Malaysian Journal of Computer Science, Vol. 14 No. 2, December 2000, pp. 95-105

SEALED-BID AUCTION PROTOCOL IMPLEMENTATION OVER CORBA ARCHITECTURE

Mohammad Zahidur Rahman and Sai Peck Lee
Faculty of Computer Science & Information Technology
University of Malaya
Kuala Lumpur, Maaysia
sai peck@fsktm.um.edu.my

ABSTRACT

Verifiablesecret and polynomial sharing (VSPS) scheme can be adopted in the devel opment of a seal ed-bid auction
protocol for secure sealed-bid auction service. In this paper, issues related to the implementation of VSPS scheme
for sealed-bid auction service is discused. Distributed object computing over Common Request Broker
Architecture (CORBA) is deployed in the protocol. To allow the access of an auction server simultaneously by more
than one bidder, the concept of concurrent processing isintroduced.

Keywords Distributed computing, Object-Orientation, Electronic auction

10 INTRODUCTION

The sedledbid auction protocol is used for auctioning services or goods, which requires an extended time to prepare
the counter bid, and where it is not possible to gather al the prospective bidders a a common place a& a specific
time. The trend in the last decade is that trading over the Internet was increesingly common though there were some
security glitches yet to be taken care of. The designed sededbid auction protocol in [8] is based on the object-
oriented Common Request Broker Architecture (CORBA) [1]. CORBA encompasses a series of standards and
protocols for inter-process communication in a heterogeneous environment. The CORBA gpplication is based on
objects. Objects resdde on different machines throughout the digtributed environment. A cdlient object can
communicate with a server object through an object reference. This object reference is resolved by the object
request broker (ORB). When a request is reached to the ORB, the request is passed to an object adapter. The object
adapter forms alink between an object’s implementation and its presence on the ORB.

In order to regp the benefit of the didributed nature of CORBA, severa auction servers are didributed over the
network such that the availability of al servers is not compromised. The security of the distributed servers is
achieved by usng the secret sharing scheme, known as veifisble secret and polynomid sharing (VSPS) [2]. The
interfaces between the auction server objects and the bidder objects are designed using CORBA IDL (interface
definition language). As the IDL of these objects defined dways remain congant, any change or improvement to
any bidder object and/or auction server object will not be detected. The portable object adapter (POA), a refined
concept of basc object adapter (BOA), is proposed in the new CORBA specification [4]. The advantege of using
POA is tha it enables porting one version of the server object to a new version without requiring to notify the clients
who are using that server object. In this paper, we give some lights on the software development aspects of the
auction protocol, both in secret sharing scheme and CORBA implementation.

The online auctions currently available use the features of the hyper text markup protocol (HTTP). The web-based
auction systems suffer from the disadvantages like requirement of redloading and resubmitting of data, which takes
quite some time to perfform. To perform a data transfer, the web server has to recreate a HTML page and then sends
the whole file back to the browser. On the contrary, the Internet Inte-ORB Protocol (IIOP) of CORBA condgts of a
common data representation (CDR), an interoperable object reference (IOR) format, interoperable TypeCodes for al
data types and Inte-ORB Protocol (IOP) message contents, formats, and semantics mapped to TCP/IP. This
configuration results much faster data transfer in comparison with aweb-based application.

Section 2.0 briefly describes the auction protocol implemented. In Section 3.0, we discuss about the VSPS related

problems. The usage of portable object adapter (POA) and the naming service of CORBA are discussed in Section
4,0. In Section 5.0, the concurrency related problems are addressed and shown how they can be solved.

95

Rahman and Lee

20 OVERVIEW OF PROTOCOL FOR SEALED-BID AUCTION SERVICE

Our auction protocol stated n [8] starts from the registration of bidders. There should be some registration policy
under which the prospective bidders register themselves and get a certificate. The registration is important in the
serious red-life, seded-bid auction. Some seded-bid auctions require bidders to submit a bid depost in the form of
a bank chegue or some other means. In some cases, the bidder should support bid with some documents such as tax
returns, etc. The bank or government agency normaly issues these instruments. The presence of a registration
saver can ease the operation of the auction protocol in future when these types of services mature in eectronic
form.

After a predefined time, the regidration of bidders will be closed. Bidding can dat immediately or after some
predefined time when dl good auction sarvers are ready to Stat auction service. At the beginning of the bidding
srvice, each bidder sends higher own certificate to al auction servers as the prerequisite for bidding. When a
catificate is verified by dl the auction servers, an independent private channe based on the Internet will be
edablished between the bidder and each of the auction servers. The context diagram of our seded-bid auction
scheme is shown in Fig. 1 The private channel between the bidder and an auction server is built over the Internet
using available cryptographic technology.

Aunctich Setver 1 Auction Server2 | L. Buction Servel n-1 Auclich Selvel h

Fg. 1: Sededbid auction scheme

A s=sson key and some parameters like n, the number of auction servers, and t, the degree of polynomid, will be
passed by each auction server to the bidder. Then the bidder will choose an auction item, price quote and auction ID
to form a secret bid. The bidder now randomly chooses a polynomid f(x) of degree t with a free term equals to the
secret bid, and another random polynomia r(x) of degree t. He/she then computes the share values of the secret
bid, a; =f(i) and r; =r(i), based on the agorithms of the polynomials chosen, where i is for dl n participating
auction servers. Before sending to ith auction server via the private channdl, the bidder encrypts ith pair of a; and r;
with the sesson key of ith participating auction server. The commitments of a; and r;, where i=0 to n, ae
broadcasted to dl participating auction servers openly. According to the current protocol, the commitment of a
secret is the oneway hash of that secret. The individua ith auction server compares the received pair @ and),
which was passed via the private channd, with the corresponding broadcasted commitment. If the vdidity fals, the
auction server informs dl other participants including the bidder that some problem has occurred. Each auction
v dw veifies tha the broadcasted commitments lie within a committed polynomia. If a bidder receives a
broadcasted complaint from the ith auction server, he/she openly broadcasts a;, r; and the corresponding
commitments to defend hisher integrity. If the bidder does not follow certain steps, he/she will be disqudified;
otherwise it should be concluded that the bid from the bidder is shared perfectly.

In the sededbid auction, a negotiaion process ends with the sdler closing the auction a a time based on pre-agreed
rules, such as a a previoudy agreed time, or after a certain duration of inectivity, or a combination of the two.
When the auction time is over, dl the auction servers close the receiving of bids. Depending on the auction rules,
after a predefined time, the auction servas send each other al the shares that they had received in earlier sessions to
recondruct each bid. Before recondructing a bid, the auction servers have to check that the shares received are
vaid by checking with the commitments published during the bidding sesson. When dl the bids have been
recondructed, the winner is declared according to the predefined rule. There is a ded if there is a least one bidder
who has the highest bid that exceeds the reserved price, if the sdler has specified one.

96

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

30 VSPSIMPLEMENTATION ASPECTS

The secret bid sharing in the proposed seded-bid auction protocol uses the smplified verifiable secret and
polynomid sharing (VSPS) scheme. Before garting the shares caculation, the bidder should choose two large
prime numbers, p and g, such that p=ng+1, where mis a smdl integer. These two prime numbers are to be known
to dl the parties involved. This requirement is necessary because we need the numerical group Zf which contains a
subgroup of large prime order. Recaling from the basc agebra that Zp* has a cardindity of p-1; and for each
prime divisor of the cardindity of a group, we can come to the conclusion that there is a subgroup of that order.

Another two integer variables g and h , such that h = g mod p, are required for caculaing verifiable hash, where
z should be unknown to dl paties. This raises a question: who should know it? There is one posshility of a
presence of an Arbitrator. Normdly p, q and g are generated by the bidder, tren the Arbitrator cdculates h and
publishes it. Another possibility is to take a random number r (for example, the hash of the current date and time)
and st h=r" mod p (this will make sure that h is an dement of order). As h is pseudorandomly generated,
nobody knows z. If q divides p-1 but ¢ does not divide p-1, an easy way to do this is to choose two random
numbersr; and 1, in Z, , then set g=r,"¥® and h=r,"¥¥. Thus g and h as generators of the subgroup of order
in Zp isaccomplished. For the implementation of the secret sharing scheme, the latter solution is used.

According to the VSPS dgorithm, for congructing verifiable commitments, two polynomids are used in the
preparation of shares. These polynomids are to be computed over modulo g and not over modulo p. For the
reconstruction of a hid, the shares from the first polynomial (f(x)) are fitted over the polynomia and the interpolated
free term will be the reconstructed secret. The process of recondruction uses the inverse of a mdrix. The
verification of hash aso uses the inverse of a matrix. The inverse of a matrix should not be computed over the reds
or the raionds, but dl the computations should be done over the modulo of the large prime g. For these
mathematical implementations, LiDIA [5], an object-oriented mathematica framework for large numbers, is used.

40 SEALED-BID AUCTION PROTOCOL IMPLEMENTATION OVER CORBA ARCHITECTURE

A common idea is derived from the middleware gpproach which introduces a new layer into the program that keeps
the complexity away from the developer by hiding as many details of distributed programming as necessary. To the
developer, the middleware presents seemingly locd objects, and invocations on the local proxy cause te necessary
data to be transparently sent to the recipient. This alows clients to invoke operations on distributed objects without
concern for object location, programming language, operating sysem (OS) plaform, communication protocols and
interconnedions as wel as the hardware [7]. One popular example of such middleware is the Common Object
Request Broker Architecture (CORBA), which is part of the Object Management Architecture as specified by the
Object Management Group (OMG). CORBA uses the Object Request Broker (ORB) as the glue between individua

pieces, which isresponsiblefor directing a client's method invocation to the appropriate object implementation.

While CORBA can indeed hide many detals of client/ssrver programming from the client, experience has shown
that a much tighter involvement with the ORB is necessary on the server side. For this, CORBA uses the concept of
object adapters which mediate between the ORB and the server on how to represent servants to the outside world.

The saver can choose an object adapter that best fulfills its requirements CORBA is scdable and its location
forwarding mechanism provides basic support for coarsegrained server mohility, but a vendor-specific forwarding
sarvice (i.e. an Implementation Repository) is necessary on the server side to employ the feature [6].

A programming concept with CORBA is that a remote method invocation causes a request to be sent from the client
to the sarver, and the client usualy waits synchronoudy until the reply is received [9, 14]. CORBA usss a
declarative language, the Interface Definition Language (IDL), to describe an object's inteface. This description is
used by an IDL compiler to generate stubs for the client side and skeletons on the server sde. Using this generated
code a remote method invocation looks like an invocation on a locd object, a leas in an object-oriented
programming language like C++. The encoding of parameters is hardwareindependent, which is referred to as
CDR (Common Data Representation).

The nature of the proposed sealedbid auction protocol demands a grester speed by spreading complex tasks over
many computers working in paralld and increased fault tolerance can be achieved by using more than one server as
described in the VSPS scheme. According to the protocol, a bidder contacts severd server objects as defined by the
auction rules to perform the auction service The offering and using of services are of particular interest for the
Internet today. Companies are not satisfied with presenting information on the World Wide Web only, but dso keen
to present their services online to the worldwide user community. The main challenges focus on the operating

97

Rahman and Lee

sysem (OS) platform portability, connection management and service initidisation, event demultiplexing and event
handler digpatching, synchronisation, fault tolerance and fault detection. CORBA helps to overcome these
chdlenges. As such the proposed sededbid auction protocol is implemented over CORBA architecture. In the
following subsections, we discuss severa CORBA concepts and their usage in auction system implementation.

41 ThePortable Object Adapter (POA)

The concept of portable object adapter (POA) is augmented with the basic object adapter (BOA) in the new CORBA
specification 2.3 [4]. The POA is designed keeping in mind the portability and flexibility of objects. The POA
comes with its own set of concepts. Many POA ingdtances can exigt in a server, organised in a hierarchica structure.
The RootPOA is crested by the ORB and subsequent POAs can be children of existing ones which were crested by
the working server. Each POA maintains its own Active Object Map so that it can map currently active objects to
sarvants. Each object is identified by a unique Object ID within its name space and is activated by a particular POA
instance.

'% LT - Eool POA selvani#l
= . Bhped Tl |

= v | Betvantm ',

E . | | servant#2
o)

o

.
selvahi#3

selvahid
L

PCA Manager 2
v
I v
[
[
[
1
1
LI |
Lo
Lo
s
1
! v
1]
Al
\\

selvahi#s

/POAYPOA /POALPOAR

selvahi#h

Fig. 2: Portable Object Adapters (POA) and its interaction with managers and servants

The POA managers are responsible for synchronising the different POAS, i.e. managers control the readiness of one
or more POAS to receive requests. The other respongbility of the managers are to control and monitor the life cycle
of the servants. RootPOA is created by ORB as shown in Fig. 22 POAl and POA2 are children of RootPOA and
POAa and POAb ae children of POA2. The new four POAs (i.e. POALl, POA2, POAa and POAb) are now
registered to servants, which adjust different aspects of a POA’s behaviour. For example RootPOA is registered
with two servants servant#1 and servant#3, which are kept in the active object map. During the life cycle of a POA,
the POA changes its states according to the timulation it receives. The state trangtion of a POA isshownin Fig. 3.

; HOLD [ACTIVE INACTIVE

Staut /
DISCARD

Slop

Fg. 3: State transition diagram of aPOA
4.1.1 PoliciesRelated toa POA
Each of the POAs has its own separate policies. Policies are selected by the user upon the POA cregtion and cannot
be changed over its lifetime. Since objects are associated with a fixed POA instance, some policies can dso be sad

to be tha of an object, for example, the lifespan policy. According to the CORBA 2.3 specification, the fallowing
are the available policies regarding the portable object adapters.

98

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

Threed It can be st to dther “Single Thread” if the servants are not thread-aware and that requests must be
sridised, or st to “ORB controlled” if servants are reentrant and requests can be processed
regardless of ongoing invocations.

Lifespan Lifespan of an object can ether be a “trandent” or a “perssent”. The lifespan of trandent objects
(i.e. objects that are registered in a POA with the transient lifespan policy) is limited by the lifespan of
the POA instance they were activated in. Once their POA is destroyed, for example, as part of server
shutdown, object references to transent objects become permanently invaid. Persstent objects can
outlive their origind POA and even their origind server. Missng POAs for persstent objects can be
recreated, and if their server is shut down, it may be restarted at a later time and continue serving the
object. The usage of the term “persstency” here is very different from its meaning as a Basc Object
Adapter's (BOA) activation policy. All BOA servers satisfy the POA’'s pasistent lifespan policy,
because the servers could be stopped and restarted.

Object An object can be activated with the POA more than once to serve more than one object. ID
Assgnment Policy defines whether Object IDs are generated by the POA, or sdected by the user, for
example, to associae objects with “humanreadable’ names or to hold identity information. If a
sngle sarvant is registered more then once to serve multiple objects, it could use a usersdected
Object ID (which would be different for multiple activations) a runtime to discriminate between
them.

Servant When an object is activated, the association between the object (or rather, Object ID) and the servant
is gtored in the Active Object Map. This behaviour can be changed if desired, for example, if a default
servant is prepared to handle requests for newly-activated objects.

Request Object Map When trying to serve a request, whether a servant manager is available, or whether the
request should be delegated to a default servant, Request Object Map policy sdects the
option.

Implicit Some operations on a servant require its activetion, for example, the request of an object reference.
Depending on this policy, performing such an operation on an inactive servant can either cause an
error, or transparent activation.

4.1.2 Servant Manager

The usage of a servant manager is focused in the following cases. Like adapter activators for POAs, a servant
manager can be used to activate servants on demand after a partid shutdown or after a server restat. The servant
manager recelves the request’'s Object ID and could use that information to read back the object’'s date from the
perssent dorage. Another interesting feature possble with servant managers are virtud objects, i.e object
references that refer to non-existent servants. References to virtua objects can be passed to a dlient; on the server
Sde, aservant manager is then registered with the POA to incarnate the virtua object on demand.

Servant managers come in two different flavours with dightly different behaviour and terminology, depending on
the servant retention policy. If this policy’s vaue is "retain," a servant activator is asked to incarnate a new servant,
which will, after the invocation, be entered into the Active Object Map itsdlf - this would be sensible in the sketched
file savice example, snce the newly incarnated file object would be needed more than once. If an object is
deactivated, either explicitly or because of a server shutdown, the servant activator's etherealize method is cdled to
get rid of the servant- at which point the object's state could be written to the persistent storage.

The POA sarvant managers are of two types. one activates a new servant called Servant Activator. POA’s Active
Object Map retains the information of the servant to serve further requests on the same object. The other servant
manager type is Servant Locator which is used to locate a servant for a single invocation and then forgets the object.

Thistype of servant will not be retained for future use.

If the servant retention policy is “nonretain”, the servant manager would have to be a servant locator, whose task is
to locate a servant suitable only for a single invocation. A sarvant locator supplements the default servant
mechanism in providing a pool of default servants; it is the flyweight factory according to the flyweight pattern. It
can dso be used for load baancing, as the example of a print service shows, in which the print method is directed to
the printer with the shortest queue.

99

Rahman and Lee

4.1.3 Auction Protocol | mplementation over CORBA

In a distributed system development usng CORBA, a servant manager is responsible to manage the bids. The
implementation of the auction service over CORBA uses the benefits of POA [12, 11]. The auction house is
responsible for cregting bid objects. However, the content for the bid object, such as its shares, is generated by the
bidder. In the case of an auction server, the servant activator is chosen so that whenever the bid object is first used,
the sarvant manager will incanate and activate a new sarvant. Rurther operations on the same object reference will
use the dready active servant. The auction server's create operation executes the create_reference() operation on
the POA, which does not cause an activetion to take place. It only crestes a new object reference encapsulaing
information about the supported interface and a unique system-generated Object ID. This reference is returned to
the client bidder. For example, the pointer for the auction server, Nilam_ptr, isreturned when it is created.

Nilam_ptr Auction_impl::create()

{

Nilam_ptr retref;

CORBA::Object_var obj = newpoa-> create_reference (char'IDL:Nilam:1.0char’);
retref = Nilam::_narrow(obj);

return retref;

}

When the client invokes an operation on the returned reference the POA will first search the Active Object Map. If
the desired object is not found, the servant manager will be referred to serve the request and to find an appropriate
implementation for the request. The collaboration diagram of the object finding is shown in Fig. 4.

chenl

1: resolve object teference 3:find_servani()
""" |corBa:DRE_ """ T |RootPDA
5. narrow() . S 2igel

' oy

¥ | 4iinstantiates &
1 : I:'_-'."Zl
! Mew cbject teference LB
W CORBA:Object ORE Cote | (49
Z:1hwvokes operalion - & __hattow () .

T:ihstlanliales S
{_ [
Selvahnt Local POA
Liopleimentatich

Fg. 4 Finding aNilam object in CORBA implementation

The problem regarding the persistence of the auction server is important. A persstent object's lifetime is not
bounded by the process that implemented it. If the object is not of persistent type, then due to some reason if the
server is down and then redtarted, and whenever the dlient invokes a service from the server, it will recave an
exception that its object reference has become invalid. According to the CORBA specification of POA, an object is
persstent if the servant that implements it is activated in POA that has PERSISTENT lifespan policy. Due to the
persstent lifespan policy, the disruption of server service will not be noticed by the client object as long as the
server is running whenever an invocation is performed.

In the case of the auction service, it requires to create persstent bids. When the server is down, it writes its dates to
a disk file and when the server is redtarted, the States are read again. To accomplish this, a perdstent POA is used to
cregte the auction server object. A servant manager provides the necessary hooks to save by issuing etherealising to
the auction server object, which writes the states to the disk and restores the states by incarnating a hbid, which
checksif an gppropriate named file with the states exists. The following code snap shows how to use this technique.

100

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

CORBA::PolicyList pl;

pl.length(2);
pl[0] = poa->create_request_processing_policy (PortableServer::USE_SERVANT_MANAGER);

pl[1] = poa->create_lifespan_policy (PortableServer::PERSISTENT);

PortableServer::POA_var nilampoa =
poa->create_POA (char'Nilamschar', PortableServer::POAManager::_nil(), pl);

PortableServer:POAManager_var nilammgr = nilampoa->the_POAManager();
[** Activate ServantManager */

NilamManager * am = new NilamManager,
PortableServer::ServantManager_var amref = am>_this();
nilampoa->set_servant_manager (@mref);

By using different POAs to activete the auction server, the auction server can be made perssent. In the example,
two different servants are used ingtead of using the same POA which requires to digtinguish two objects while
etherealizing or incarnating. At cregtion of the bid object (using create operation), the bid object is extended to
activate itsdf with a specific Object ID which is used as the name for the state file on disk. A shutdown operation in
the auction server interface is included to terminate the server process. This is accomplished by cdling ORB's
shutdown method. Invoking shutdown() on the ORB firgt of dl causes the destruction of al object adapters.
Destruction of the bid's POA next causes dl active objects to be etheralised by invoking the servant manager.
Conseguently, the servant manager plays the mgjor role to save and to restore the states. The auction house POA

can be creeted asin the following code:

CORBA::PolicyList pl2; pl2.length(2);

pl2[0] = poa->create_lifespan_policy(PortableServer::PERSISTENT);

pl2[1] =poa->create_id_assignment_policy(PortableServer::USER_ID);
PortableServer::POA_var auctionpoa = poa->create_ POA(char'Auctionchar', mgr, pl2);

/** Create and activate an auction house */
Auction_impl * myaucthouse = new Auction_impl (hilampoa);

42 Naming Service

The CORBA sarvices extend the core CORBA gpecification with a set of optiona utilities that are useful for
different gpplications. The CORBA naming service [3] & one of the smplest and the most useful utilities. Its role
is to dlow a name to be bound to an object and to alow that object to be found subsequently by resolving that name

within the naming service.

1.
Register servant Object

Maum hg Setvice Object

3.
Beturns servant
Object Identification

+.
Call setvant with
the tetorned Object 10

Search for setvant

Fig. 5: Naming service invocation sequence
An auction saver holds an object reference and registers it with the naming service, giving it a name tha can be

used by other components of the system subsequently to find the object. The CORBA object is the object which
givesthe reference of the remote object. The naming service invocation sequenceis shownin Fig. 5.

101

Rahman and Lee

One of the advantages of the naming service is that the names associated with objects are independent of any
properties of the objects referred by them. In particular, a name is independent of an object’s interface, server, or
host name. In the case of a primitive bind operation, which is mainly vendor specific, for obtaning an object
reference, it requires that the client knows the oljects marker, server and host name. In contradt, finding an object
usng the naming service smply requires the cdler to know the name that has been bound to the object.
Successfully resolving a name within the naming service gives an object reference to the required object.

There are two ways in which an goplication can use the naming service. Firdly, the naming service can be used to
name a significant number of objects in the system. Alternatively, some important objects in each service can be
named, and these objects can act as entry points for the other objects. In the case of the auction service, the later is
auitable for development. The auction house POA is regidered with the naming service The following code
segment shows how a server registersits POA object with the naming service.

CORBA::Object_var nsobj = orb->resolve_initial_references(char'NameServicechar’);
assert (! CORBA::is_nil (nsobyj));
CosNaming::NamingContext_var nc = CosNaming::NamingContext::_narrow(nsobj);

CosNaning::Name name;

name.length(1);
name[0].id=CORBA:::string_dup (servername);
name[0].kind=CORBA::string_dup(char'char’);
nc->bind(name, ref);

When the client invokes a POA object, the POA object in turns invokes the other servant objects. Now the client
invokes a naming service to resolve the object reference for the servant object. When it gets the reference, it can
directly invokes the methods of the object.

CORBA::Object_var nobj = orb->resolve_initial_references(char'NameServicechar);
assert (! CORBA::is_nil(nobyj));

CosNaming::NamingContext_var nc=CosNaming::NamingContext::_narrow(nobj);
CosNaming::Name name;

name.length (1);

name[0].id = CORBA::string_dup (char'myNilamchar’);

name[0].kind = CORBA::string_dup (char'char’;

CORBA::Object_var obj;

obj = nc->resolve(name);

Auction_var auction = Auction::_narrow(obj);

The client bidder object creates a bid object in the auction server by cdling a create to the auction house object.

The auction house object returns a virtud object reference to the client object. Using this object reference, the client
bidder object can directly communicate with the target object Nilam. The object management is done by POA
manager nilammgr. The manager is responsible for the states of the objects, i.e. if the server has to shut down, the
manager firg cdls etherealise to save the states of the object. When the server restats, the manager cdls incarnate
to return the previous states of the objects. The underlying CORBA chosen for the implementation $ Mico. The
details of Mico is avalable in [10]. The asynchronous naure [13] of the bidding process for the seded-bid auction
will be discussed in the following section.

50 CONCURRENT PROCESSING AND SYNCHRONISATION

The implemented sedledbid auction protocol uses both synchronous and asynchronous remote method cdls. Fig. 6
illugrates the differences between synchronous and asynchronous processng of a canceled order, for example A
synchronous process is a prooess, before processing the next process, has to wait for the acknowledgement of the
responder. On the other hand, for an asynchronous process, the process continues without waiting for a response
from the receiver of the message.

102

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

Objectl @ Object] @

woethad1() methad (]

weg,, a2 |:
>J< imethodLiepl ()
waill]
mc‘hud““)\‘]u oethad?(...)
rmethod2teplyl) |:

wait)

aurny,

aar,

inethod2repl ()

Asyhciohous call Synchrehous call

Fig. 6: Asynchronous process versus synchronous process

Synchronisation choices are crucia in the case of systems that support concurrent processng. In an auction, bidders
can invoke two processes.

1. Submit anew bid.

2. Cancd an open bid.

Theauction server can execute the following two processes simultaneoudly:
1. Routedl open bidsin the bid-tableto the sharing program.
2. Process cancdled hids.

Therefore bidders can submit new bids, while the auction server routes open bids to the sharing program, which
implements the sharing agorithm. If sharing is successful, the bid execution system updates the bidtable and
notifies the corresponding bidder. These multiple processes use threads to execute concurrently. A new thread is
invoked every time a bidder sends a request to the server. Threads require fewer system resources than
computations. In a multi-processor workstetion, multiple threads can operate simultaneoudy to teke advantage of
different processors. In a dngle processor machine, multiple threads can run in an interleaved manner so tha
different tasks run simultaneoudy. Thus the auction server can concurrently perform intensve computetions for bid
sharing, and a the same time, support interactive access. However, multiple threads are not protected; more than
one thread can access the same daa item. The most common way to implement concurrency control is to use
exclusive locks. By locking the daa, the gpplication is in effect seridising access to the data For example, when a
bidder submits abid, a new thread islaunched at the auction server. The thread operation hasthree parts:

1. Assgnthecurrent BidID to the new bid.
2. Increment the BidID.
3. Addthebidtothebid-table.

Now suppose two bidders submit bids and the resulting threads interrupt each other:

1. Bidder A startsto submit abid.
Thread A executes Part 1 of the submitted bid.
2. Bidder B starts to submitted abid.
Thread B interrupts Thread A.
Thread B executes Part 1 of the submitted bid.
1. Thread A interrupts Thread B.
2. Thread A executes Part 2 and Part 3 of the submitted bid.
3. Thread B finishes Part 2 and Part 3 of the submitted bid.

This scenario causes the two bids sent by bidders A and B to have the same BidID. We can solve this problem by
adding the synchronised keyword to the distribute share method, distSHR(). This keyword serves as a mutualy
exclusve lock for the method, alowing only one thread to call the method. Upon completion of the method, the
thread automatically releases the lodk. Locks are useful if the portion of the data that must be seridised remains as
smdl as possible. If unnecessary locks are applied, program peformance becomes less efficient. For example, if a
bidder cancels a bid right after it was routed to the sharing program, it is immediately deleted from the bidtable.
The sharing program may then caculate and update shares, only to find that the bid has been deleted. To solve this
problem, the bid-table is locked while matching is conducted, but this approach would freeze the bidtable
condantly. Instead, asynchronous processing can be implemented. In a synchronous remote call, object A sends a

103

Rahman and Lee

message to object B and waits for the feedback. Thus, the sending and receiving processes synchronise with every
messsge. To continue, object A has to wat for the feedback from object B. Object B has to respond
instantaneoudy to object A's request as well as to other remote cdls. Otherwise, object A and other objects will be
delayed while waiting for replies. CORBA implements asynchronous cal by using oneway operation. If an IDL
operation can be defined to be oneway, most implementations of CORBA will not block the caller of a oneway
operation, but dlow the caler to safely continue in parale with the piocess of the request. A oneway operation
must specify a void return type and cannot have out or inout parameters, and it aso canot have a raises clause [1].
With asynchronous communication, the server can schedule its operations more efficiently because it does not have
to reply to each order immediatdly. Meanwhile, the client gpplication does not have to wait for an immediate reply
in order to conduct the next task. Asynchronous communication for cancdled bids is used because it does not need
the bidding process to wait for the replies of the canceled process. Using asynchronous communicetion, the
cancdled requests are dored in a queue a the saver sde After submitting the cancelled requests, the dient
application can proceed without waiting for the repliess The saver dde empties the canceled queue eech time
beforeit restarts the sharing program.

Thefollowing shows the main dgorithm of the cancelled process.

{

store cancelled bidID in a cancelled queue;
}
The main part of the sharing routineis asfollows:
{

if(sharing is completed and bidID found in cancelled queue)
delete the bid from bid-table;

remove cancelled bidID from cancelled queue;

notify bidder;

}

60 CONCLUSON

Our sedledbid auction protocol uses verifisble secret and polynomia sharing agorithm. In this paper, we focus on
the implementation issues of VSPS agorithm for the auction. We aso focus on the implementation scenarios of the
sealedtbid auction protocol over CORBA framework. The implementation techniques used for CORBA is portable
object adapter (POA) whose specification is newly published by the OMG. The paper dlows a reader to be familiar
with the complex world of CORBA and its application. The totd implementation is done in CORBA 2.3
implementation MICO-2.3. The platform used is Linux and implementation language used is C++ over IIOP. The
multi-threads are implemented using POSIX competible thread of Linux.

ACKNOWLEDGEMENT

The authors wish to thank Dr. Rosaio Gennaro for his vaduable suggestions in the implementation of VSPS scheme
for auction service.

REFERENCES

[4 Sean Baker, CORBA Distributed Objects Addison-Wedey, 1997.

2 Rosario Gennaro, Michad O. Rabin, and Td Rabin, “Smplified VSS and Fast-Track Multiparty
Computations with Application to Threshold Cryptography”, in Seventeenth ACM Symposium on Principles
of Distributed Computing, PODC'98. ACM, 1998, pp. 101-111.

[3 Interoperable Naming Service Preliminary Specification, Technicd Report, Object Management Group,
October 1998.

104

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

4 “The Common Object Request Broker: Architecture and Specification’, 2.3 ed. Technical Report, Object
Management Group, June 1999.

[5] The LiDIA Group. LiDIA - A Library for Computational Number Theory. TH Damstadt, Fachbereich
Informatik, Ingtitute fur Theoretische Informatik, Alexanderstr. 10, D-64283 Darmstadt, Germany, 1996.

[6] Michi Henning, “Binding, Migration and Scdability in CORBA”. Communications of the ACM, Val. 41,
No. 10, October 1998.

[7] Michi Henning and Steve Vinoski, Advanced CORBA Programming with C++. Newblock AddisonWedey,
1999.

[8l K. M. Yew, Mohammad Zahidur Rahman, and Sa Peck. Lee “Specification of a Secure Fault Tolerant
Pseudo-Anonymous Electronic SededBid Auction Protocol”, in MICC'99, |IEEE Malaysia, December 1999,
pp. 218-223.

[9 Robert Orfdi, The Essential Distributed Objects Survival Guide John Wiley & Sons, 1996.
[10] Arno Puder and Kay Romer, MICO - MICO is CORBA Morgan Kaufman Publishers, 1998.

[11] Douglas C. Schmidt and Steve Vinoski, “C++ Servant Classes for the POA”. S GS Vol. 10 No. 6, June
1998.

[12] Douglas C. Schmidt and Steve Vinoski, “Using the Portable Object Adapter for Trandent and Persistent
CORBA Objects’. SGS, Val. 10, No. 4, April 1998.

[13] Douglas C. Schmidt and Steve Vinoski, “Programming Asynchronous Method Invocaions with CORBA
Messaging”. SIGS, Val. 11 No. 2, February 1999.

[14] J Segd, CORBA: Fundamentalsand Programming. John Wiley & Sons, New Y ork, 1996.

BIOGRAPHY

Sai Peck Lee is currently an Associate Professor at Faculty of Computer Science & Information Technology,
University of Malaya She obtained her Master in Computer Science from University of Malaya in 1990, her D.EA
of Computer Science from University of Paris VI Pierre e Marie Curie in 1991 and her Ph.D. in Computer Science
from University of Paris | Panthéon-Sorbonne in 1994. Her current research interests include Software Engineering,
Object -oriented Methodol ogies, Software Reuse, E-Commerce, Information System and Database Engineering.

Zahidur Rahman, M. is currently an Associate Professor a Department of Electronics and Computer Science,
Jahangirnagar University, Savar, Dhaka, Bangladesh. He obtaned his B.Sc. Enginearing in Electricd and
Hectronics from Bangladesh University of Engineering and Technology in 1986 and his M.Sc. Engineering in
Computer Science and Engineering from the same indtitute in 1989. He obtained his Ph.D. degree in Computer
Science and Information Technology from University of Maaya in 2001. His Ph.D.’s thesis work is on designing a
secure protocol for dectronic commerce transactions. His current research includes the development of a secure
distributed computing environment using forma method for E-commerce.

105

