Malaysian Journal of Computer Science, Vol. 13 No. 2, December 2000, pp. 1-6

APARALLEL HALFSWEEP MULTIGRID ALGORITHM ON THE SHARED MEMORY
MULTIPROCESSORS

Mohamed Othman
Department of Communication Technology and Networks
Universiti PutraMadaysia
43400 UPM Serdang, Sdlangor D.E.

J. Sulaiman
School of Science and Technology
Universiti Malaysia Sabah
KotaKinabau, Sabah

A. R. Abdullah
Department of Industrial Computing
Universiti Kebangsaan Maaysia
43600 UKM Bangi, Sdangor D. E.
Maaysa

ABSTRACT

The halfsmeep multigrid algorithm, introduced by Othman
et al in 1998 for ®lving a linear system, is known as a fast
multigrid poisson solver. In this paper, the implementation
of the paralld halfsveep multigrid algorithm with several
paralld drategies is discussed. The experiments were
caried out on the shared memory muliiprocessors
computer system, Sequent 27, and the results of the test
problemareincluded.

Paralld halfsveep multigrid algorithm;
Paralld strategy; Performance evaluation

Kepwords

10 INTRODUCTION

Multigrid method has been known for many years. It is fast
and one of the mogt efficient iterative methods for solving a
wide vaidy of gdentific computing and engineering
problems. Despite advances in computer hardware, many
applications require ill grester performance than that
offered by traditiordl computers. Given the success of the
sequentid multigrid agorithm, the V(1, 1)-cycle hafsweep
multigrid agorithm (introduced by Othman et al in 1998),
it is naturd to condder the parald verson of the agorithm,
especidly, on the shared memory multiprocessors platform.

In the case of the fullsweep approach, several successful
padld multigrid dgorithms have been implemented on
various pardld computer plaiforms [1, 2, 3, 4, 6]. For
indance, Chan et a [1] implemented the pardld multigrid
algorithm on the Hypercube Multiprocessor computer
system.

20 FULLSWEEP MULTIGRID METHOD

The fullswveep multigrid method has been used by many
researchers. It employs al the points (or tasks) at any

level of the hierarchicd grid (e W', W7, ..., W' for their
computations. The method uses the three points stencil, as
a grid smoother coincide with the Gab-Sddd chess board
strategy for their pre- and post- smoothing stages. Since dl
the tasks a each levd of the hierarchicd grid are involved
in the computations, the full weighting redtriction operator
is used to transfer al the calculated residuds from fine W'
to coarser grid W' defined as,

R =1[1 2 1].

On the other hand, the bilinear prolongation operator chh
is used to transfer the error corrections from coarse W' to
finer grid w given by,

h — \,2h
Vi =V,

0Li£N,
h

— 2h 2h ;

Vain _%(Vi +Vi+l)’ O£i£N.-1
where N: is the sze of the coarser grid.
V(hy,hz)-cycle fullsweep multigrid dgorithm
in Glike language as shown in Appendix 1.

Briefly, the
is described

Fg. 1: The graphicd structure of theV(hy, hy)-cycle
halfsweep multigrid method

Othman, Sulaiman and Abdullah

30 HALFSWEEP MULTIGRID METHOD

According to Othman and Abdullah [5], dl tasks a any
levels of the hierarchica grid, (e W, W, .., W) ae
labded in chess boad labding, as shown in Fg 1. A
group of black (- tasks) will be computed using the three
points stencil of width 2h until the convergence criteria are
met, then the rest of red ([tasks) will be executed & once
usng the three points stencil of width h, otherwise, the
computation cycle is repested. It shows that a group of
black tasks can be implemented by involving only black
tasks and the same happens for a group of red tasks
Therefore, the implementation of these two groups of tasks
can be caried out independently and the execution time can
be saved nealy by haf if the computation over the
hierarchical grid isonly carried out on either group of tasks.

As only a group of black tasks are involved in the
computation, the following regtriction operator Rﬁh is

required for transferring the caculated residuas from fine
W' to coarser grid W given by,

R"=1[10 2 0 1]

All the eror corrections of black tesks are transferred from
coase W back to finer grid W' defined by the following
bilinear prolongation operator chh ,

h "i1=0,2,4,..,N_

2i
Vgi+2 =%(Vi2+hz +Vi2h)’ " =0’ 2’ 4""’NC- 2

vhoo=v?,

The chess board Gaub-Sddd rdaxatiion scheme is used as
grid smoother for their pre- and post- smoothing stages. It
is used to smooth the cadculated resduas and error
corrections a the coarse grids. Appendix 1 describes the
nested V(hy,h2)-cyde hafsveep multigrid agorithm.

40 STRATEGIES AND
IMPLEMENTATIONS

THEIR PARALLEL

Snce dl the black tasks & any leve of the hierarchicd grid
are identical, the data partitioning approach is suitable in
implementation of the methods. All the identicd tasks can
be executed in pardld, and again, the saic scheduling is
also employed.

Three main procedures involved in the implementation are
described in the following sections.

41 Parallel Grid Smoother

The Gaub-Seidd rdaxetion scheme is used as a grid
smoother due to the fact that the new updated vaues are
used to calculate the next vaue, as it becomes available. It
is very important that the resduds are well smoothed
before they can be transferred to the coarser or finer grids.

Since data dependence among the tasks occurred a any
levd of the hierarchicd grid, the chess board strategy is
employed in the smoother and each task is alocated to a
processor a a time. Thus, every processor independently
computes its own tasks in pardld. The Clike language
codes beow show the pardld grid smoother with the chess
board strategy .

Par_grid_smoother _procedurg()
{nprocs=m_get_numprocs();
id=m_get_ myid(); inc=2*nprocs,

for (color=0; color<=1;color++) {

if (color==0) s=2+4*id;

dse s=4+4*id;

for (i=si<Ngi=i+inc) u[i]=0.5* (u[i-2]+u[i+2}-2hf[i]);
1 m_sync();

Once the convergence criteria is met, no data dependency
occurs a the finest grid, then al the red tasks are smoothed
a once in paradld by employing the natura drategy. The
Par_grid_direct_procedure() shows the smoother of the
pardlel direct relaxaion scheme.

Par_grid_direct_procedure()
{ nprocs=m_get _numprocs(); id=m_get_myid();
inc=2* nprocs;

for (i=1+id;i<Ngi=i+inc)
u[i]=0.5* (U[i-1J+ufi-1] - h2f[i]);
m_sync();
}

42 Paralld Redtriction Operator

In the redriction procedure, there ae two man
computations which depend on each other. They are the
computations of reddud and full weighting redtriction.
These computations must be executed one after another,
while the synchronization cal a the end of each
computation ensures that the updated values are used in the
second computation. Due to the fact tha no data
dependency occurs in esch computation, the individua
computdion can be executed in pardle by employing the
naturd drategy. Each task from each computation is
assigned to one processor a a time and then every
processor independently computes its own tasks. These
computations are shown in the following G-codes

Par_restriction_procedur &)
{ nprocs=m_get_numprocs(); id=m_get_myid();
inc=2*nprocs; haf= 0.5*N;

for (i=2+2*id;i<N;i=i+inc)
wi{i]=0.5h2* (2* u[ilufi 2] -u[i+2]) il;
m_sync();
for (k=2+2*id;k<hdf; k=k+inc) {
i=2*k;
y[K]=0.25* (W[i-2]+w[i+2]+2*w[i]);

m_sync();

A Parallel Halfsweep Multigrid Algorithm on the Shared Memory Multiprocessors

43 Paralld Prolongation Operator

There ae two man computations involved in the
prolongation procedure, they are the computation of
prolongation and hilinear operation. These two

computations must be executed one after another as the
second computation depends on the results of the first
computation. The synchronization cal a the end of each
computation ensures that the updated values are avalable
for the following computation. In the individud
computation, no data dependency occurs among the tasks,
thus, they can be executed in pardld by employing the
natura drategy. The procedure of these computations is
shown in the following C-like language codes below:

Par_prolongation_procedure()
{ nprocs=sm_get_numprocs(); id=m_get_myid();
inc=2*nprocs, half= 0.5*N;

for (i=2+2*id;i<half; i=i+2*inc) w[2*i]=u[i];

m_sync();

for (i=2+2*id;i<Ngi=i+inc) W[i]=0.5*(w[i-2J+w{i+2]);
m_sync();

44 Paralld Halfsweep Multigrid Algorithm

The padld V(hi, hy)-cyde hdfsweep multigrid adgorithm
isdescribed in G-like language as stated in Appendix 2.

50 PERFORMANCE EVALUATION

In order to confirm tha the pardld hafsweep multigrid
agorithm is superior to the pardld fullsweep multigrid
dgorithm, the following experiments are carried out on the
shared memory multiprocessor computer sSystem, Sequent
27. All the methods were applied to the following test
problem (ux = -x) in a unit cartesian region, subject to the
Dirichlet condition. To avoid time taken for system, user
and other /O overheads the dgorithms were executed
when no other users were usng the computer. Throughout
the expeaiments, dl the dgorithms were carried out on
different sizes of finest grids 2, 2% 2° and 2™ with
V(hy,hy)-cycle. The agorithms will stop when dl tasks at
the finest grid, which undergo the computaion, ae less
than e=10™°.

The experimental results are reported in the Table 1. The
graphs for execution time, speedup and efficiency versus
number & processors were plotted and shown in Figs. 2, 3
and 4, respectively. The tempora performance is usualy
used to compare the performance of different agorithms for
solving the same problem and it is defined as,

P, = Tip
where the unit is work done per second, and p is the number
of processors. The agorithm with the highest performance
executes in the leest time and, therefore, is the better
agorithm. Fig. 5 shows the graph of the tempord
performance versus number of processors for n=2"°,

Table 1. The execution time, speedup and efficiency of the parallel multigrid agorithmswith full - and haf- sweep

approaches
n No. of Full Half
procs Time Speedup Efficiency Time Speedup Efficiency
1 4.45 1.00 1.00 2.73 1.00 1.00
2 2.96 150 0.75 2.05 1.33 0.66
o8 3 241 1.84 0.61 1.67 1.63 054
4 222 2.00 0.50 158 172 043
5 199 2.23 0.44 151 1.80 0.36
1 8.27 1.00 1.00 551 1.00 1.00
2 530 156 0.78 359 153 0.76
2 3 3.89 2.12 0.70 2.81 19%5 063
4 342 241 0.60 241 2.28 057
5 311 2.65 053 2.27 242 0.48
1 16.00 1.00 1.00 10.47 1.00 1.00
2 9.90 161 0.80 6.56 159 0.79
2B 3 7.21 221 073 478 218 0.72
4 6.53 245 0.61 433 241 0.60
5 5.39 2.96 0.59 372 2.80 0.56
1 31.70 100 1.00 20.44 1.00 1.00
2 18.41 172 0.86 12.58 1.62 0.81
216 3 13.15 241 0.83 943 2.16 0.72
4 10.93 2.90 0.71 7.69 2.65 0.66
5 9.73 325 0.65 6.47 315 0.63

Othman, Sulaiman and Abdullah

60 CONCLUSON

Based on Table 1 and Fig. 1, the results show tha the
padld hafaveep multigrid dgorithm with the chess board
Gaub-Seidd grid smoother is superior to the padld
fullsveep multigrid dgorithm for any number of
processors, as n gets larger. This is due to the lower total
computational operations in the agorithm as gpproximately
haf of the tota tasks in each levd ae involved in the
computation. In view of this, we found that the speedup
and efficiency of the pardld hadfsvesp multigrid dgorithm
are not as good as that for the other agorithm. It can be
improved by increasing the grid size n, (refer to Figs 2 and
3). Furthermore, the superiority of the parald halfsweep
agorithm is dso indicated by the highest vadue of the
tempora performance (see Fig. 4).

In concluson, the padld hdfsweep multigrid agorithm
with the chess board srategy is the more effective
adgorithm when compared to the padld fullsweep
multigrid agorithm.
35, 35
;n 30*_ M_G;ueus‘feep 30
g " MG Halfsweep
Lo o P 25
(0] \
£ ~
= 20[e., 20
c - *...,
g e
£ 15 " e 15
3 S E T]
X510 B } i, S - 10
T - N - 4
=9
s L . . . s
1 2 3 4 5

No. of processors

Fig. 2: Execution time versus no. of processors for n=2'°

MG Fullsweep
*

MG Halfsweep
134

Speedup

No. of processors

Fig. 3: Speedup versus no. of processors for n=2"°

1 P 1
0.8 "K:. """" ... 0.8
s O Tl J
o 'G-----......___:::*
C 0.6 0.6
2L
L I
4= 0.4 0.4
L
0.2 MG Fullsweep MG Halfsweep Ideal 0.2
2 ——g——
0 1 I I I 110
1 2 3 4 5

No. of processors

Fig. 4 Efficiency versus no. of processors for n=2"°

0.15 ©|0.15
[} e
Q -
8 o
£ o
8 0.1 _/_.-" T _-4q0.1
= . K-
- o7 o
© e
0005 7 T 0.05
o 0" e
CIE) %.--" MG Fullsweep MG Halfsweep
[e ememem P
0 1 1 1 1 110
1 2 3 4 5

No. of processors

Fig. 5: Tempora performance \éersus no. of processorsfor

n=

REFERENCES

(1

T. F. Chan and Y. Saad. “Multigrid Algorithms on
the Hypercube Multiprocessor”. IEEE Transaction
on Computer, Vol. C-35, No. 11, 1986, pp. 969-977.

S. N. Gupta, M. Zubar and C. E. Grosch. “A
Multigrid ~ Algorithm for Padld ~ Computer:
CPMG”. Journal of Sdentific Computing Vol. 7,
1992, pp. 263-279.

O. A. McBryan ¢t d. “Multigrid Methods on Pardld
Computers - A Survey on Recent Developments’,
Impact of Computing in Science and Engineering,
Vol. 3,1991, pp. 1-75.

L. R Maheson and R. E. Tajan. “Pardldiam in
Multigrid Methods: How Much is Too Much?'.
International Journal of Paralld Programming,
Voal. 24, No. 5, 1996, pp. 387-432.

M. Othman and A. R. Abdullah. “The Halfsweeps
Multigrid Method as a Fast Multigrid Poisson
Solver”. International Journal of Computers and
Mathermatics, Val. 69, 1998, pp. 319-329.

A Parallel Halfsweep Multigrid Algorithm on the Shared Memory Multiprocessors

[6] K. Sdlchenbach, C. A. Thdle and U. Trottenberg.
“Pardld Multigrid Methods: Implementation of
SUPRENUM-like Architectures and Applicaions’.

INRIA Rapports de Recherche, N°. 746, 1987.

BIOGRAPHY

Mohamed Othman obtained his Ph.D. from Universti
Kebangssan Mdayda in 1999. Currently, he is a lecturer at
the Depatment of Communication Technology and
Networks, Faculty of Computer Science and Information
Technology, Universiti Putra Mdaysa His research
interest includes parald computing, high speed network,
cluster computing, artificid inteligence, expet system
design, <dentific computing and programming in logic

(pardld). He has published over twenty technica papers
related to hisfields of research.

J. Sulaiman completed his MSc degree from Univergt
Kebangssan Mdaysa in 1998. Currently, he is a lecturer at
the School of Science and Technology, Universti Madaysa
Sabah. His research interest includes mathematica
modeling, scientific computing and pardlel computing.

A. R. Abdullah is a Professor in Industrid Computing at
the Department of Computer Industry, Faculty of Computer
Science and Information Technology, Universti
Kebangssen Maaysa His ressarch interest includes
padle computing, high speed network computing and
scientific computing. He has published a few books related
to hisfields of research.

Appendix 1: The nested V(h4, h,)-cycle fullsiweep multigrid agorithm

{
if coarset grid, solve A"d@=" directly
dse{

compute residuas, f - " - AN
st " = 0, and regtrict " - Rﬁh M
get &'~ SMGV(AZ" V2" £N

}

}Algorithm Seq_hdfswesp mg()
{flag=0;
while (flag = 1) do {
flage1;
Sla\%ZV(Ah,vh,f‘);
if M) -) > efor dl points, set flag=0
iteratet+; swap al tasks, V<D ® v

return \' as an approximate solution
}

SMGV(A" V") /* compute al the points until converge */

smooth h; times on Gaub-Seidel (A", V', ") using the three points stencil of width h

compute prolongation and error (corr.), V' - V"' - chh eh
smooth h; times on Galb-Seidel(A",v", ") using the three points stencil of width h

Othman, Sulaiman and Abdullah

Appendix 2: The pardld V(h;, hy)-cycle hafsweegp multigrid algorithm

DIRECT(A" V", ') /* compute a group f red tasksin parald */

{

compute Par_grid direct_procedure(A", V', 1)

}

PMGV(A" V',) /* compute a group of black tasks in parallel until converge */
{

smooth h; times on Par_grid_smoother_procedure(A" ",)
compute Par_restriction_procedure(’”, €, r2")
smooth h; times on Par_grid_smoother_procedure(A2" 12", £7)
compute Par_restriction_procedure(r", &, r*)

ifcoarset grid, solve ANMNN=N

compute Par_prolongation_procedure(é', e?")

smooth h, times on Par_grid_smoother_procedure(A?",&",r?")
compute Par_prolongation_procedure(v?", V")
smooth h,, times on Par_grid_smoother_procedure(A" ",)

}

Algorithm Par_hdfsweep mg()

{Initidize();
Set |_flag=1; g_flag=0; id=m_get_myid(); nprocs=m_get _numprocs(); bit=ic’; stop=nprocs®-1;
* compute the following while block in paralld */
while (g_flag != stop) do {

PMGV(A" V1)
if V<D - v > e on the black tasks, set |_flag=0
if (_flag = 1) {
m_lock(); g flag=g flag + 1, m_unlock();
<synchronize>
iterate++; |_flag=1; swap al black tasks, V&0 ® K
<synchronize>
}
compute the DIRECT(A",v", ") procedure in pardl el
<synchronize>
m_kill_proc();
}

