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ABSTRACT

In machine learning, a key aspect is the acquistion of knowledge. As problems become more complex, and experts
become scarce, the manual extraction of krowledge becomes very difficult. Hence, it is important that the task of
knomedge acquistion be automated. This paper proposes a novel method that integrates neural network and
expert system paradigms to produce an automated knowledge acquisition sytem A rule-generation algorithm is
proposed, whereby symbolic rules are generated from a neural network that has been trained by an unsupervised
Kohonen sdf-organisng map (KSOM) learning algorithm.  The generated rules are evaluated and verified using an
expert sysem inference engine. To demonstrate the applicability of the proposed method to real-world problems, a
case study in medical diagnosisis presented.

Keywords Kohonen sdforganisng maps, Machine learning, Knowledge acquistion, Expert system Rule
extraction

10 BACKGROUND

There are two mgor approaches in machine learning, that is, symbolic and connectionist.  Until the last decade both
approaches progress independently. In the last five years, researchers have started investigating ways of integrating
these atificia intdligence (Al) paradigms together [1]. Closer examingion of the symbolic and connectionist (or
adaptive processing) divide reveds that both approaches have a combination of advanteges and limitations, and that
integrating these different techniques can overcome their individud wesknesses [2]. In combining the paradigms,
neural networks can be viewed as mechaniams for generating gods (leaning), and expert systems as mechanisms
for proving the goal's (decision-making and explanation).

Basicdly, leaning in a neurd network is smply the problem of finding a set of connection strengths that alow the
network to capture any regularities, statistical festures, and probability distributions present in input data [3]. The
learning capability of neural network is its strength, but this is limited by drawbacks, such as (8 lack of a structured
knowledge representation, (b) lack of inheritance, (c) inability to interact with conventiond symbolic databases, and
(d) insbility to explain the reasons for conclusons resched. These apparent weeknesses can be overcome by
integrating neural network with expert systems. But, expert systems have ther limitations too. The main practica
problem in building a conventionad expert system is the condruction and debugging of its knowledge base. It is
usudly difficult and expensive to get a human expet to express hisher knowledge in terms of the required I
THEN rules, particularly in red-world problem cases Also, once extracted, a set of rules is amost certain to be
incomplete, inconsigtent, and require tuning of the rules and confidence factors. Whilst expert systems framework
is symbolic, neurd network representations are suited for numerical or datistical tasks, and they can be used in
many different dtuations without the need for a detailed understanding of the problem [2].  Hence the
complementation of neural network and expert system in overcoming each other weaknesses.

Knowledge acquisition is the process of learning from one or more sources and passing on the knowledge acquired,
via a suitable form, to someone dse or to some other sysem. This process involves leaning, reformaising,
tranferring, and representing the knowledge.  Knowledge is not only sourced from human expert, books or
databases, but dso from behaviord patterns of redl sysems. For example, vibration data from machinery can
provide knowledge about its maintenance status. Hidtoricd data of trends in the response times can lead to
knowledge about possible component failure in computer networks. We will need tools to tap this information and
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bring it to a levd of abdraction where it can be used for decison making and planning. These tools will reguire
mechinelearning capatiilities, more specificaly, knowledge acquisition.

Loonely in [4] dated that automated knowledge acquisiion methods can be divided into three mgor types (a)
Induction of Decison Trees (ID3), developed by Qunlan in 1986, (b) Clustering And Regresson Tree (CART)
devdoped by Bneiman in 1984, and (c) Chi- square dtatistic and tests of hypotheses, developed by Heaydet in 1976.
Ultsch in [5] stated that ID3 is considered the better technique among the three, but it has serious shortcomings. 1D3
uses a minimdisation criterion that seems to be unnaturd for human expert in that, rules generated use only a
minima st of decisions to come to a concluson. This is not quite the case in most red problems. For example, in
the medicd problem domain, the number of decisors is based on the types of disease. In Smple cases, i.e. where
the symptoms are unanimous, very few teds are made, while in difficult cases a diagnoss must be based on all
available information [6, 7]. The Induction of Decison Trees method gave poor result in this latter case.  Whet is
needed is a rule generation agorithm that takes into account the significance of a symptom (range of a component
vdue). Current work on automated knowledge acquistion suggests tha integrating neurd networks and irference
systems can overcome the problems stated, and this concept is explored here.

However, not al problems are suitable for neurd expert system integration [2, 3, 8]. The mogt suitable ones are
those that seek to classfy inputs into a smal number of groups. Hence, candidate problems suitable for the
proposed method include, among others, medicd diagnoss, fault detection, process control, credit and loan, and
network management. Another important factor in determining the applicability of a neura expert system approach
is the avalability of training examples, the more avalable are the training examples, the better results could be
achieved. Also, it should be noted that training data might be typical cases given by a human expert. The success of
the proposed technique is contingent on arule extraction agorithm that overcomes the ID3 problem stated above.

This paper is organised as follows: Section 2 presents an overview of proposed method. Section 3 discusses the
automated knowledge acquistion. In section 4 we demongrate the experimentd results  Findly, section 5
illustrates the conclusion and future work.

20  OVERVIEW OF PROPOSED METHOD

Fig. 1 illustrates the methodology of proposed method, which integrates neurd network and epert system.
Knowledge (connectionist) is extracted from data that have been clusered by a KSOM neuwrd network. The
knowledge a this gstage is of the immediatedevd concept rule hierarchy. A rule generation agorithm that is aided
by an expert system inference engine is then applied to generate the fina concept rule hierarcchy. The knowledge
generated at this point (symbolic) may be used in the condruction of the symbolic knowledge base of an expert
system.

The proposed system, as depicted in Fig. 2 consists of four main phases data preprocessing, learning and
clugtering, rules generation and knowledge verification. The datapreprocessng step essentidly transforms the raw
data into a format acceptable to the subsequent neural network phase. The second phase dedls with neurd network
traning usng KSOM unsupervised learning dgorithm, and dudgtering via the K-meaens dgorithm.  The rule
generation phase extracts symbolic rules from the data that have been clustered by the neurd network. The last task
dedswith the verification of acquired knowledge. The next section presents the proposed system in detal.

30 AUTOMATED KNOWLEDGE ACQUISTION

To explain the details of the various tasks in the proposed knowledge acquisition method, we will employ a smple
but demondrative example of a 7-segment display numeric recognition problem.  This problem example contans
data defining 10 decimd digits (09) on a 7-segment LED display as shown in Fig. 3. Each input pattern is
composed of 7 binary atributes. The problem is to recognise the number displayed, given the input pattern of the
seven segments. As the Kohonen neurd net requires a large data set for learning effectively, the rdevant data st
was repeatedly fed to the network to smulate appraximaely 200 examples. No priori information is provided in the
neura network training. Table 1 presents asample of the input data that will be used in our discussions henceforth.
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31 DataPre-Processing

The raw data mugt first be transformed into a new data set and format suiteble for applicetion in a neura network.
All unsupervised methods merdly illusirate some sructures in the data set, and the features chosen to represent the
data items ultimately determine the dructures. The preprocessing step selects a set of features that are invariant
with respect to some basic transformation groups of the input pattern. The preprocessng phase is composed of
three main subtasks, namely: loading of data file, normalisation, and feature extraction.
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Fg. 3: 7-segment display unit

Table 1: Portion of 7 segment display unit data

Pattern Pettern Syntax
Number [ sS1 | S2[sS3[s4[s5][s6]s7
1 0000000
2 1100001
3 1100101
4 1100001
5 1011011
6 1110011
7 1100101
8 0110111
9 0111111
10 1111111
11 1111110
12 1110111
Note:
S1=Up right, S2= Down_right, S3= Down_center,
A= Down_|eft, S5= Up _left, S6= Up_center,
and S7=Mid_center

In feature extraction, the input data vectors are transformed into such representations that concisely best describe the
problem from the andyss point of view. For example, in speech recognition, spectra data computed using the
Fourier Transform are used as the feature vectors. In the 7_seg display case study, there is no necessty for feature
extraction.

In normdisation, the objective is to ensure that there is no data that dominates over the rest of input data vectors.

Although normdisation computations incur speed cost and it is not dways necessary, it was found that it
sgnificantly improves the overdl numerica accuracy of datisicd computations in connection with sdlf-organisng
maps (SOM) dgorithms [9]. Normally, it is advissble to normdise each atribute scae such that its variance taken
over dl the items is unity. There are severd methods for normaisation. We conduct comprehensive trids of dl the
methods, and then make the choice of the mogt suitable to apply, based on the qudity metrics of quantisation and
topographic errors.  The quantisation error is used as a measure of the resolution of the mapping, while topographic
eror caculates the error in the proportion of sample vectors for which two best matching weight vectors are not in
adjacent units [10]. The advantage of these metrics is that the results are directly comparable between different
mappings and even mappings of different data sets. Table 2 shows the result of the trids for different normalisation
typesin the case of the7_segment display data. T herange of normalisation is chosen asin thetable.
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Table 2: Quality measure of different normalisation (7-seg display case study)

No Quantisation Error Topographic Error Normalisation Type
1 2.365 0.026 Variance

2 0.267 0.0004 Range

3 1.739 0.036 Logarithmic

4 0.632 0.026 Histogram Discrete

5 0.735 0.036 Histogram Continuous

32  Neural Network Learning and Clustering

This phase involves tlree main tasks namdy: initidisdtion, training, and cugering. The process of learning can be
caegorised into supervised and unsupervised learning.  Supervised learning requires a training st composed of
input patterns with associated target or desired outputs. The target output acts like an externd teecher to the
network. In unsupervised learning the training set consists solely of input paterns. Hence, during learning, no
comparison with predetermined desired responses on which to base subsequert modifications can be performed by
the learning dgorithm. There is therefore no externa teecher in the sense described earlier.  This dtuation is more
akin to most red-world problems. The proposed method employs unsupervised learning, and this is the key
contribution of this research. Once trained, the weights of the neurd network are mapped to clusters, which
fecilitates the extraction of the knowledge, encoded in the net by the rule generation agorithm. Let us now discuss
each of thesetasksinturn.

321 Initialisation

The initidisation task involves three tasks namely: weight initialisation, topology initidisation, and neighborhood
initidlisation.  The hexagona ldtice type is chosen as the magp topology in 7-segment display problem examples.
Fig. 4 illugtrates the KSOM topology, which is composed of 150 output nodes and 7 input nodes. The choice of
number of output nodes is done through comprehensive trials. (We have considered this issue, but its discusson is
beyond the scope of this paper).

Fig. 4: KSOM topology

The weights of the neurd network is initidised ether by linear or random initidisation. The random initidisation
technique is chosen here.  Table 3 shows a portion of the resulting initid weight values. For the neighborhood
function, Gaussian or Bubble is the typicd choices. The bubble function is consdered the smpler but adequate
ong, and it is gpplied here.  In generd, the topologica reaions and number of neurons are fixed from the
baegnning. The number of neurons are usudly sdected to be as large as possble, with the neighborhood size
controlling the smoothness and generdisation of the mapping. If the neighborhood size is sdected correctly, the
mapping does not suffer significantly, even when the number of neurons exceeds the number of input vectors.
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Table3: A portion of the Neural Network weights after random initialisation
(7-segment display case study (15X10 output layer))

Output Nodes Input Nodes
(Row, Column)
S1 Y S3 A S 6 S/
(1,1 0.8533 0.8915 -0.1076 -0.1905 0.4809 0.0587 04623
12 0.8877 09713 0.0773 -0.0565 0.6208 0.2234 05417
(13 0.9222 10511 0.2623 00775 0.7607 0.3880 06211
(14 0.9567 11310 04473 0.2115 0.9006 0.5527 0.7005
(15 0.9912 12108 0.6322 0.3455 1.0405 0.7173 0.7799
e S1=Up_right, S2 =Down_right, S3 = Down_center, $4 = Down_left, S5 = Up_left, S6 = Up_center, and
S7=Mid_center.
(Row, Column) is used to represent a particular node in the 2D output layer which consist of 15X 10 nodes.

322 KSOM Training

The training of the KSOM neurd network may be conddered to consst of two phases rough training and fine
tuning. The rough training phase correspond to the first iteration stage in which, the initid formation of the order
occurs.  In this dtage, the initid weight vectors, a large neighborhood radius and a large learning rate are applied.
Rough training is normaly short. The rest of the iteration stages congitute the finetuning phase in which, both
learning rate and neighborhood radius begin with smdl vaues, and gradudly reduced further & each iteration. Fig.
5 outlinesthe KSOM learning agorithm.

Step1: initidise weight to small random values and set the initid neighborhood to be large.

Step2: dimulate the net with agiven input vector.

Step 3:  cdculae the Euclidean distance between the input and each output node and select the output with
the minimum distance.

D(j)=a (w, - x)*
D(j) isaminimum
Step4: update weights for the selected node and the nodes within its neighborhood.
w; (new) =w; (old) +a (x - w;(old))
Step 5:  repeat from step 2 unless stopping condition.

Fig. 5: KSOM learning agorithm

The gopping condition decides on the convergence achieved. We have two approaches, the choice of which
depends on the size of input data and dimension of output layer. In the first gpproach, the winning node updates its
parametric weight vector via the eguation given in step 4 of the agorithm. All other neurons keep their old vaues

In the second approach, the strategy is to update positively al nodes that are close to the winning nodes, and update
negetively al nodes tha are farther away from the winner (i.e. laterd inhibition is gpplied). The first approach is
used here. Table 4 illugtrates a pation of the result of the KSOM training sesson.  The required knowledge is
encoded implicitly in the updated KSOM weights that link the input layer and output layer nodes.

Table 4: Portion of KSOM output (7-segment display case study)

Output Nodes Input Nodes
(Row, Column)
Sl 2| 8 | % | % $ S7
(1,9) 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000
(1,2 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000
(13 1.0000 | 1.0000 [ 0.0000 | 0.0000 | 0.0000 | 1.0000 [ 0.0000
(14 10000 [ 09975 | 00049 | 0.0025 | 0.0000 | 1.0000 [ 0.0049
(15) 1.0000 [ 05028 | 05028 | 04972 | 00000 | 1.0000 [ 05028
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323 Clustering

The next step is clustering the updated weights explicitty. The terminology comes from the appearance of an
incoming sequence of festure vectors which arrange themselves into clusters, groups of points that are closer to each
other and their own centers rather than to other groups. When a feature vector is input to the system, its distance to
the exiging cluster representatives is determined, and it is either assgned to the cluster, with minima distance or
taken to be a representative of anew cluster.

We have noted earlier that no priori information is provided about the clustering, hence the possible clusters (and
even the number) are not known in advance. The K-means agorithm can perform the required clustering function.

The K-means dgorithm sdf-organises its input data to creste clusterss We summarise the K-means dgorithm as
follows:

Stepl:  From the given sample of feeture vectors, sdlect the firstk sample vectors asinitial centers.

Step2:  Asdgn each sample festure vector that is closest, in Eudlidian distance, to center 1 to clugter 1,
and which is closest to center 2 to cluster 2, and so on, to form k clusters.

Step 3: Or?tan new optimal centers for each duster by averaging the feature vectors contained in each
K" cluster.

Step4:  Assign each of the sample feature vectors again, to the cluster whose new center is closest to.

Step5:  Stop, when no clusters change further.

Fig. 6 shows a graphica representation for clustering sesson output. Each gray shade represents a certain clugter.
Although the graphica representation is good in illudtrating the clusters visudly, it cannot be used to interpret
explicitly the mapping that represents the encoded knowledge. We need to specify the links and weights associated
with acluster.

10 clusters

n

7
E
B
4
1

Fig. 6: Graphicd representation of result of clustering session (7-seg display case study)

L

LE)

The step now is to find the codebook vector and the ndices for each cluster. This data contains the weights tha
diginguish and characterise each cluster. Table 5 contains a portion of cluster 1 weights. The weight vector for an
input unit in a clustering unit serves as a representative (exemplar) or codebook vector for the input patterns which
the net has placed on that cluster.

Table5: A part of cluster 1 weights or codebook vectors (7-segment display case study)

Output Nodes Input Nodes
(Row, Column) SL Y 3 A $ $ S7
(2,3 10000 | 06667 10000 | 10000 | 0.6667 | 10000 | 0.6667
(24 10000 | 09895 10000 | 10000 | 09895 | 10000 | 0.0574
(2,5 10000 | 09999 10000 | 1.0000 | 09999 | 10000 | 0.0475
(38 10000 | 1.0000 10000 | 1.0000 | 1.0000 | 10000 | 0.0025
(39) 10000 | 09547 10000 | 09997 | 0.9544 | 1.0000 | 0.9547
Note: S1 = Up_right, S2=Down _right, S3 = Down_center, $4 = Down_left, S5=Up_left, S6 = Up_center,
and S7 = Mid_center
(Row, Column) is used to represent a particular node in the 2D output layer which consist of 15X 10 nodes.
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33  Symbolic Rule Generation

In this stage of the knowledge acquisition process, the extraction of a set of symbolic rules that map the input nodes
into output nodes (with respect to each cluster) is performed. The antecedents of the rules that define these concepts
consigt of contributory and inhibitory input weights. The resulting rule base of this phase is an intermediateleve
concept rule hierarchy.

Let us explain further. In a KSOM network, each output node is connected to every input node, with the strength of
intercomection reflected in the associated weight vector. The larger the weight vector associated with a link, the
greater is the contribution of the corresponding input node to the output node. The input with the largest weight link
maekes the largest contribution to the output node. To distinguish the contributory inputs from inhibitory inputs, we
binarise the weights. If contributive, the red-vaued weight is converted to 1, and is converted to O if inhibitory.
There are two approaches to do this, namdy: threshold or breskpoint technique [11]. We have chosen the threshold
technique. The threshold is set a 50% (i.e bdow 0.5 is conddered as 0 and aove 05 conddered as 1). The
mapping (a portion) produced by this binarisation step for 7-seg-display case study isgiven in Table 6.

Table 6: Portion of cluster 1 weights after using threshold technique (7-segment display case study)

Output Nodes Input nodes
(Row, Column)

(23)
(24
(2,9)
(38
39
(310)
(54
(23)
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The find sets of antecedents in each cluster usudly contain some duplicated patterns.  This redundancy is now
removed, and Table 7 shows the number of patterns covered by eech cluster before and after redundancy. We can
now map symbolically the antecedents to each cluster and obtain the rules for each cluster. The symbolic rule
extraction dgorithm is an inductive learning procedure.  The dgorithm as is provided in Fg. 7 is sdf-explanatory.
The result of this step is a set of production rules (of the intermediatelevd concept rule hierarchy), an example of
which, for cluster 1 we have:

1 IF [(SD& (& (SY& A& (S5)& ()& (S7)| THEN  {cluster 1}
2. IF [(SD& (D& (S)& (A& ()& (SB)& (-S7)] THEN {cluster 1}

Table 7: Number of patterns covered by each cluster before and after redundancy

H(\I(‘OWLD(DI\CDO)OH&IM
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g > 3312212122128 |B |88
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o
Beore |17 11414 § 2913141101229 2
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Step 0: witheach U 1 {all output layer’ sunits}
Let W betheweight of unit U

Step 1 determine groups of postively weighted links (contributors) U such that  (Link weights of group) =1
{Call this set of groups contributor.}

Step 2 determine groups of negatively weighted links (inhibitors) U such that (Link weights of group) = O
{Cdll this set of groupsinhibitor.}

Step 3: Create arule with the following form
If " contributorsand & inhibitors Then (name of U)

Step 4: remove any duplicate rules

Fig. 7: Symbalic rule extraction dgorithm

Intermediatelevel concept rules may have one cluster cortaining more than one production rule, and this will
require post-processing to be performed, to obtain the fina concept rule hierarchy. The end user requedts the post-
processng stage. Based on the information provided by the user concerning the kind of rules that should be
produced, further clustering with respect to produced clusters is performed to resolve the rule base to the find form.

For example, in the case of the 7-segment display case study, 10 digits should be recognised (i.e. digit 0 — 9), and
there is some clugters contain more than one rule (eg. it is possble that digit 8 & O clustered into cluster 1), the user
will request further clustering to decompose those clusters.

Fig. 8 shows the result of the post{processing session in the 7segment display problem. The knowledge encoded in
the neurd network has now been interpreted into symbolic rule knowledge. Given an input pettern of the LED
display, the digits can now be recognised using this rule base.

1 (SD&(D&(-D&(HA&(-H)&
(-SB)&(=S7);p {digit 1}

2 (SD&(&(SF)&(H&(D&(SH& (=S, P
{digit O}

3 (SD&(&(V&(-HA&(D)&(H)&  (S7); P
{digit 9}

4 (SD&(SD&(SI)& (A& (SH)& ()& (sn, b
{digit 8}

5 (SD&(S)&(—-SF)& (-SA)& (-H)& ()& (=S7);
b {digit 7}

6 (SD&()& ()& (A& (D& (SH)&(S7); P
{digit 3}

7 (SD&(S)&(-SV)& (-HA)&(SH)& (-6)&(S7);
b {digit4}

8 (-SD&(S2)& ()& (-HA)&(H)& (SH)&(S7),p
{digit 5}

9 (-SD&(& (D& (H&(D&(H)&  (S7); P
{digit 6}

10 (SD&(—-S2)& ()& (SA)& (~H)& ()& (S7); P
{digit 2}

Fig. 8: Final concept rule base & recognised digits

34  Knowledge Verification and Evaluation
For the ske of testing and evauating the find produced symbolic rules, an expert sysem was developed using the

C language. We then evauated the rules using the expert system inference engine Fig. 9 shows the expert system
inference engine user interface window.
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Fig. 9: Knowledge verification user interface

40  EXPERIMENTAL RESULTS

To further illugtrate the potentid of the proposed automated knowledge acquisition method, we present a case study
of a red-world problem in the medica domain. A subset of medica blood test deta is collected from 440 patients.
For each patient, 20 medical inspection vdues are obtained. The daa is to diagnose the patient into one of 5
different hepatitis diseases. Our system generates, from this data set, the symbolic rule base of the diagnosisrules.

A s of training examples in the form of matrix in which, rows represent patient cases (or patterns) and columns
represent the feature data, is formatted. Table 8 shows a portion of input data, with each pattern (row) comprising of
20 entities Q1 to Q20, where Q are medicd inspection parameters. Fig. 10(a) illustrates the graphical distribution
of theinput data, indicating the dominance of certain data.

Table 8: A portion of input data (medical case study)

Number Medica Datalnput Parameters
of

Patterns  [Q1 |Q2 [Q3 |Q4 |Q5 |Q6 |Q7 8 |Q9 [Q10 [Q11 |Q12 |Q13 Q14 |Q15 |Q16 |Q17 |Q18 |Q19 [Q20
1 78| 6 |05]|40(42|129(91 47|39 15| 15| 12| 38 0 (196 34 (270 (647| 18| 2
2 8] 6|04[(50|61(12]|87 45(284| 15| 18| 16 | 36 0O |219] 22 |214|611]|28| 1
3 84| 5|05|40(34| 6 (90 47|27 10| 10| 10| 2 0 |237]| 45 | 280|609 3 2
4 73| 7|07]|43(61|19(94 45|454| 23 | 12| 19| 51 O (208 21 (198 [613| 26 | 2
5 78| 7]07]|43[61]19(94 45|454] 23 | 12| 19| 51 0 (226 23 [#2[655[ 23| 1

Note: (Q1—-Q20) represented blood test data concerning five group of patients; namely Cluster 1, Hepatoma,

Acute hepatitis, Chronic hepatitis, and Liver cirrhosis patients.

The feature vector values are further preprocessed. Intervas of values are quantised to integer vaues, using the data
in Table 9. These intervals are derived empiricaly. The resulting input data is shown in Table 10, with its graphica
representation presented in Fig. 11.
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Fig. 10: Graphical representation of input data distribution (Medica case study)

Table 9: Shows the division of medical test data of hepatitis diseases

Mumber of ror dsbs parsmete

No Medica Integers of Attribute Vaues
I nspections 1 2 3 4 5 6
1 L ~55 | 56~6.5 6.6~7.5 7.6~8.5 8.6~
2 Il ~4 5-6 79 10~
3 Thil ~10 | 1.1~50 5.1~10 10.1~20 20.1~
4 Dhil ~40 41~60 61~80 81~100
5 Alp ~80 81~200 201~300 | 301~400 401~
6 G.GTP ~30 31~100 101~200 | 201~300 301~
7 LDH ~100 | 101~250 | 251~500 | 501~1000 | 1000~
8 Alb-G ~2 21~30 314 41~5 5.1~
9 ChE ~100 | 101~150 | 151~200 | 201~250 251~500 501~
10 GPT ~25 26~100 101~200 | 201~500 501~1000 | 1001~
11 GOT ~20 21~100 101~200 | 201~500 501~1000 | 1001~
12 BUN ~9 10~20 21~30 31~40 41~
13 UrA ~27 | 2.8~85 8.6~
14 Retic ~15 | 1.6~30 3.1~6 6.1~
15 Pit ~10 | 1.1~50 5.1~10 10.1~15 15.1~35 35.1~
16 Lympho ~20 20.1~40 | 40.1~60 | 60.1~
17 Fibrino ~200 | 201~400 | 401~
18 Alb% ~45 451~65 | 65.1~
19 Al% ~25 | 26~3.7 3.8-5 5.1~
20 AFP ~20 21~100 101~200 | 201~1000 | 1001~
Table 10: Input data after pre-processing (medicd case study)
Number Medica Datalnput Parameters
of
Patterns |Q1 |Q2 [Q3 [Q4 Q5 Q6 |Q7 |Q8 |Q9 |Q10 |Q11 |Q12 |Q13 |Q14 |Q15 |Q16 |Q17 |Q18 |Q19 |Q20
1 4 2L L 11 4ppplr £ R L p R R 2 B 1 2
2 4 2 LR 1 1 gpppr P R [ p R R 2 R 1 2
3 4 2L L 11 4pppr P R L B B R 2 R 1 2
4 3 B L R 11 u44pppr R [ p R LB 2 R 1 2
5 4 B L R 11 4ppplr £ R L p R R B L 1 2
Note: (Q1-Q20) represented blood test data concerning five group of patients, namely Cluster 1,
Hepatoma, Acute hepdtitis, Chronic hepatitis, and Liver cirrhosis persons.
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Fig. 11: Input data after preprocessing

Normdisation by the Range technique, chosen by qudity messure computation recorded in Table 11, removes this

dominance, asshown in Fig. 10(b).

Table 11: Quality measure of different Normalisation types

No. | Input DataSize | Quantisation Error Topographic Error Normalisation Type
1 [44020] 2.365 0.026 Vaiance

2 [44020] 0.267 0.028 Range

3 [44020] 1.739 0.036 L ogarithmic

4 [44020] 0.632 0.026 Histogram Discrete

5 [44020] 0.735 0.036 Histogram Continuous

In the KSOM learning stage, the following initidisations were performed. The topology was initidised using a
hexagonal lattice with 15X15 output layer dimenson,
neighborhood initidisation. The result of KSOM training and K-mean dugering is illustrated in Fg. 12(@) and
12(b), respectively. Redundancy is now removed, and Table 12 illugtrates the number of rules covered by each
cluser before and after the redundancy process. The result is an intermediatelevel concept rule base for the
medicd diagnods problem. Fig. 13 shows a portion of the rule base, in which the cluster 1 symbolic rules are listed.

(8) KSOM training output

random weights initidisation and bubble function for

15 clisias

R

[

(b) K-means clustering output

Fig. 12: Visudisation of the clusters (Medica case study)
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Table 12: Number of rules covered by each class before and after redundancy (Medical case study)

N ™ < o © N~ [co} o (=} — ('F\I ™ < L0
2 zlz |z |z & |z |z |z |2 |a (B3 |5ls |z o
g g2 (212 2 |2 12 |3 % |8 |3 |88 |8 1
S |5 |© O o O O O O O O O O |0 |0 ©
B
o
Bfoe | 2 11 12 16 17 19 1d 19 44 14 169 d 6 11 15
After | 4| 9| 6| 6 7| 8 3 4 7 5 7 4 3 5 2

1 (NotQl& (Q2& (Q3)& (QH)& (Q5)& (not Q6)& (not Q7)& (not Q8)& (not Q)& (not Q10)& (Q11)&
(not Q12)& (Q13)& (not Q14)& (Q15)& (not Q16)& (Q17)& (not Q18)& (not Q19)& (Q20);p {Cluster 1}

2 (QN& (Q2)& ()& (A& (Q5)& (Not QB)& (Not Q7)& (not Q8)& (Q9)& (Not Q10)& (Q11)& (Not
Q12)& (Q13)& (Not Q14)& (Q15)& (Not Q16)& (Q17)& (Not Q18)& (Not Q19)& (Q20); b {Cluster 1}

3 (NotQn& (Q2)& (Q3)& (Q4)& (Q5)& (Not Q6)& (Not Q7)& (Not Q8)& (Not Q9)& (Not Q10)& (Not
Q11)& (Not Q12)& (Q13)& (Not Q14)& (Q15)& (Not Q16)& (Q17)& (Not Q18)& (Not Q19)& (Q20);
b {Cluster 1}

4 (NotQD& (Q2)& (Q3)& (QA)& (Q5)& (Not Q6)& (Not Q7)& (Not Q8)& (Not Q9)& (Not Q10)& (Not
Q11)& (Not Q12)& (Q13)& (Not Q14)& (Q15)& (Not Q16)& (Not Q17)& (Not Q18)& (Not Q19)& (Q20);
b {Cluster 1}

Fig. 13: Cluster 1 symbalic rules

With the data set given, our knowledge acquisition system produced a rule base of 65 rules contained in 15 custers.
(Compare this with an equivalent statistical approach which will generate 2 % (1048576) possible rules) The rule
base is now submitted into the knowledge base of an expert system. This knowledge should contain al the required
information to carry out the reasoning process. Via conaultation with a physician (i.e. the expert) who vaidates and
verifies the rule base, the inference engine discriminates the rules found in the clusters such that the fina-concept
rues are obtained. For example, let us take patern number 4 from table 8 and feed it to the inference engine (the
chosen pattern has been recognised by the physician as hepatoma symptom). Through query and answer session
with the rule base the physician submits his diagnosis to be hepatoma  Thus, the system managed to link eech
cluger to certain group of diagnosis. Fig. 14 illudrates the runtime trace of the resulting reasoning process in our
system. Then, from cluster level recognition, the process is repeated until al the 65 rules are linked to specific
dissases.  The find-concept rule base now contains the knowledge to perform the medica diagnosis, that is we have
the various clustered symptoms linked to adisease. (Note that each cluster islinked to a certain type of disease))

& EXPERT 7 =l
is / does / has it SP level > 7.77 ¥

is f does / has it II level > 10?2 i

is / does / has 1t Thil >12? ¥

is f does / has 1t Alp < 707 ¥

is f does / has it G.GTP >39? ¥

is / does / has it LDH >100 & < 3007 ¥
is / does f has it Alb-G >3.37 ¥

is / does / has it ChE <3007 ¥

is / does / has it GPT <2507 ¥

is / does / has 1t GOT < 3007 ¥

is / does / has it BUM >11 & {100? ¥

is f does J/ has 1t Urf >4 & {152 ¥

is / does / has it Retic <2 - &>7 ¥

is / does 7 has it P1t <3 - 31>2 ¥

is f does / has it Lympho <% - 452 ¥
is / does / has it Fibrino <%0- 250>? ¥
is / does / has it Alb ¥ <&0 - 65>7 ¥
is / does f has it AI- ¥ <1.7 - 6.6>2 ¥
is / does f has it AFP <0- 1952

The object 1s Hepatoma

Fg. 14: Inference enginefor testing pattern
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50 CONCLUSON

The 7-ssgment display problen and the medica case study show that the proposed automated knowledge
acquistion method can successfully extract knowledge in the form of production rules from numericd data s
representing the sdient festures of the problem domain.  This study has demonstrated that symbolic knowledge
extraction can be performed using unsupervised learning KSOM neurd networks, where no target output vectors are
avalable during training. The system is able to learn from examples via the neural network section. The extracted
knowledge can form the knowledge base of an expet system, from which explanations may be provided, and it is
quite possible to diagnose new unknown disease. Large, noisy and incomplete data set can be handled. The system
proves the case of the viability of integrating neural network and expert system to solve real-world problems.
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