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ABSTRACT 
 
In machine learning, a key aspect is the acquisition of knowledge.  As problems become more complex, and experts 
become scarce, the manual extraction of knowledge becomes very difficult.  Hence, it is important that the task of 
knowledge acquisition be automated.  This paper proposes a novel method that integrates neural network and 
expert system paradigms to produce an automated knowledge acquisition system.  A rule-generation algorithm is 
proposed, whereby symbolic rules are generated from a neural network that has been trained by an unsupervised 
Kohonen self-organising map (KSOM) learning algorithm.  The generated rules are evaluated and verified using an 
expert system inference engine.  To demonstrate the applicability of the proposed method to real-world problems, a 
case study in medical diagnosis is presented. 
 
Keywords: Kohonen self-organising maps, Machine learning, Knowledge acquisition, Expert system, Rule 

extraction 
 
 
1.0 BACKGROUND 
 
There are two major approaches in machine learning, that is, symbolic and connectionist.  Until the last decade both 
approaches progress independently.  In the last five years, researchers have started investigating ways of integrating 
these artificial intelligence (AI) paradigms together [1].  Closer examination of the symbolic and connectionist (or 
adaptive processing) divide reveals that both approaches have a combination of advantages and limitations, and that 
integrating these different techniques can overcome their individual weaknesses [2].  In combining the paradigms, 
neural networks can be viewed as mechanisms for generating goals (learning), and expert systems as mechanisms 
for proving the goals (decision-making and explanation). 
 
Basically, learning in a neural network is simply the problem of finding a set of connection strengths that allow the 
network to capture any regularities, statistical features, and probability distributions present in input data [3].  The 
learning capability of neural network is its strength, but this is limited by drawbacks, such as: (a) lack of a structured 
knowledge representation, (b) lack of inheritance, (c) inability to interact with conventional symbolic databases, and 
(d) inability to explain the reasons for conclusions reached.  These apparent weaknesses can be overcome by 
integrating neural network with expert systems.  But, expert systems have their limitations too.  The main practical 
problem in building a conventional expert system is the construction and debugging of its knowledge base.  It is 
usually difficult and expensive to get a human expert to express his/her knowledge in terms of the required IF-
THEN rules, particularly in real-world problem cases.  Also, once extracted, a set of rules is almost certain to be 
incomplete, inconsistent, and require tuning of the rules and confidence factors.  Whilst expert systems’ framework 
is symbolic, neural network representations are suited for numerical or statistical tasks, and they can be used in 
many different situations without the need for a detailed understanding of the problem [2].  Hence, the 
complementation of neural network and expert system in overcoming each other weaknesses. 
 
Knowledge acquisition is the process of learning from one or more sources and passing on the knowledge acquired, 
via a suitable form, to someone else or to some other system.  This process involves learning, reformalising, 
transferring, and representing the knowledge.  Knowledge is not only sourced from human expert, books or 
databases, but also from behavioral patterns of real systems.  For example, vibration data from machinery can 
provide knowledge about its maintenance status.  Historical data of trends in the response times can lead to 
knowledge about possible component failure in computer networks.  We will need tools to tap this information and 
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bring it to a level of abstraction where it can be used for decision making and planning.  These tools will require 
machine-learning capabilities, more specifically, knowledge acquisition. 
 
Loonely in [4] stated that automated knowledge acquisition methods can be divided into three major types: (a) 
Induction of Decision Trees (ID3), developed by Qunlan in 1986, (b) Clustering And Regression Tree (CART) 
developed by Bneiman in 1984, and (c) Chi- square statistic and tests of hypotheses, developed by Heayslet in 1976.  
Ultsch in [5] stated that ID3 is considered the better technique among the three, but it has serious shortcomings.  ID3 
uses a minimalisation criterion that seems to be unnatural for human expert in that, rules generated use only a 
minimal set of decisions to come to a conclusion.  This is not quite the case in most real problems. For example, in 
the medical problem domain, the number of decisions is based on the types of disease.  In simple cases, i.e. where 
the symptoms are unanimous, very few tests are made, while in difficult cases a diagnosis must be based on all 
available information [6, 7].  The Induction of Decision Trees method gave poor result in this latter case.  What is 
needed is a rule generation algorithm that takes into account the significance of a symptom (range of a component 
value).  Current work on automated knowledge acquisition suggests that integrating neural networks and inference 
systems can overcome the problems stated, and this concept is explored here. 
 
However, not all problems are suitable for neural expert system integration [2, 3, 8].  The most suitable ones are 
those that seek to classify inputs into a small number of groups.  Hence, candidate problems suitable for the 
proposed method include, among others, medical diagnosis, fault detection, process control, credit and loan, and 
network management.  Another important factor in determining the applicability of a neural expert system approach 
is the availability of training examples; the more available are the training examples, the better results could be 
achieved.  Also, it should be noted that training data might be typical cases given by a human expert.  The success of 
the proposed technique is contingent on a rule extraction algorithm that overcomes the ID3 problem stated above. 
 
This paper is organised as follows: Section 2 presents an overview of proposed method.  Section 3 discusses the 
automated knowledge acquisition.  In section 4 we demonstrate the experimental results.  Finally, section 5 
illustrates the conclusion and future work. 
 
 
2.0 OVERVIEW OF PROPOSED METHOD  
 
Fig. 1 illustrates the methodology of proposed method, which integrates neural network and expert system.  
Knowledge (connectionist) is extracted from data that have been clustered by a KSOM neural network.  The 
knowledge at this stage is of the immediate-level concept rule hierarchy.  A rule generation algorithm that is aided 
by an expert system inference engine is then applied to generate the final concept rule hierarchy.  The knowledge 
generated at this point (symbolic) may be used in the construction of the symbolic knowledge base of an expert 
system. 
 
The proposed system, as depicted in Fig. 2, consists of four main phases: data preprocessing, learning and 
clustering, rules generation and knowledge verification.  The data-preprocessing step essentially transforms the raw 
data into a format acceptable to the subsequent neural network phase.  The second phase deals with neural network 
training using KSOM unsupervised learning algorithm, and clustering via the K-means algorithm.  The rule 
generation phase extracts symbolic rules from the data that have been clustered by the neural network.  The last task 
deals with the verification of acquired knowledge.  The next section presents the proposed system in detail. 
 
 
3.0 AUTOMATED KNOWLEDGE ACQUISTION 
 
To explain the details of the various tasks in the proposed knowledge acquisition method, we will employ a simple 
but demonstrative example of a 7-segment display numeric recognition problem.  This problem example contains 
data defining 10 decimal digits (0-9) on a 7-segment LED display as shown in Fig. 3.  Each input pattern is 
composed of 7 binary attributes.  The problem is to recognise the number displayed, given the input pattern of the 
seven segments.  As the Kohonen neural net requires a large data set for learning effectively, the relevant data set 
was repeatedly fed to the network to simulate approximately 200 examples.  No priori information is provided in the 
neural network training.  Table 1 presents a sample of the input data that will be used in our discussions henceforth. 
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Fig. 1: Neural Expert system architecture 

 

 
Fig. 2: The functional block diagram of knowledge acquisition system 

 
3.1 Data Pre-Processing 
 
The raw data must first be transformed into a new data set and format suitable for application in a neural network.  
All unsupervised methods merely illustrate some structures in the data set, and the features chosen to represent the 
data items ultimately determine the structures.  The pre-processing step selects a set of features that are invariant 
with respect to some basic transformation groups of the input pattern.  The pre-processing phase is composed of 
three main subtasks, namely: loading of data file, normalisation, and feature extraction. 
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Fig. 3: 7-segment display unit 

 
Table 1: Portion of 7 segment display unit data 

 
Pattern Syntax Pattern 

Number S1 S2 S3 S4 S5 S6 S7 
1 0 0 0 0 0 0 0 
2 1 1 0 0 0 0 1 
3 1 1 0 0 1 0 1 
4 1 1 0 0 0 0 1 
5 1 0 1 1 0 1 1 
6 1 1 1 0 0 1 1 
7 1 1 0 0 1 0 1 
8 0 1 1 0 1 1 1 
9 0 1 1 1 1 1 1 
10 1 1 1 1 1 1 1 
11 1 1 1 1 1 1 0 
12 1 1 1 0 1 1 1 

Note: 
S1 = Up_right, S2= Down_right, S3= Down_center, 
S4= Down_left, S5= Up_left, S6= Up_center, 
and S7= Mid_center 

 
In feature extraction, the input data vectors are transformed into such representations that concisely best describe the 
problem from the analysis point of view.  For example, in speech recognition, spectral data computed using the 
Fourier Transform are used as the feature vectors.  In the 7_seg display case study, there is no necessity for feature 
extraction. 
 
In normalisation, the objective is to ensure that there is no data that dominates over the rest of input data vectors.  
Although normalisation computations incur speed cost and it is not always necessary, it was found that it 
significantly improves the overall numerical accuracy of statistical computations in connection with self-organising 
maps (SOM) algorithms [9].  Normally, it is advisable to normalise each attribute scale such that its variance taken 
over all the items is unity.  There are several methods for normalisation.  We conduct comprehensive trials of all the 
methods, and then make the choice of the most suitable to apply, based on the quality metrics of quantisation and 
topographic errors.  The quantisation error is used as a measure of the resolution of the mapping, while topographic 
error calculates the error in the proportion of sample vectors for which two best matching weight vectors are not in 
adjacent units [10].  The advantage of these metrics is that the results are directly comparable between different 
mappings and even mappings of different data sets.  Table 2 shows the result of the trials for different normalisation 
types in the case of the 7_segment display data.  T he range of normalisation is chosen as in the table. 
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Table 2: Quality measure of different normalisation (7-seg display case study) 
 

No Quantisation Error Topographic Error Normalisation Type 
1 2.365 0.026 Variance 
2 0.267 0.0004 Range 
3 1.739 0.036 Logarithmic  
4 0.632 0.026 Histogram Discrete 
5 0.735 0.036 Histogram Continuous 

 
3.2 Neural Network Learning and Clustering 

 
This phase involves three main tasks namely: initialisation, training, and clustering.  The process of learning can be 
categorised into supervised and unsupervised learning.  Supervised learning requires a training set composed of 
input patterns with associated target or desired outputs.  The target output acts like an external teacher to the 
network.  In unsupervised learning the training set consists solely of input patterns.  Hence, during learning, no 
comparison with predetermined desired responses on which to base subsequent modifications can be performed by 
the learning algorithm.  There is therefore no external teacher in the sense described earlier.  This situation is more 
akin to most real-world problems.  The proposed method employs unsupervised learning, and this is the key 
contribution of this research.  Once trained, the weights of the neural network are mapped to clusters, which 
facilitates the extraction of the knowledge, encoded in the net by the rule generation algorithm.  Let us now discuss 
each of these tasks in turn. 
 
3.2.1 Initialisation 

 
The initialisation task involves three tasks namely: weight initialisation, topology initialisation, and neighborhood 
initialisation.  The hexagonal lattice type is chosen as the map topology in 7-segment display problem examples.  
Fig. 4 illustrates the KSOM topology, which is composed of 150 output nodes and 7 input nodes.  The choice of 
number of output nodes is done through comprehensive trials.  (We have considered this issue, but its discussion is 
beyond the scope of this paper). 
 

 
 

Fig. 4: KSOM topology 
 

The weights of the neural network is initialised either by linear or random initialisation.  The random initialisation 
technique is chosen here.  Table 3 shows a portion of the resulting initial weight values.  For the neighborhood 
function, Gaussian or Bubble is the typical choices.  The bubble function is considered the simpler but adequate 
one, and it is applied here.  In general, the topological relations and number of neurons are fixed from the 
beginning.  The number of neurons are usually selected to be as large as possible, with the neighborhood size 
controlling the smoothness and generalisation of the mapping.  If the neighborhood size is selected correctly, the 
mapping does not suffer significantly, even when the number of neurons exceeds the number of input vectors. 
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Table 3:  A portion of the Neural Network weights after random initialisation 
(7-segment display case study (15X10 output layer))  

 
Input Nodes 

 
Output Nodes 
(Row, Column) 

S1 S2 S3 S4 S5 S6 S7 
(1,1) 0.8533 0.8915  -0.1076 -0.1905 0.4809 0.0587 0.4623 
(1,2) 0.8877 0.9713 0.0773  -0.0565 0.6208 0.2234 0.5417 
(1,3) 0.9222 1.0511 0.2623 0.0775 0.7607 0.3880 0.6211 
(1,4) 0.9567 1.1310 0.4473 0.2115 0.9006 0.5527 0.7005 
(1,5) 0.9912 1.2108 0.6322 0.3455 1.0405 0.7173 0.7799 

e: S1 = Up_right, S2 = Down_right, S3 = Down_center, S4 = Down_left, S5 = Up_left, S6 = Up_center, and 
S7 = Mid_center. 
(Row, Column) is used to represent a particular node in the 2D output layer which consist of 15X 10 nodes. 

 
3.2.2 KSOM Training 

 
The training of the KSOM neural network may be considered to consist of two phases: rough training and fine-
tuning.  The rough training phase correspond to the first iteration stage in which, the initial formation of the order 
occurs.  In this stage, the initial weight vectors, a large neighborhood radius and a large learning rate are applied.  
Rough training is normally short.  The rest of the iteration stages constitute the fine-tuning phase in which, both 
learning rate and neighborhood radius begin with small values, and gradually reduced further at each iteration.  Fig. 
5 outlines the KSOM learning algorithm. 
 

Step 1: initialise weight to small random values and set the initial neighborhood to be large.  
Step 2: stimulate the net with a given input vector. 
Step 3: calculate the Euclidean distance between the input and each output node and select the output with 

the minimum distance.  
2)()( ∑ −=

i
iij xwjD  

D(j) is a minimum 
Step 4: update weights for the selected node and the nodes within its neighborhood. 

))(()()( oldwxoldwneww ijiijij −+= α  

Step 5: repeat from step 2 unless stopping condition. 
 

Fig. 5: KSOM learning algorithm 
 
The stopping condition decides on the convergence achieved.  We have two approaches, the choice of which 
depends on the size of input data and dimension of output layer.  In the first approach, the winning node updates its 
parametric weight vector via the equation given in step 4 of the algorithm.  All other neurons keep their old values.  
In the second approach, the strategy is to update positively all nodes that are close to the winning nodes, and update 
negatively all nodes that are farther away from the winner (i.e. lateral inhibition is applied).  The first approach is 
used here.  Table 4 illustrates a portion of the result of the KSOM training session.  The required knowledge is 
encoded implicitly in the updated KSOM weights that link the input layer and output layer nodes. 

 
Table 4: Portion of KSOM output (7-segment display case study) 

 

Input Nodes Output Nodes 
(Row, Column) 

S1 S2 S3 S4 S5 S6 S7 
(1,1) 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 
(1,2) 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 
(1,3) 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 
(1,4) 1.0000 0.9975 0.0049 0.0025 0.0000 1.0000 0.0049 
(1,5) 1.0000 0.5028 0.5028 0.4972 0.0000 1.0000 0.5028 
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3.2.3 Clustering 
 

The next step is clustering the updated weights explicitly.  The terminology comes from the appearance of an 
incoming sequence of feature vectors which arrange themselves into clusters, groups of points that are closer to each 
other and their own centers rather than to other groups.  When a feature vector is input to the system, its distance to 
the existing cluster representatives is determined, and it is either assigned to the cluster, with minimal distance or 
taken to be a representative of a new cluster. 
 
We have noted earlier that no priori information is provided about the clustering, hence the possible clusters (and 
even the number) are not known in advance.  The K-means algorithm can perform the required clustering function.  
The K-means algorithm self-organises its input data to create clusters.  We summarise the K-means algorithm as 
follows: 
 

Step 1: From the given sample of feature vectors, select the first k sample vectors as initial centers. 
Step 2: Assign each sample feature vector that is closest, in Euclidian distance, to center 1 to cluster 1, 

and which is closest to center 2 to cluster 2, and so on, to form k clusters. 
Step 3: Obtain new optimal centers for each cluster by averaging the feature vectors contained in each 

kth cluster. 
Step 4: Assign each of the sample feature vectors again, to the cluster whose new center is closest to. 
Step 5: Stop, when no clusters change further. 

 
Fig. 6 shows a graphical representation for clustering session output.  Each gray shade represents a certain cluster.  
Although the graphical representation is good in illustrating the clusters visually, it cannot be used to interpret 
explicitly the mapping that represents the encoded knowledge.  We need to specify the links and weights associated 
with a cluster. 
 

 
 

Fig. 6: Graphical representation of result of clustering session (7-seg display case study) 
 
The step now is to find the codebook vector and the indices for each cluster.  This data contains the weights that 
distinguish and characterise each cluster.  Table 5 contains a portion of cluster 1 weights.  The weight vector for an 
input unit in a clustering unit serves as a representative (exemplar) or codebook vector for the input patterns which 
the net has placed on that cluster. 
 

Table 5:  A part of cluster 1 weights or codebook vectors (7-segment display case study) 
 

Input Nodes Output Nodes 
(Row, Column) S1 S2 S3 S4 S5 S6 S7 

(2,3) 1.0000 0.6667 1.0000 1.0000 0.6667 1.0000 0.6667 
(2,4) 1.0000 0.9895 1.0000 1.0000 0.9895 1.0000 0.0574 
(2,5) 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 0.0475 
(3,8) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0025 
(3,9) 1.0000 0.9547 1.0000 0.9997 0.9544 1.0000 0.9547 

Note: S1 = Up_right, S2 = Down_right, S3 = Down_center, S4 = Down_left, S5 = Up_left, S6 = Up_center, 
and S7 = Mid_center 
(Row, Column) is used to represent a particular node in the 2D output layer which consist of 15X 10 nodes. 
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3.3 Symbolic Rule Generation 
 
In this stage of the knowledge acquisition process, the extraction of a set of symbolic rules that map the input nodes 
into output nodes (with respect to each cluster) is performed.  The antecedents of the rules that define these concepts 
consist of contributory and inhibitory input weights.  The resulting rule base of this phase is an intermediate-level 
concept rule hierarchy. 
 
Let us explain further.  In a KSOM network, each output node is connected to every input node, with the strength of 
interconnection reflected in the associated weight vector.  The larger the weight vector associated with a link, the 
greater is the contribution of the corresponding input node to the output node.  The input with the largest weight link 
makes the largest contribut ion to the output node.  To distinguish the contributory inputs from inhibitory inputs, we 
binarise the weights.  If contributive, the real-valued weight is converted to 1, and is converted to 0 if inhibitory.  
There are two approaches to do this, namely: threshold or breakpoint technique [11].  We have chosen the threshold 
technique.  The threshold is set at 50% (i.e. below 0.5 is considered as 0 and above 0.5 considered as 1).  The 
mapping (a portion) produced by this binarisation step for 7-seg-display case study is given in Table 6. 

 
Table 6:  Portion of cluster 1 weights after using threshold technique (7-segment display case study) 

 
Input nodes Output Nodes 

(Row, Column) 
S1 S2 S3 S4 S5 S6 S7 

(2,3) 1 1 1 1 1 1 1 
(2,4) 1 1 1 1 1 1 0 
(2,5) 1 1 1 1 1 1 0 
(3,8) 1 1 1 1 1 1 0 
(3,9) 1 1 1 1 1 1 1 
(3,10) 1 1 1 1 1 1 1 
(5,4) 1 1 1 1 1 1 1 
(2,3) 1 1 1 1 1 1 0 

 
The final sets of antecedents in each cluster usually contain some duplicated patterns.  This redundancy is now 
removed, and Table 7 shows the number of patterns covered by each cluster before and after redundancy.  We can 
now map symbolically the antecedents to each cluster and obtain the rules for each cluster.  The symbolic rule 
extraction algorithm is an inductive learning procedure.  The algo rithm as is provided in Fig. 7 is self-explanatory.  
The result of this step is a set of production rules (of the intermediate-level concept rule hierarchy), an example of 
which, for cluster 1 we have: 

 
1. IF  [(S1)&  (S2)& (S3)& S4)& (S5)& (S6)& (S7)] THEN    {cluster 1} 
2. IF  [(S1)&  (S2)& (S3)& (S4)& (S5)& (S6)& (¬S7)] THEN   {cluster 1} 

 
 

Table 7: Number of patterns covered by each cluster before and after redundancy 
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Step 0: with each U ∈ {all output layer’s units} 
         Let W be the weight of unit U 
Step 1: determine groups of positively weighted links (contributors) U such that  (Link weights of group)  = 1 

{Call this set of groups contributor.} 
Step 2: determine groups of negatively weighted links (inhibitors) U such that (Link weights of group)  = 0 

{Call this set of groups inhibitor.} 
Step 3: Create a rule with the following form 
        If ∀ contributors and ¬∀ inhibitors Then (name of U) 
Step 4: remove any duplicate rules 

 
Fig. 7: Symbolic rule extraction algorithm 

 
Intermediate-level concept rules may have one cluster containing more than one production rule, and this will 
require post-processing to be performed, to obtain the final concept rule hierarchy.  The end user requests the post-
processing stage.  Based on the information provided by the user concerning the kind of rules that should be 
produced, further clustering with respect to produced clusters is performed to resolve the rule base to the final form.  
For example, in the case of the 7-segment display case study, 10 digits should be recognised (i.e. digit 0 – 9), and 
there is some clusters contain more than one rule (e.g. it is possible that digit 8 & 0 clustered into cluster 1), the user 
will request further clustering to decompose those clusters. 
 
Fig. 8 shows the result of the post-processing session in the 7-segment display problem.  The knowledge encoded in 
the neural network has now been interpreted into symbolic rule knowledge.  Given an input pattern of the LED 
display, the digits can now be recognised using this rule base. 

 
 

1 (S1)&(S2)&(¬S3)&(¬S4)&(¬S5)& 
(¬S6)&(¬S7);⇒ {digit 1} 

2 (S1)&(S2)&(S3)&(S4)&(S5)&(S6)& (¬S7); ⇒  
{digit 0} 

3 (S1)&(S2)&(S3)&(¬S4)&(S5)&(S6)& (S7); ⇒  
{digit 9} 

4 (S1)&(S2)&(S3)&(S4)&(S5)&(S6)& (S7); ⇒  
{digit 8} 

5 (S1)&(S2)&(¬S3)&(¬S4)&(¬S5)&(S6)&(¬S7); 
⇒ {digit 7} 

6 (S1)&(S2)&(S3)&(¬S4)&(¬S5)&(S6)&(S7); ⇒  
{digit 3} 

7 (S1)&(S2)&(¬S3)&(¬S4)&(S5)&(¬S6)&(S7); 
⇒ {digit 4} 

8 (¬S1)&(S2)&(S3)&(¬S4)&(S5)&(S6)&(S7);⇒ 
{digit 5} 

9 (¬S1)&(S2)&(S3)&(S4)&(S5)&(S6)& (S7); ⇒  
{digit 6} 

10 (S1)&(¬S2)&(S3)&(S4)&(¬S5)&(S6)&(S7); ⇒  
{digit 2} 

 
Fig. 8: Final concept rule base & recognised digits 

 
 
3.4 Knowledge Verification and Evaluation 

 
For the sake of testing and evaluating the final produced symbolic rules, an expert system was developed using the 
C language.  We then evaluated the rules using the expert system inference engine.  Fig. 9 shows the expert system 
inference engine user interface window. 
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Fig. 9: Knowledge verification user interface 
 
 
4.0 EXPERIMENTAL RESULTS 
 
To further illustrate the potential of the proposed automated knowledge acquisition method, we present a case study 
of a real-world problem in the medical domain.  A subset of medical blood test data is collected from 440 patients.  
For each patient, 20 medical inspection values are obtained.  The data is to diagnose the patient into one of 5 
different hepatitis diseases.  Our system generates, from this data set, the symbolic rule base of the diagnosis rules. 
 
A set of training examples in the form of matrix in which, rows represent patient cases (or patterns) and columns 
represent the feature data, is formatted.  Table 8 shows a portion of input data, with each pattern (row) comprising of 
20 entities Q1 to Q20, where Qi are medical inspection parameters.  Fig. 10(a) illustrates the graphical distribution 
of the input data, indicating the dominance of certain data. 
 

Table 8: A portion of input data (medical case study) 
 

Medical Data Input Parameters Number 
of 

Patterns Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 
1 7.8 6 0.5 40 42 29 91 4.7 399 15 15 12 3.8 0 19.6 34 270 64.7 1.8 2 
2 8 6 0.4 50 61 12 87 4.5 284 15 18 16 3.6 0 21.9 22 214 61.1 2.8 1 
3 8.4 5 0.5 40 34 6 90 4.7 257 10 10 10 2 0 23.7 45 280 60.9 3 2 
4 7.3 7 0.7 43 61 19 94 4.5 454 23 12 19 5.1 0 20.8 21 198 61.3 2.6 2 
5 7.8 7 0.7 43 61 19 94 4.5 454 23 12 19 5.1 0 22.6 23 342 65.5 2.3 1 

Note:  (Q1 –Q20) represented blood test data concerning five group of patients; namely Cluster 1, Hepatoma, 
Acute hepatitis, Chronic hepatitis, and Liver cirrhosis patients. 

 
The feature vector values are further preprocessed.  Intervals of values are quantised to integer values, using the data 
in Table 9.  These intervals are derived empirically.  The resulting input data is shown in Table 10, with its graphical 
representation presented in Fig. 11. 
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 (a) Before normalisation (b) After normalisation 
 

Fig. 10: Graphical representation of input data distribution (Medical case study) 
 

Table 9: Shows the division of medical test data of hepatitis diseases 
 

Integers of Attribute Values No Medical 
Inspections 1 2 3 4 5 6 

1  SP ~5.5 5.6~6.5 6.6~7.5 7.6~8.5 8.6~  
2  II ~4 5~6 7~9 10~   
3  Tbil ~1.0 1.1~5.0 5.1~10 10.1~20 20.1~  
4  Dbil ~40 41~60 61~80 81~100   
5  Alp ~80 81~200 201~300 301~400 401~  
6  G.GTP ~30 31~100 101~200 201~300 301~  
7  LDH ~100 101~250 251~500 501~1000 1000~  
8  Alb-G ~2 2.1~3.0 3.1~4 4.1~5 5.1~  
9  ChE ~100 101~150 151~200 201~250 251~500 501~ 
10  GPT ~25 26~100 101~200 201~500 501~1000 1001~ 
11  GOT ~20 21~100 101~200 201~500 501~1000 1001~ 
12  BUN ~9 10~20 21~30 31~40 41~  
13  UrA ~2.7 2.8~8.5 8.6~    
14  Retic ~1.5 1.6~3.0 3.1~6 6.1~   
15  Plt ~1.0 1.1~5.0 5.1~10 10.1~15 15.1~35 35.1~ 
16  Lympho ~20 20.1~40 40.1~60 60.1~   
17  Fibrino ~200 201~400 401~    
18  Alb% ~45 45.1~65 65.1~    
19  Al% ~2.5 2.6~3.7 3.8~5 5.1~   
20  AFP ~20 21~100 101~200 201~1000 1001~  

 
 

Table 10: Input data after pre-processing (medical case study)  
 

Medical Data Input Parameters Number 
of  

Patterns Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 
1 4 2 1 1 1 1 4 5 1 1 2 2 1 5 2 2 2 1 1 1 
2 4 2 1 2 1 1 4 5 1 1 2 2 1 5 2 2 2 2 1 1 
3 4 2 1 1 1 1 4 5 1 1 2 1 1 5 3 2 2 2 1 1 
4 3 3 1 1 1 1 4 5 1 1 2 2 1 5 2 1 2 2 1 1 
5 4 3 1 2 1 1 4 5 1 1 2 2 1 5 2 2 3 1 1 1 

Note:  (Q1 –Q20) represented blood test data concerning five group of patients; namely Cluster 1, 
Hepatoma, Acute hepatitis, Chronic hepatitis, and Liver cirrhosis persons. 
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Fig. 11: Input data after pre-processing 
 

Normalisation by the Range technique, chosen by quality measure computation recorded in Table 11, removes this 
dominance, as shown in Fig. 10(b). 
 

Table 11: Quality measure of different Normalisation types  
 

No. Input Data Size Quantisation Error Topographic Error Normalisation Type 

1 [440 20] 2.365 0.026 Variance 
2 [440 20] 0.267 0.028 Range 
3 [440 20] 1.739 0.036 Logarithmic  
4 [440 20] 0.632 0.026 Histogram Discrete 
5 [440 20] 0.735 0.036 Histogram Continuous 

 
In the KSOM learning stage, the following initialisations were performed.  The topology was initialised using a 
hexagonal lattice with 15X15 output layer dimension, random weights initialisation and bubble function for 
neighborhood initialisation.  The result of KSOM training and K-mean clustering is illustrated in Fig. 12(a) and 
12(b), respectively. Redundancy is now removed, and Table 12 illustrates the number of rules covered by each 
cluster before and after the redundancy process.  The result is an intermediate-level concept rule base for the 
medical diagnosis problem.  Fig. 13 shows a portion of the rule base, in which the cluster 1 symbolic rules are listed. 
 
 

  
 

 (a) KSOM training output  (b) K-means clustering output 
 

Fig. 12: Visualisation of the clusters (Medical case study) 
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Table 12: Number of rules covered by each class before and after redundancy (Medical case study) 
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1 (Not Q1)&  (Q2)& (Q3)& (Q4)& (Q5)& (not Q6)& (not Q7)& (not Q8)& (not Q9)& (not Q10)&  (Q11)& 
(not Q12)& (Q13)& (not Q14)& (Q15)& (not Q16)& (Q17)& (not Q18)& (not Q19)& (Q20);⇒ {Cluster 1}  

2 (Q1)&  (Q2)& (Q3)& (Q4)& (Q5)& (Not Q6)& (Not Q7)& (not Q8)& (Q9)& (Not Q10)&  (Q11)& (Not 
Q12)& (Q13)& (Not Q14)& (Q15)& (Not Q16)& (Q17)& (Not Q18)& (Not Q19)& (Q20); ⇒  {Cluster 1} 

3 (Not Q1)&  (Q2)& (Q3)& (Q4)& (Q5)& (Not Q6)& (Not Q7)& (Not Q8)& (Not Q9)& (Not Q10)&  (Not 
Q11)& (Not Q12)& (Q13)& (Not Q14)& (Q15)& (Not Q16)& (Q17)& (Not Q18)& (Not Q19)& (Q20); 
⇒{Cluster 1} 

4 (Not Q1)&  (Q2)& (Q3)& (Q4)& (Q5)& (Not Q6)& (Not Q7)& (Not Q8)& (Not Q9)& (Not Q10)&  (Not 
Q11)& (Not Q12)& (Q13)& (Not Q14)& (Q15)& (Not Q16)& (Not Q17)& (Not Q18)& (Not Q19)& (Q20); 
⇒  {Cluster 1} 

 
Fig. 13: Cluster 1 symbolic rules  

 
With the data set given, our knowledge acquisition system produced a rule base of 65 rules contained in 15 clusters. 
(Compare this with an equivalent statistical approach which will generate 2 20 (1048576) possible rules.)  The rule 
base is now submitted into the knowledge base of an expert system.  This knowledge should contain all the required 
information to carry out the reasoning process.  Via consultation with a physician (i.e. the expert) who validates and 
verifies the rule base, the inference engine discriminates the rules found in the clusters such that the final-concept 
rules are obtained.  For example, let us take pattern number 4 from table 8 and feed it to the inference engine (the 
chosen pattern has been recognised by the physician as hepatoma symptom).  Through query and answer session 
with the rule base the physician submits his diagnosis to be hepatoma.  Thus, the system managed to link each 
cluster to certain group of diagnosis.  Fig. 14 illustrates the runtime trace of the resulting reasoning process in our 
system.  Then, from cluster level recognition, the process is repeated until all the 65 rules are linked to specific 
diseases.  The final-concept rule base now contains the knowledge to perform the medical diagnosis, that is we have 
the various clustered symptoms linked to a disease.  (Note that each cluster is linked to a certain type of disease.) 

 

 
Fig. 14: Inference engine for testing pattern 
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5.0 CONCLUSION 
 
The 7-segment display problem and the medical case study show that the proposed automated knowledge 
acquisition method can successfully extract knowledge in the form of production rules from numerical data set 
representing the salient features of the problem domain.  This study has demonstrated that symbolic knowledge 
extraction can be performed using unsupervised learning KSOM neural networks, where no target output vectors are 
available during training.  The system is able to learn from examples via the neural network section.  The extracted 
knowledge can form the knowledge base of an expert system, from which explanations may be provided, and it is 
quite possible to diagnose new unknown disease.  Large, noisy and incomplete data set can be handled.  The system 
proves the case of the viability of integrating neural network and expert system to solve real-world problems. 
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