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ABSTRACT 
 
The halfsweep multigrid algorithm, introduced by Othman 
et al in 1998 for solving a linear system, is known as a fast 
multigrid poisson solver.  In this paper, the implementation 
of the parallel halfsweep multigrid algorithm with several 
parallel strategies is discussed.  The experiments were 
carried out on the shared memory multiprocessors 
computer system, Sequent S27, and the results of the test 
problem are included. 
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1.0 INTRODUCTION 
 
Multigrid method has been known for many years.  It  is fast 
and one of the most efficient iterative methods for solving a 
wide variety of scientific computing and engineering 
problems.  Despite advances in computer hardware, many 
applications require still greater performance than that 
offered by traditional computers.  Given the success of the 
sequential multigrid algorithm, the V(1, 1)-cycle halfsweep 
multigrid algorithm (introduced by Othman et al in 1998), 
it is natural to consider the parallel version of the algorithm, 
especially, on the shared memory multiprocessors platform. 
 
In the case of the fullsweep approach, several successful 
parallel multigrid algorithms have been implemented on 
various parallel computer platforms [1, 2, 3, 4, 6].  For 
instance, Chan et al [1] implemented the parallel multigrid 
algorithm on the Hypercube Multiprocessor computer 
system. 
 
 
2.0 FULLSWEEP MULTIGRID METHOD 
 
The fullsweep multigrid method has been used by many 
researchers.  It employs all the points (or tasks) at any 

level of the hierarchical grid (i.e. Ωh, Ω2h, ..., ΩNh) for their 
computations.  The method uses the three points stencil, as 
a grid smoother coincide with the Gauβ-Seidel chess board 
strategy for their pre- and post- smoothing stages.  Since all 
the tasks at each level of the hierarchical grid are involved 
in the computations, the full weighting restriction operator 
is used to transfer all the calculated residuals from fine Ωh 
to coarser grid Ω2h defined as, 
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On the other hand, the bilinear prolongation operator h

h2P  

is used to transfer the error corrections from coarse Ω2h to 
finer grid  Ωh  given by, 
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where Nc is the size of the coarser grid.  Briefly, the 
V(η1,η2)-cycle fullsweep multigrid algorithm is described 
in C-like language as shown in Appendix 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The graphical structure of the V( η1, η2)-cycle 
halfsweep multigrid method 
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3.0 HALFSWEEP MULTIGRID METHOD 
 
According to Othman and Abdullah [5], all tasks at any 
levels of the hierarchical grid, (i.e. Ωh, Ω2h, ..., ΩNh) are 
labeled in chess board labeling, as shown in Fig. 1.  A 
group of black (• tasks) will be computed using the three 
points stencil of width 2h until the convergence criteria are 
met, then the rest of red (� tasks) will  be executed at once 
using the three points stencil of width h, otherwise, the 
computation cycle is repeated.  It shows that a group of 
black tasks can be implemented by involving only black 
tasks and the same happens for a group of red tasks.  
Therefore, the implementation of these two groups of tasks 
can be carried out independently and the execution time can 
be saved nearly by half if the computation over the 
hierarchical grid is only carried out on either group of tasks. 
 
As only a group of black tasks are involved in the 

computation, the following restriction operator h2
hR  is 

required for transferring the calculated residuals from fine 
Ωh to coarser grid  Ω2h given by,  
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All the error corrections of black tasks are transferred from 
coarse  Ω2h back to finer grid  Ωh defined by the following 

bilinear prolongation operator h
h2P , 
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The chess board Gauβ-Seidel relaxation scheme is used as 
grid smoother for their pre- and post- smoothing stages.  It 
is used to smooth the calculated residuals and error 
corrections at the coarse grids.  Appendix 1 describes the 
nested V(η1,η2)-cycle halfsweep multigrid algorithm. 
 
 
4.0 STRATEGIES AND THEIR PARALLEL 

IMPLEMENTATIONS 
 
Since all the black tasks at any level of the hierarchical grid 
are identical, the data partitioning approach is suitable in 
implementation of the methods.  All the identical tasks can 
be executed in parallel, and again, the static scheduling is 
also employed. 
 
Three main procedures involved in the implementation are 
described in the following sections. 
 
4.1 Parallel Grid Smoother 
 
The Gauβ-Seidel relaxation scheme is used as a grid 
smoother due to the fact that the new updated values are 
used to calculate the next value, as it becomes available.  It 
is very important that the residuals are well smoothed 
before they can be transferred to the coarser or finer grids.  

Since data dependence among the tasks occurred at any 
level of the hierarchical grid, the chess board strategy is 
employed in the smoother and each task is allocated to a 
processor at a time.  Thus, every processor independently 
computes its own tasks in parallel.  The C-like language 
codes below show the parallel grid smoother with the chess 
board strategy. 
 
 
 
 
 
 
 
 
 
 
Once the convergence criteria is met, no data dependency 
occurs at the finest grid, then all the red tasks are smoothed 
at once in parallel by employing the natural strategy.  The 
Par_grid_direct_procedure() shows the smoother of the 
parallel direct relaxation scheme. 
 
 
 
 
 
 
 
 
 
 
 
4.2 Parallel Restriction Operator 
 
In the restriction procedure, there are two main 
computations which depend on each other.  They are the 
computations of residual and full weighting restriction.  
These computations must be executed one after another, 
while the synchronization call at the end of each 
computation ensures that the updated values are used in the 
second computation.  Due to the fact that no data 
dependency occurs in each computation, the individual 
computation can be executed in parallel by employing the 
natural strategy.  Each task from each computation is 
assigned to one processor at a time, and then every 
processor independently computes its own tasks.  These 
computations are shown in the following C-codes.  
 
 
 
 
 
 
 
 
 
 
 

Par_grid_smoother_procedure() 
{nprocs=m_get_numprocs(); 
  id=m_get_myid(); inc=2*nprocs; 
 
 for (color=0; color<=1;color++) { 

if (color==0) s=2+4*id; 
else  s=4+4*id; 
for (i=s;i<Nc;i=i+inc) u[i]=0.5*(u[i-2]+u[i+2]-2h2*f[i]); 
m_sync(); 

}} 
 

Par_grid_direct_procedure() 
{  nprocs=m_get _numprocs(); id=m_get_myid();  

inc=2*nprocs;  
 

for (i=1+id;i<Nc;i=i+inc) 
     u[i]=0.5*(u[i-1]+u[i-1]- h2f[i]); 
m_sync(); 

} 
 

Par_restriction_procedure() 
{  nprocs=m_get_numprocs(); id=m_get_myid();  

inc=2*nprocs; half= 0.5*Nc; 
 

for (i=2+2*id;i<Nc;i=i+inc) 
  w[i]=0.5h-2*(2*u[i]-u[i-2]-u[i+2])-f[i];  
m_sync(); 
for (k=2+2*id;k<half; k=k+inc) { 
   i=2*k; 
   y[k]=0.25*(w[i-2]+w[i+2]+2*w[i]); 
} 
m_sync(); 

} 
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4.3 Parallel Prolongation Operator 
 
There are two main computations involved in the 
prolongation procedure, they are the computation of 
prolongation and bilinear operation.  These two 
computations must be executed one after another as the 
second computation depends on the results of the first 
computation.  The synchronization call at the end of each 
computation ensures that the updated values are available 
for the following computation.  In the individual 
computation, no data dependency occurs among the tasks, 
thus, they can be executed in parallel by employing the 
natural strategy.  The procedure of these computations is 
shown in the following C-like language codes below: 
 
 
 
 
 
 
 
 
 
 
 
 
4.4 Parallel Halfsweep Multigrid Algorithm 
 
The parallel V(η1, η2)-cycle halfsweep multigrid algorithm 
is described in C-like language as stated in Appendix 2. 
 

5.0 PERFORMANCE EVALUATION 
 
In order to confirm that the parallel halfsweep multigrid 
algorithm is superior to the parallel fullsweep multigrid 
algorithm, the following experiments are carried out on the 
shared memory multiprocessor computer system, Sequent 
S27.  All the methods were applied to the following test 
problem (uxx = -x) in a unit cartesian region, subject to the 
Dirichlet condition.  To avoid time taken for system, user 
and other I/O overheads, the algorithms were executed 
when no other users were using the computer.  Throughout 
the experiments, all the algorithms were carried out on 
different sizes of finest grids 213, 214, 215 and 216 with 
V(η1,η2)-cycle.  The algorithms will stop when all tasks at 
the finest grid, which undergo the computation, are less 
than ε=10-10. 
 
The experimental results are reported in the Table 1.  The 
graphs for execution time, speedup and efficiency versus 
number of processors were plotted and shown in Figs. 2, 3 
and 4, respectively.  The temporal performance is usually 
used to compare the performance of different algorithms for 
solving the same problem and it is defined as, 
  

pT
1

pP =  

where the unit is work done per second, and p is the number 
of processors.  The algorithm with the highest performance 
executes in the least time and, therefore, is the better 
algorithm.  Fig. 5 shows the graph of the temporal 
performance versus number of processors for n=216. 
 
 

Table 1: The execution time, speedup and efficiency of the parallel multigrid algorithms with full- and half- sweep 
approaches 

 
n No. of   Full   Half  
 procs Time Speedup Efficiency Time Speedup Efficiency 
 
 

213 

1 
2 
3 
4 
5 

4.45 
2.96 
2.41 
2.22 
1.99 

1.00 
1.50 
1.84 
2.00 
2.23 

1.00 
0.75 
0.61 
0.50 
0.44 

2.73 
2.05 
1.67 
1.58 
1.51 

1.00 
1.33 
1.63 
1.72 
1.80 

1.00 
0.66 
0.54 
0.43 
0.36 

 
 

214 

1 
2 
3 
4 
5 

8.27 
5.30 
3.89 
3.42 
3.11 

1.00 
1.56 
2.12 
2.41 
2.65 

1.00 
0.78 
0.70 
0.60 
0.53 

5.51 
3.59 
2.81 
2.41 
2.27 

1.00 
1.53 
1.95 
2.28 
2.42 

1.00 
0.76 
0.63 
0.57 
0.48 

 
 

215 

1 
2 
3 
4 
5 

16.00 
9.90 
7.21 
6.53 
5.39 

1.00 
1.61 
2.21 
2.45 
2.96 

1.00 
0.80 
0.73 
0.61 
0.59 

10.47 
6.56 
4.78 
4.33 
3.72 

1.00 
1.59 
2.18 
2.41 
2.80 

1.00 
0.79 
0.72 
0.60 
0.56 

 
 

216 

1 
2 
3 
4 
5 

31.70 
18.41 
13.15 
10.93 
9.73 

1.00 
1.72 
2.41 
2.90 
3.25 

1.00 
0.86 
0.83 
0.71 
0.65 

20.44 
12.58 
9.43 
7.69 
6.47 

1.00 
1.62 
2.16 
2.65 
3.15 

1.00 
0.81 
0.72 
0.66 
0.63 

 

Par_prolongation_procedure() 
{  nprocs=m_get_numprocs(); id=m_get_myid();  

inc=2*nprocs; half= 0.5*Nc; 
 

for (i=2+2*id;i<half; i=i+2*inc) w[2*i]=u[i]; 
m_sync(); 
 
for (i=2+2*id;i<Nc;i=i+inc)  w[i]=0.5*(w[i-2]+w[i+2]); 
m_sync(); 

} 
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6.0 CONCLUSION 
 
Based on Table 1 and Fig. 1, the results show that the 
parallel halfsweep multigrid algorithm with the chess board 
Gauβ-Seidel grid smoother is superior to the parallel 
fullsweep multigrid algorithm for any number of 
processors, as n gets larger.  This is due to the lower total 
computational operations in the algorithm as approximately 
half of the total tasks in each level are involved in the 
computation.  In view of this, we found that the speedup 
and efficiency of the parallel halfsweep multigrid algorithm 
are not as good as that for the other algorithm.  It can be 
improved by increasing the grid size n, (refer to Figs. 2 and 
3).  Furthermore, the superiority of the parallel halfsweep 
algorithm is also indicated by the highest value of the 
temporal performance (see Fig. 4). 
 
In conclusion, the parallel halfsweep multigrid algorithm 
with the chess board strategy is the more effective 
algorithm when compared to the parallel fullsweep 
multigrid algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Execution time versus no. of processors for  n=216 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Speedup versus no. of processors for n=216 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4:  Efficiency versus no. of processors for n=216 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Temporal performance versus no. of processors for 
n=216 
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Appendix 1: The nested V(η1, η2)-cycle fullsweep multigrid algorithm 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SMGV(Ah,vh,fh) /* compute all the points until converge */ 
{ 
  if coarset grid, solve Aheh=rh directly 
  else { 
    smooth η1 times on Gauβ-Seidel(Ah,vh,fh) using the three points stencil of width h 
   compute residuals, rh ←fh - Ahvh 

   set e2h ← 0, and restrict r2h ← h2
hR rh  

   get e2h ← SMGV(A2h,v2h,f2h)  

   compute prolongation and error (corr.), vh ←vh - h
h2P  e2h 

   smooth η2 times on Gauβ-Seidel(Ah,vh,fh) using the three points stencil of width h 
  } 
} 
Algorithm Seq_halfsweep_mg() 
{flag=0; 
  while (flag != 1) do { 
 flag=1; 
  SMGV(Ah,vh,fh); 
 if |v(k+1) - v(k)| > ε for all points, set flag=0 
 iterate++;  swap all tasks, v(k+1) → v(k) 
 } 
 return vh as an approximate solution 
} 
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Appendix 2: The parallel V(η1, η2)-cycle halfsweep multigrid algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

DIRECT(Ah,vh,fh) /*compute a group f red tasks in parallel */ 
{ 
compute Par_grid_direct_procedure(Ah,vh,fh) 
} 
PMGV(Ah,vh,fh) /* compute a group of black tasks in parallel until converge */ 
{ 
  smooth η1 times on Par_grid_smoother_procedure(Ah,vh,fh) 
  compute Par_restriction_procedure(rh,e2h,r2h) 
     smooth η1 times on Par_grid_smoother_procedure(A2h,v2h,f2h) 
     compute Par_restriction_procedure(r2h,e4h,r4h) 
 M 
 if coarset grid, solve ANheNh=rNh 
      M 
     compute Par_prolongation_procedure(e4h,e2h) 
     smooth η2 times on Par_grid_smoother_procedure(A2h,e2h,r2h) 
  compute Par_prolongation_procedure(v2h,vh) 
  smooth η2 times on Par_grid_smoother_procedure(Ah,vh,fh) 
} 
Algorithm Par_halfsweep_mg() 
{Initialize(); 
  Set l_flag=1; g_flag=0; id=m_get_myid(); nprocs=m_get_numprocs(); bit=id2;  stop=nprocs2-1; 
  /* compute the following while block in parallel */ 
  while (g_flag != stop) do { 
 PMGV(Ah,vh,fh) 
 if |v(k+1) - v(k)| > ε on the black tasks, set l_flag=0 
 if (l_flag == 1) { 
   m_lock();   g_flag=g_flag + 1;   m_unlock(); 
  } 
  <synchronize> 
  iterate++;  l_flag=1; swap all black tasks, v(k+1) → v(k) 
  <synchronize> 
} 
compute the DIRECT(Ah,vh,fh) procedure in paral lel 
<synchronize> 
m_kill_proc(); 
} 
 


