
Malaysian Journal of Computer Science, Vol. 14 No. 2, December 2001, pp. 38-46

38

A BINARY ACCESS CONTROL SCHEME WITH LOGICAL AND PHYSICAL KEYS

Md. Rafiqul Islam
Computer Science and Engineering Discipline

Khulna University, Khulna, Bangladesh
email: cseku@khulnanet.net

Harihodin Selamat and Mohd. Noor Md. Sap
Faculty of Computer Science and Information System

Universiti Teknologi Malaysia
Jalan Semarak

54100 Kuala Lumpur, Malaysia
email: harihodn@itp.utm.my

ABSTRACT

An access control scheme for implementing the access control matrix is presented. The proposed scheme is based
upon binary form of access rights and different from the schemes that are based on the concept of key-lock pairs. In
this scheme, each user is assigned two keys. The first key is the logical key and is in binary form, and the second
key is the physical key that holds access rights. The keys are possessed by the user, and can be used to derive the
access rights to the files. The scheme has a special feature, such as a file or user can be added to or removed from
the system without much effort. This scheme is more effective and efficient for systems where files are accessible to
only a limited number of users.

Keywords: Access right, Dynamic access, Logical and Physical keys

1.0 INTRODUCTION

Information protection is a very important issue in a computer system because of the increasing complexity of
various sorts of information, the large number of users, and the widely used communication networks. The access
control system can be used to prevent the information stored in a computer from being destroyed, altered, disclosed
or copied by unauthorised users. Graham and Denning [2] in 1972 developed an abstract protection model for
computer systems. The model is based upon access matrix - the state of a protection system. The state of a
protection system is defined by a triple (S, O, A), where:

1) S is a set of subjects (or processes),
2) O is a set of objects (or resources),
3) A is an access matrix, with rows and columns corresponding to subjects and objects respectively.

The subject could be users, processors, or utility programs. The objects could be files, tables of a database, storage
segments, disks or magnetic tapes. Each element in the access control matrix represents the access right for a subject
with respect to its corresponding object. The information protection for a computer system is achieved by employing
an access control matrix, as depicted in Fig. 1. In this paper, we will use the terms user and file in place of subject and
object respectively. The (i, j)th entry of the access control matrix is denoted as aij, which stands for the access right
of the user Ui (ith user) to the file F j (jth file). We assume that all access rights are expressed by numerals. Linear
hierarchy of access privileges may be applied here. This means, the right to read implies the right to execute, the right
to write implies the right to read and execute, and so on. In the access matrix shown in Fig. 1, the user U1 can read the
file F1 and execute the file F2, and U3 can delete the file F2.

Files
 Users

F1 F2 F3 F4 F5

 U1 2 1 0 3 0
 U2 1 0 3 0 4
 U3 0 4 5 0 3
 U4 3 0 0 4 0

0 - no access
1 - execute
2 - read
3 - write
4 - delete
5 - own

A Binary Access Control Scheme with Logical and Physical Keys

 39

Fig. 1: An access control matrix

Based on Graham and Denning’s abstract protection model, Wu and Hwang [3] proposed an alternative scheme of
storing just one key for each user and one lock for each file. To figure out access rights a ij’s of users to files, a
function f of key Ki and lock Lj is used. Mathematically,

aij = f (K i, Lj) (1.1)

Several relevant access control methods [4, 5, 6, 7, 8, 9] appeared in the literature after Wu and Hwang’s work. The
previously proposed methods work well. However, on the dynamic access control problem such as adding or
deleting files or users, the keys or locks should be re-established. Besides, the complexity of operations on
generating keys and locks is sophisticated [13]. Hwang et al. in 1992 proposed a protection method using prime
factorization [9]. In Hwang et al.’s method, since a lock is the product of some prime powers, it may easily exceed the
largest integer allowed in a computer system. Chang et al. in [13] have improved the results of Hwang et al.’s
scheme. Recently, Chang et al . [10] introduced a simple method with binary keys. The scheme requires
reconstructing the whole system in cases of addition or deletion of a file. This means that the dynamism of addition
or deletion of a file is not achieved by Chang et al.’s method.

In this paper, a new and simple access control called logical and physical keys method using binary form of access
rights is proposed. The proposed method is for the implementation of sparse access control matrix. Verification of
access right is simple. Dynamic access control such as changing access right, addition or deletion of a file or user,
can easily be achieved.

2.0 THE LOGICAL AND PHYSICAL KEYS METHOD

Let A[m, n] be an access control matrix, where m is the number of users, n is the number of files and aij is the (i, j)th
entry in the access control matrix, A. This means, i represents the user number and j represents the file number in the
system. Suppose each access right aij in the access matrix is represented in its binary form ij ij

c
ij
c

ija a a a= −(...)1 1

where, c = 1 +  log (amax)  , aij
1

 is the first bit of access right aij and amax is the maximum of access rights (amax = 5

as for the access control matrix in Fig. 1). Thus, the access right a ij can be expressed in the following form:

ij ij
c

ij
c

ij ij
z

z

c
za a a a a= =−

=

−∑(...) .1 1

1

12 (2.1)

where { }ij
za ∈ 0 1, . For example from Fig. 1, we have a23 = 3 and c = 1 +  log (5)  = 3 . So, we can represent the

access right a23 as 011 in binary form.

In the proposed method, each user is assigned two keys. The first one is the logical key and the second is the
physical key that holds access rights of the user to the files. These keys are derived from access rights with respect
to the files. The keys are possessed by the user and can be used to derive access rights to the files. From the first
key, we can determine whether a user has an access to a file. The logical key is in binary form. Using the bits of the
logical key from the physical key, one can find the access rights of the user to the files. Each user Ui is assigned two
vectors, KiL and K iP. The logical key K iL is defined as follows:

iL iL iL iL
nK K K K= 1 2 . . . (2.2)

for i = 1, 2, . . . , m
where, iL

xK ∈ {0,1} and iL
xK denotes the xth bit of the logical key KiL.

Taking the value of iL

xK as follows:







−−
−

=
stringbitzerononaisif

stringbitzeroaisif

a
aK

ij

ijx

iL 1
,0 (2.3)

If the bit -string a ij (binary form of access right aij) contains all zero bits such as aij = 000 (if c = 3), then a ij is a zero
bit -string. Otherwise, a ij is a non-zero bit-string, i.e., a ij ∈ { 001, 010, . . ., 111}. From (2.3), it is clear that KiL contains
1 in jth pos ition (iL

jK =1) if user Ui has access (whatever it is, i.e ., a ij > 0) to jth file. On the other hand, KiL contains

Islam, Selamat and Sap

 40

0 (iL
jK =0) if user Ui does not have access (aij = 0) to the jth file. So, from the logical key, one can easily determine

whether a user has any access to a file.

Let ij

za be the zth bit of binary form of access right aij. The physical key of user Ui, is represented as

()iP iP
c

iP
c

iPK K K K= −, , . ,1 1 , i.e., K iP is a vector of c elements. Each element of Kip is computed as follows:

iP
z

ij

z e

e

p

K a= ∑
=

.2
1

 (2.4)

where, e K iL
u

u

j

= ∑
=1

, p KiL
u

u

n

= ∑
=1

 (iL

uK denotes the value of uth bit of K iL)

 and 1 ≤ z ≤ c, 1 ≤ j ≤ n, 1 ≤ i ≤ m.

Let c = 3, then the elements of the K iP (the physical key of the ith user) can be computed as follows:

i P i j

e

e

p

K a1 1

1
2=

=
∑ .

i P i j

e

e

p

K a2 2

1
2=

=
∑ . (2.5)

iP ij
e

e

p

K a3 3

1
2=

=
∑ .

If the user Ui (the ith user) wants to access the file Fj (the jth file), with the access mode rij, at first the system fetches
the logical key KiL. If the jth bit of KiL is zero (iL

jK =0), then the user does not have any access to the file F j and the

access request is denied. On the other hand, if the jth bit of KiL is equal to one (iL
jK =1), then the user has access to

the file and the system fetches the second key KiP (the physical key) of the user to verify the access right. We can
check access right of a user according to the algorithm 1 . If the requested access mode is equal to or less than the
output result of algorithm 1 (rij ≤ aij), then the access request is accepted. Otherwise, the access request is denied.

Algorithm 1 : Access right checking
/* KiL denotes the logical key and K iP denotes the physical key of the ith user, a ij is the access right of the ith user to
the jth file, c is the number of bits in aij */
Input: iLK , ()iP iP

c
iP
c

iPK K K K= −, , . . .,1 1 .

Output: ij ij
c

ij
c

ija a a a= −(. ..)1 1 .

Step 1: If iL
jK =0 , then aij = 0;

Step 2: Else /* i.e., If iL

jK = 1 */

Begin

compute e K iL
u

u

j

= ∑
=1

;

For 1 ≤ z ≤ c do

Compute ij
z iP

z

e
a

K=



2

2mod ;

end_for;
End;

Step 3: Output ij ij
c

ij
c

ija a a a= −(. ..)1 1 or a ij = 0 .

Example 1: Initialization of keys
By considering the access control matrix in Fig. 1 and using binary form of access rights, we can find a binary access
control matrix as shown in Fig. 2. Here, amax = 5 , then c = 1 +  log (5) , i.e. c = 3.

A Binary Access Control Scheme with Logical and Physical Keys

 41

Files
 Users

F1 F2 F3 F4 F5

 U1 010 001 000 011 000
 U2 001 000 011 000 100
 U3 000 100 101 000 011
 U4 011 000 000 100 000

Fig. 2: The binary access control matrix for Fig. 1

By considering access control matrix in Fig. 2, using (2.2), (2.3) and (2.4), we compute the logical and physical keys
for users U1, U2 , U3 and U4 as follows:

K1L = 11010 ; K
1

1P = 2
2 + 2

3
= 12, K

2

1P = 2 + 2
3
= 10, K

3

1P = 0 ,

K1P = (K
3

1P, K
2

1P, K
1

1P) = (0, 10, 12);

K2L = 10101 ; K
1

2P = 2 + 2
2
= 6 , K

2

2P = 2
2
= 4 , K

3

2P = 2
3
= 8,

K2P = (K
3

2P, K
2

2P, K
1

2P) = (8, 4, 6);

K3L = 01101 ; K
1

3P = 2
2
+ 2

3
= 12, K

2

3P = 2
3
= 8, K

3

3P = 2+ 2
2
= 6 ,

K3P = (K
3

3P, K
2

3P, K
1

3P) = (6, 8, 12) ;

K4L = 10010 ; K
1

4P = 2, K
2

4P = 2 , K
3

1P = 2
2
= 4 ,

K4P = (K
3

4P, K
2

4P, K
1

4P) = (4, 2, 2).

Therefore, K1L = 11010 , K1P = (0, 10, 12);

K2L = 10101 , K2P = (8, 4, 6) ;
K3L = 01101, K3P = (6, 8, 12) ;
K4L = 10010 , K4P = (4, 2, 2).

Example 2: Verification of access request
Suppose it is required to verify the access right of the user U2 to the file F3, i.e. a23 = ?. First, the system fetches the

logical key K2L and then the physical key K2P of the user U2. Since 2
3 1LK = , by executing algorithm 1 , we get e = 2,

23
1

6
4

2 1a = 





=mod , 23
2

6
4

2 1a = 





=mod , 23
3

8
4

2 0a = 





=mod . So, ()23 23
3

23
2

23
1a a a a= = 011 = 3, which

is correct. Again, suppose that we want to verify access right a42. Since 4
2 0LK = , then a42 = 0 , that is, the user U4

does not have access to the file F2. If the user U1 sends a request to write (2 in numeral) in the file F2, (since 1
2 1LK =)

by executing algorithm 1, we get a12 = 001 = 1 . So the request is denied, since a12 ≠ 2 .

2.1 Changing Access Right

Let us consider the access right aij (the access right of the ith user to the jth file) is changed to ()ij ij

c
ij
c

ijb b b b= − 1 1. . . .

Here, we can consider the following three cases:

i) a ij is zero bit-string (iL
jK =0) and bij is non-zero bit string

ii) a ij is non-zero bit-string (iL
jK =1) and bij is zero bit-string

iii) a ij is non-zero bit-string (iL
jK = 1) and bij is also non-zero bit-string

For the first two cases, both keys (KiL and KiP) should be updated. However, any update in KiL is very easy and can
be performed just by resetting the respective bit of the KiL. For the third case, the logical ke y K iL remains unchanged
and K iP should be updated. In practice, the third case is more frequent than the other two. Using algorithm 2, we
can perform the necessary update.

Islam, Selamat and Sap

 42

Algorithm 2 : Changing an access right
Input: KiL, K iP, aij and bij.
Output: KiL (updated) and K′ iP.

Step 1: Compute e K iL
u

u

j

= ∑
=1

;

Step 2: If ()iL

j
ijK b= ≠0 0and then

 begin
 set iL

jK = 1 and update K iL;
 e = e + 1 ;
 end_if;
 If ()iL

j
ijK b= =1 0and then

 begin
 set iL

jK =0 and update KiL;

 e = e - 1;
 end_if;
 If ()iL

j
ijK b= ≠1 0and then

KiL remains unchanged;

Step 3: For 1 ≤ z ≤ c do

begin
set 1t aij

z= and 2t bij
z= ;

compute t = t2 - t1;
If (t ≠ 0) then
 iP

z
iP
z eK K t' . ;= + 2

Else
 iP

z
iP
zK K' ;=

end_for;

Step 4: output KiL and K ′iP.

Example 3: Changing access right

Let the access right a14 = 011 is changed to b14 = 101. Here, K1L = 11010 , K1P = (0, 10, 12). By executing

algorithm 2 , we get, e = 3 and K′
1
1P = K

1
1P =12, K′2

1P = K
2
1P - 2

3
 = 10 - 8 = 2 , K ′

3
1P = K

3
1P + 2

3
 = 0 + 8 = 8 , K ′1P

= (8, 2, 12) .
Suppose a43 = 000 is changed to b43 = 011. Here, K4L = 10010 and K4P = (4, 2, 2). So, by executing algorithm 2 , we

get e = 2 , and K4L = 10110 (by setting 4
3 1LK =); K′

1

4P = K
1

4P + 2
2
 = 2 + 4 = 6, K ′

2

4P = K
2

4P + 2
2 = 2 + 4 = 6, K′

3

4P

= K
3

4P = 4, K′4P = (4, 6, 6).

If we verify the access rights of the users with the changing values of keys, we will get the correct results.

2.3 Adding File

Let the file Fq be added to the system. When a file is added to the system, the keys of the users should be updated.
Suppose aiq denotes the access right of the ith user to the file Fq (qth file). We can update K iL by adding one bit to it.
If the access right aiq = 0, then the qth bit of KiL is zero. Otherwise, the qth bit of KiL will be 1 . However, the elements
of the physical key vector should be updated according to the value of the respective bit of aiq. If the zth bit of a iq is
zero, then the respective element of the physical key remains unchanged. Otherwise, the element must be updated.
Algorithm 3 shows how we can update the keys of the users in case of a file addition.

A Binary Access Control Scheme with Logical and Physical Keys

 43

Algorithm 3 : Adding file
Input: Fq, access rights of the users to the file Fq.
Output: Updated keys of the users.

Begin
/* begin of the algorithm */
 For 1 ≤ i ≤ m do
 begin

If (aiq = 0) then
 set iL

qK =0;

Else
 set iL

qK =1;

update I L iL iL iL
n

iL
qK K K K K' . . .= 1 2 ;

If (iL
qK =1) then

begin

compute p KiL
u

u

n

=∑
=

+

1

1

;

For 1 ≤ z ≤ c do
 begin
 t = iq

za ;
If (t ≠ 0) then
 iP

z
iP
z pK K t' . ;= + 2

Else
 iP

z
iP
zK K' = ;

end_for;
end_if;

end_for;
end_of_algorithm.

2.4 Deleting File

Let the file Fj be deleted from the system. When a file is deleted from the system, the logical key can be updated by
deleting the respective bit of the key. The physical key should be updated according to the value of the respective
bit of the access right of t he user to the file. If the zth bit of the access right a ij is zero, then the respective element of
the physical key remains unchanged. Otherwise, the element should be updated. By performing the following
algorithm 4 , the system can update the keys of the users in case of a file deletion.

It is easily noticed that in case of an addition or a deletion of a file, the system updates the elements of the key
vectors for ij

za =1of those users who can access the file. Any update in KiL is very fast because it can be performed

by binary shift operations.

Algorithm 4 : Deleting file
Input: the keys of the users.
Output: updated keys of the users.

Begin
/* begin of the algorithm */

For 1 ≤ i ≤ m do
begin

compute e KiL
u

u

j

=∑
=1

;

update IL iL iL iL
j

iL
j

iL
nK K K K K K'= − +1 2 1 1 ;

/* shift one bit left for jth bit to nth bit */
If (iL

qK =1) then

begin

Islam, Selamat and Sap

 44

e = e -1;
For 1 ≤ z ≤ c do

begin
t = iq

za ;

If (t ≠ 0) then
iP
z

iP
z eK K t' . ;= − 2

Else
iP
z

iP
zK K' = ;

end_for;
end_if;

end_for;
end_of_algorithm.

2.5 Adding and Deleting Users

In the proposed scheme, the process of addition or deletion of a user is very simple. When a user is added, the
system will construct the keys for the new user. If a user is deleted from the system, the system deletes the keys of
the user.

3.0 COMPARISONS AND DISCUSSIONS

The effectiveness and efficiency of an access control scheme can be evaluated by considering the six criteria [11]
which are as follows:

1) Effort for initialising keys a nd locks.
2) Effort for computing an access right from a lock and key.
3) Effort for revising keys and locks when an access right is modified.
4) Effort for appending and updating keys and locks when a new user or file is added.
5) Effort for removing and updating keys and locks when a user or file is deleted.
6) Space for storing keys and locks.

For the sake of comparison, we refer to Chang et al.’s access control scheme with binary keys [10] as Chang’s 94 and
Chang et al.’s binary access control method using prime factorisation [13] as Chang’s 97. Since Chang’s 94 and
Chang’s 97 and our scheme use the binary form of access mode, the efficiency of the schemes with respect to the
above six criteria will be discussed.

In case of initialisation, Chang’s 94 requires separating each bit of every access mode and construct key vectors for
the users. There are c vectors for each key, i.e. there are cm (cm = c× m) key vectors for m users [10]. Chang’s 97
requires to select m keys and here mc multiplication are required to compute each lock element. There are n locks for
n files [13]. In our method, we have to compute m logical keys and cm elements of physical keys. There are cm key
elements for m users. Here the construction of the logical key can be performe d by binary shift operations that are
very fast. The construction process of the elements of physical key is simple. We need to consider the non-zero bits
of the access right (i.e., for ij

za =1) and according to the formula devised in Section 2, we can construct the

elements of the physical key. So, the computation of physical key is simple (for the system in which most files are
only accessible to a few users, i.e. for sparse access matrix whose entries are mostly zeros). More important, such
cases are common in the general time-sharing and multi-user database systems.

To find out an access right, Chang’s 94 requires finding out one bit from each key vector and after combining c bits
taken from c key vectors, we get the access right [10]. In Chang’s 97, it requires c divisions [13]. Here, lock values
are very large numbers, whereas keys are relatively small. Such division process takes time. Our scheme requires 2c
divisions and several binary shift operations to find an access right. In our method, the determination of whether a
user can access a file or not is very fast. If a user does not possess any access right, we can find that very fast.
Whereas, Chang’s 94 and Chang’s 97 require the computing of each of c bits even when there is no access right.

A Binary Access Control Scheme with Logical and Physical Keys

 45

For changing an access right, Chang’s 94 needs to update c key vectors of the user [10]. Chang’s 97 needs to update
c lock elements of the file [13]. Our method requires changing the elements of the physical key if ij

z
ij
zb a− ≠ 0 (when

the access right a ij is changed into b ij).

When a user is added to the system, Chang’s 94 and our system require constructing the key for the user. However,
Chang’s 97 needs to update the locks of the files that can be accessed by the user. For the deletion of a user,
Chang’s 94 as well as our method require deleting the key of the user. Whereas Chang’s 97 requires updating the
lock of the files that are accessible by the user.

When a file is added to the system, Chang’s 94 needs updating the whole system [10]. Chang’s 97 requires
constructing the lock of the file [13]. Our system requires updating the elements of the key vectors for ij

za =1 of

those users who can access the file. For file deletion, Chang’s 94 requires updating the whole system. Chang’s 97
needs to delete the lock of the file. Our system requires updating the elements of the key vectors for ij

za = 1 of those

users who can access the file.

The storage space required to implement Chang’s 94 is O (m) . However, the storage for Chang’s 97 is O(mn). The
storage required to implement our scheme is mn + mc.log2 (Lmax) bits, where Lmax is the largest value among all
elements of physical keys. This means the order of magnitude for storage is O(2m) = O(m).

There are two other criteria that can be considered as the efficiency evaluating criteria for the access control
schemes. They are:

a) Effort for finding the files that can be accessed by a particular user.
b) Effort for finding the users who can access a particular file.

For the first criteria, Chang’ 94 and Chang’s 97 require checking the access rights of the user to all the files. Whereas
our scheme needs computing only p (p is defined in Section 2). For the second criteria, Chang’s 94 and Chang’s 97
need checking the access rights of all the users to the file. However, our scheme requires checking the bits of a
particular position of the logical keys. If we wish to find out all the users who can access the file Fj (the jth file), we
check the bits of jth positions of the logical keys.

Conclusively, our scheme is superior to Chang’s 94 in case of file addition and file deletion. On the other hand, our
scheme is superior to Chang’s 97 scheme in terms of space requirement. The proposed scheme is superior to
Chang’s 94 and Chang’s 97 for the efforts in finding files that can be accessed by a particular file and the users who
can access a particular file.

4.0 CONCLUSION

In this paper, we have proposed a simple and efficient scheme based on binary access modes. In the proposed
method, we devise algorithms for access right checking and for implementation of dynamic access control, such as
changing access right and updating files. One good feature of our system is the insertion or deletion of any file can
be successfully implemented without reconstructing all the key vectors. The storage required to implement our
scheme is small. Excellence of the scheme is more pronounced for those systems where files are accessible to only a
few users. This means that our new scheme is very suitable for implementation of a sparse access matrix. Based on
the six criteria, the proposed scheme is a considerably better method for access control than the other comparable
schemes. The merit lies in its simplicity in terms of the basic idea, the algorithms and space requirement.

REFERENCES

[1] D. E. R. Denning, Cryptography and Data Security. Addison-Wesley, Reading, MA, 1983.

[2] G. S. Graham and P. J. Denning, “Protection-Principle and Practice”, in Proceedings of the Spring Joint

Computer Conf., Vol. 40, AFIPS Press, Montvale, NJ, 1972, pp. 417-429.

Islam, Selamat and Sap

 46

[3] M. L. Wu and T. Y. Hwang, “Access Control with Single-Key-Lock”. IEEE Transaction on Software Engg .,
Vol. SE-10, No. 2, 1984, pp. 185-191.

[4] C. C. Chang, “On the Design of a Key-Lock-Pair Mechanism in Information Protection Systems”, BIT, Vol. 26,

1986, pp. 410-417.

[5] C. C. Chang, “An Information Protection Scheme Based Upon Number Theory”. The Computer Journal, Vol.

30, No. 3, 1987, pp. 249-253.

[6] C. K. Chang and T. M. Jiang, “A Binary Single-Key-Lock System for Access Control”. IEEE Transaction on

Computers, Vol. 38, No. 10, 1989, pp. 1462-1466.

[7] C. S. Laih, L. Harn and J. Y. Lee, “On the Design of a Single-Key-Lock Mechanism Based on Newton’s

Interpolating Polynomial”. IEEE Transaction on Software Engineering, Vol. 15, No. 9, 1989, pp. 1135-1137.

[8] J. K. Jan, C. C. Chang and S. J. Wang, “A Dynamic Key-Lock-Pair Access Control Scheme”. Computers and

Security, Vol. 10, 1991, pp. 129-139.

[9] J. J. Hwang, B. M. Shao and P.C. Wang, “A New Access Control Method Using Prime Factorization”. The

Computer Journal, Vol. 35, No. 1, 1992, pp. 16-20.

[10] C. C. Chang, J. J. Shen and T. C. Wu, “Access Control with Binary Keys”. Computers and Security, Vol. 13,

1994, pp. 681-686.

[11] J. C. R. Tseng and W.-P. Yang, “A New Access Control Scheme with High Data Security”, in Ninth Annual

International Phoenix Conference on Computer and Communications, IEEE Comp. Soc. Press , 1990, pp.
683-688.

[12] M. R. Islam, H. Selamat and M. N. M. Sap, “A Dynamic Access Control with Binary Key-Pair”. Malaysian

Journal of Computer Science, Vol. 10 No. 1, 1997, pp. 36-41.

[13] C. C. Chang, D. C. Lou and T. C. Wu, “A Binary Access Control Method Using Prime Factorization”.

Information Sciences , 1997, pp. 15-26.

[14] M. R. Islam, H. Selamat and M. N. M. Sap, “An Information Protection Scheme Using Logical and Open

Keys”, in Proceedings of IRMA International Conference , 1998, USA.

BIOGRAPHY

Md. Rafiqul Islam obtained his Master of Science in Engineering (Computers) from Azerbaijan Polytechnic Institute
in 1987 and PhD. in computer science from Universiti Teknologi Malaysia in 1999. He is an Assistant Professor and
Head (in-charge) of Computer Science and Engineering Discipline of Khulna University. His research areas include
design and analysis of algorithms, information security (access control, cryptography, database security).

Harihodin Selamat holds a MSc from Cranfield University, UK and a PhD. from the University of Bradford, UK both
in computer science. Currently, he is an Associate Professor at the Faculty of Computer Science and Information
Systems in Universiti Teknologi Malaysia. His research areas include database security, database design and
software engineering.

Mohd Noor Md. Sap is an Associate Professor at the Faculty of Computer Science and Information Systems in
Universiti Teknologi Malaysia. He holds a B.Sc. (Hons) from the National University of Malaysia, an MSc from
Cranfield University, UK, and a PhD. from the University of Strathclyde, UK. He is currently carrying out research in
database security, case-based reasoning and information retrieval.

