elarroum and Hamdoun

 24

totally equivalence analysis does not only reduce the number of registers but also reduces the interconnection cost
and the number of functional units previously allocated. This can result in a lower cost implementation. Similarly,
the register merging based on the partial equivalence analysis can also reduce the implementation cost of a design as
indicated in Fig. 9. We assume that the registers Ri and Rj have 8 and 5 bits respectively and they are partially
equivalent in any state. After the register merging, the two operations can be implemented by the sub-circuit
required for the execution of the first one. The result of the operation Rj = Rj + 2, e.g. the content of register Rj can
be extracted from the content of register Ri. Fig. 9(c) shows the necessary interconnect at the output port of register
Ri in the third case (Fig. 4(c)). Consequently, the register optimisation by equivalence analysis leads to a lower cost
implementation of a design. In addition, it improves the speed of the digital systems since this parameter depends
on the number of the interconnection elements.

Fig. 7: Register merging based on utility phase analysis

4 registers
2 mux
1 UAL
10 connections

R11 or R21 R12 or R22

 R2 R1

fu
+

(c) After merging

(b) Before merging

fu
+

R21 R11

 R2 R1

R12 R22

6 registers,
2 mux,
1 UAL,
8 connections.

(a)

Si : R1 = R11 + R12 ;

Sj : R2 = R21 + R22 ;

Register Optimisation by Equivalence Analysis

25

Fig. 9: Register merging based on partial equivalence analysis

(b) Before register merging

8

8

 Ri

ROM

fu1 +

16

5

5

 Rj

ROM

fu2 +

 2

(a)

Sk-1 : …..

Sk : Ri = Ri + 16 ;
 Rj = Rj + 2 ;

Sk+1 : …..

8

ROM

(c) After register merging

fu1 or fu2 +

Ri 16

8 From Rj From Ri

Ri

(d) Interconnects at output port of the register Ri

Fig. 8: Register merging based on total equivalence analysis

(c) After merging

3 registers
 1 UAL
 3 connections

R1 or R2

R11 or R21

fu1 or fu2

R12 or R22

+

(a)

Si-1 : …..

Si : R1 = R11 + R12 ;
 R2 = R21 + R22 ;

Si+1 : …..

(b) Before merging

fu2 +

R22 R21

R2

6 registers,
1 UAL,
6 connections.

fu1 +

R12 R11

 R2

Fettach, Elarroum and Hamdoun

 26

5.0 CONCLUSION

In this paper, we have proposed a novel register optimisation method. The method is based on the equivalence
analysis between registers before hand allocated by a conventional register allocation algorithm. Our approach is a
post-processing step that allows to go beyond minimisation by existing approaches based on the lifetime analysis. It
reduces the implementation cost of a design at several levels. It allows to optimise the number of registers and
functional units previously allocated as well as the interconnections.

We will extend the partial equivalence analysis between registers defined by operations having general forms.

APPENDIX

Our approach is applicable to scheduled behavioral descriptions with functional unit assignment information, that
we represent by state graphs.

A State Graph SG = (S, ES) is a directed graph possibly cyclic. Any node Si∈S represents a state and any
unidirectional edge eij = (Si, Sj) ∈ ES represents a state transition from the state Si to the state Sj.

The state graph includes information on both control and data flows, and on the schedule. Each state of the SG is
annoted by operations scheduled in this state.

Since we assume that the register allocation is done previously, then the operations manipulate registers.

A register is said to be defined in a state if there exists an operation scheduled in this state that can possibly modify
its content.

A register is said to be used in a state if it appears as operand in the expression of a arithmetic or logic operation
scheduled in this state.

A register is said to be useful in a state, if it contains the value of a variable that might be used later. A register is
useful from the time when it is first written until the time that its content is last read.

Two registers are said to be compatible if they are not useful simultaneously, e.g. if their utility phases do not
overlap.

Two registers are said to be totally equivalent if they have the same content in any state of a design.

Two registers are said to be partially equivalent if the content of one register is included in the content of the other
register in any state of a design.

A source operation of a register is the operation whose output operand should be bound to this register.

A destination operation of a register is an operation whose one of its input operands has been bound to this register.

ACKNOWLEDGMENT

Comments and suggestions by Professor Forrest Brewer from the Department of Electrical and Computer
Engineering of the University of California at Santa Barbara, are gratefully acknowledged.

Register Optimisation by Equivalence Analysis

27

REFERENCES

[1] M. C. McFarland, A. C. Parker, R. Camposano, “Tutorial on High-Level Synthesis”, in Proc. of the 25th

Design Automation Conference, July 1988, pp. 330-336.

[2] S. Devadas and A. R. Newton, “Algorithms for Hardware Allocation in Data Path Synthesis”. IEEE

Transaction on CAD, Vol. 8, No. 7, July 1980, pp. 768-781.

[3] C.-J. Tseng and D. Siewiorek, “Automated Synthesis of Data Paths in Digital Systems”. IEEE Transaction

on CAD, Vol. 5, No. 3, 1986, pp. 379-395.

[4] P. G. Paulin and J. P. Knight, “Force Directed Scheduling for Behavioral Synthesis of ASICs”. IEEE

Transaction on CAD, Vol. 8, No. 6, 1989, pp. 661-679.

[5] K. Kurdahi and A. Parker, “REAL: A Program for Register Allocation”, in Proc. 24th Design Automation

Conf., 1987, pp. 210-215.

[6] C. -Y. Huang, Y. -S. Chen, Y. -L. Lin, and Y. -C. Hsu, “Data Path Allocation Based on Bipartite Matching”,

in Proc. 27th Design Automation Conference, 1990, pp. 499-503.

[7] L. Stok, “Transfer Free Register Allocation in Cyclic Data Flow Graphs”, in Proc. European Conference on

Design Automation, Brussels, March 1992, pp. 181-186.

[8] L. Stok and R. Van den Born, “Easy: Multiprocessor Architecture Optimization”, in Proc. International

Workshop on Logic and Architecture Synthesis for Silicon Compilers, Grenoble, 1988, pp. 313-328.

[9] C. Park, T. Kim, and C. L. Liu, “Register Allocation – A Hierarchical Reduction Approach”. Journal of

VLSI Signal Processing 9, 1998, pp. 269-285.

[10] J. E. Hopcroft and J. D. Ullman, Automata Theory, Languages, and Computation. Reading, MY, Addison-

Wesley, 1977.

[11] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.

BIOGRAPHY

Mohamed Fettach received his DES (equivalent to M.S) in electronic engineering from University Hassan II,
Morocco. He is currently an Assistant Professor at the Faculty of Sciences Ben M’sik, Casablanca, Morocco. He is
a PhD candidate in electronic engineering. His research interests include computer-aided design of electronic
systems and high-level synthesis.

Lahcen Elarroum received his DES (equivalent to M.S) in electronic engineering from University Hassan II,
Morocco. He is currently an Assistant Professor at the Faculty of Sciences Ben M’sik, Casablanca, Morocco. His
research interests include logic synthesis, optimisation and high-level synthesis.

Abdellatif Hamdoun received his Diploma Engineering degree in electrical engineering in 1979 and his PhD
degree in digital electronic engineering from the Technical University “Fridiriciana”, Karlsruhe, Germany. He is
currently a Professor at the Faculty of Sciences Ben M’sik, Casablanca, Morocco. His research interests include
high-level synthesis and logic design. He is a member of IEEE.

	REGISTER OPTIMISATION BY EQUIVALENCE ANALYSIS
	ABSTRACT
	Rule 3:
	3.4	Algorithm
	Algorithm 2

