Malaysian Journal of Computer Science, Vol. 13 No. 2, December 2000, pp. 21-32

AN INFORMATIONAL OBJECT MODEL FOR ODP APPLICATIONS

Bouabid El Ouahidi and Mohamed Bouhdadi
Mohamed V University, Faculty of Science
Department of Mathematics and Computer Sciences
P. O. 1014 Rabat Morocco
Td.and Fax: 00 (212) 7 77 54 71
email: { ouahidi, bouhdadi} @fsr.ac.ma

ABSTRACT

The Reference Modd-Open Didtributed Processng (RM-
ODP) provides a framework for the sandardization of
Open Didributed Processng (ODP). It defines an object
modd and an architecture for the condruction of ODP
systems in terms of five viewpoints. However, the RM-ODP
is abdract and therefore cannot be easly applicable
Indeed, several issues must be addressed. The objective of
this paper is twofold. Firgtly, based on RM-ODP itsdf, we
define a concrete typing sgtem for the ODP information
objects This modd is a contribution for defining the ODP
type repostory function. Secondly, we show that the Object
Congraint Language (OCL) can be used for the ODP type
descriptions, and for the ODP information viewpoint
specifications. Usng OCL we apply that typing system to
describe the ODP trading information viewpoint.

Keywords RM-ODP, Object Modd, I nformation,
Description Language, OCL, Trading
10 INTRODUCTION

Didributed processing is rapidy expanding as it alows
increasing the performance, the evolution, and the use of
exiging systems. However, it is very difficult to benefit
from distributed processing without any support because of
its inherent properties such as concurrency, asynchronism,
transactions, and so on. Furthermore, the heterogeneity of
computer systems makes this task even more difficult. This
heterogeneity includes the heterogeneity of programming
languages, operding sysems, hardware, communication
protocols and aso the heterogeneity of the application

domains. The object-oriented approach would permit
masking these heterogeneities. The OMG (Object
Management Group) consortium is working towards

defining an architecture, OMA [1] whose objective is to
define the object-oriented concepts to ensure the
interoperability of applications running on heterogeneous
systems. It defines the architecture CORBA (Common
Object Request Broker Architecture) [2] whose core is the
ORB (Object Reguest Broker) tha redizes the
communications between client objects and server objects
by brokering requests between them. It dso defines a
universd language for the definition of intefaces (IDL)
(Interface Definition Language) (2. IDL masks the

heterogeneity of programming languages by developing

21

compilr IDLs to other progranming languages [2].
CORBA is in fact an integration of the dient-server
paadigm and the object-oriented paradigm. It is the
specification, which dlows the invocation of an operation
on a digant object independently of the locdization and
programming language used. CORBA specifies the
implementation of the object oriented distributed
applications but does not specify how to design these
applications. However, the objective of the inter-working
of heterogeneous applications is not effective unless it is
consdered in the overal process of development. This is
the am of the Open Digributed Processng. The RM-ODP
[3, 4, 5, 6] provides a framework within which supports of
digribution, interworking and portability can be integrated.
It defines an object modd and an architecture for the
congtruction of open distributed systems. The object model
defines concepts for information and processng. The
architecture defines five viewpoints, which are enterprise

viewpoint, information viewpoint, computational
viewpoaint, engineering viewpoint and technology
viewpoint. Each viewpoint handles a particular aspect of

an ODP system. The architecture adso defines a viewpoint
language for each viewpoint, the ODP functions and the
ODP transparencies.

Elsawhere, in order to be goplied in a specific domain, RM -
ODP mugt be extended and specidised. For indance, the
TINA (Telecommunication Information Network — Archi-
tecture) [7, 8] is based on RM-ODP.

However, the RM-ODP is abdtract and does not condtitute a
methodology itself, and hence cannot be directly applicable.
It only provides a framework for the definition of ODP
dandards. These dandards include standards for ODP
functions;, sandards for moddling and specifying ODP
systems, sadads for methodology, programming,
implementing, and testing of ODP systems. Furthermore,
the RM-ODP recommends to define concrete types of
information to use in the viewpoint specifications The
type repository function constitutes an important subject of
standardization for the ISO/ITU-T WG7 Group.

Several issues must be addressed to construct ODP systems
[9, 10]. Current researches are focussing on different
aspects such as the applicability of UML (Unified
Moddling Language) [11, 12] to devdop ODP systems,
and in paticular the ODP enterprise specification [13, 14,
15, 16, 17].

Ouahidi and Bouhdadi

The UML language is repidly emerging as the defacto
dandard for moddling Object-Oriented (OO) systems.
Given this role, it is imperative that the UML needs a well-
defined, fully explored semantics. Such semantics is
required in order to ensure that UML concepts are precisely
dated.

Whereas grammars are well suited for text, the UML meta
model works well as a description of the structure of UML
grammars [18]. The UML metamodes capture a precise
notion of the syntax of the UML modelling techniques (this
is what metamodds are typicaly used for), but they do
litle in the way of answering questions rdlated to the
interpretation of non-trivial UML structures[19, 20, 21].

Raher than generate formal specifications from informa
OO modds and require that developers manipulate these
forma representations, a more workable approach is to
provide forma semantics for graphicd modeling notations
and develop rigorous andysis tools that alow developers to
directly manipulate the OO models they have created. The
degree of formdity of a mode is not necessarily reated to
its form of representation. This is the objective of the
pUML group (Precise UML) [22].

The structure of the document is as follows. We define two
UML metamodes of the ODP information concepts in
Section 2. These metamodels describe the syntax of a

moddling language for ODP applications. We propose a
concrete information object mode in Section 3. Section 4
is about the adequate forma language for ODP type
descriptions; we show that the OCL (Object Congtraint
Language) [23] language can be used to meat this attempt.

We apply this work to describe the ODP trading
information viewpoint in Section 5. A concluson and
perspectives end this paper.

20 THERM-ODP OBJECT MODEL

In generd, the term object moded refers to the collection of
concepts used to dexcribe objects in an object-oriented
specification (OMG CORBA objet modd, RM-ODP
object Modd, UML metamodd object modd). It
corresponds closdly to the use of the term data modd in the
relationd data modd. RM-ODP is a framework for the
congtruction of open distributed systems. It defines a
generic object modd, a set of architectural concepts in the
foundations part, and an architecture, which contains the
specifications of the required characteristics that qudify,
distributed processng as open. The architecture extends
and specidlises the concepts of the foundations part. To
define concrete information object mode, we will describe
al the RM-ODP object concepts.

SUbT SuperClass
ype \l/i
Type SAidfies Class Interaction
SubClass
SuperType \ Satidfies
HAidies
Action
1.* 1.1 Substitutes 1.%
1.x
I dentity
Degcription Descfiption Descfiption
Interface Object Action
Template Template Template
4
Template

Fig. 1: RM -ODP Object Model

22

21 TheRM-ODP Foundations

The object mode [4] defines the basic concepts concerned
with exisgence and activity: the expresson of what exists,
where it is and what it does. We describe these concepts
graphicaly using the UML notation (Fig. 1).

The core concepts defined in the object modd are object
and action. An action is something, which happens. An
object is a modd of an ertity. It is characterised by its
behaviour, and dudly by its states. Depending on the RM -
ODP viewpoint, the emphass may be placed on the
behaviour or on the states. When the emphasis is placed on
behaviour an object is sad to perform functions and offer

svices, thesxes functions are gpecified in terms of
interfaces. It interacts with its environment a its
interaction points that are its intefaces. An object is

digtinct from any other object by itsidentity.

The other concepts defined in the object modd are derived
from the concepts of object and action; they are Class,
Template, Type, Subtype, Supertype, Subclass, Superclass,
Composition, and Behaviora Compatibility.

An object is behaviordly compeatible with a second object if
the fird object can replace the second object without the
environment being able to notice the difference in the
object behaviour. The RM-ODP behaviord compatibility
concept corresponds to the OMA substitutability concept.
Composition of objects is a combination of two or more
objects yielding a new object. A type (of an <x>) is a
predicate charecterizing a collection of <x>s. A class (of
an <x>) defines the sat of al <x>s satisfying a type. The
type concept corresponds to the type concept of UML. The
cass concept corresponds to the OMG extension concept,
the extension of a type is the set of values that satisfy the
type a any particular time. A <x> template is the
specification of the common features of a collection x in a
aufficient detall that an x can be instantiated using it; the
template has the meaning of C*™* dass

Note that an object has a type, a class, and a template. It is
the casefor actions and interfaces.

22 TheRM-ODP Architecture

The architecture [5] comprises: (1) five viewpoints, (2) a
viewpoint language for each viewpoint, (3) Specifications
of functions required to support ODP systems, and (4)
transparency precriptions showing how to use the ODP
functions to achieve distribution.

The didribution transparencies hide the aspects of
distributed processng in a desired way from the viewpoint
of the usrs. Each of the viewpoints handles a paticular
aspect of the ODP system. The enterprise viewpoint
focuses on the purpose, scope and policies for the ODP
system. The information viewpoint focuses on the
semantics of information and the semantics of the

23

An Informational Object Model for ODP Applications

information processing. The computationd viewpoint
enables didribution through functiond decompostion of
the system into objects, which interacts at interfaces. The
enginegring viewpoint focuses on the mechanisms and
functions required to support distributed interaction
between objects in the sysem. The technology viewpoint
focuses on technology in that system.

The definition of a language for each viewpoint describes
the concepts and rules for specifying ODP systems from the
corresponding viewpoint. The object concepts defined in
ech viewpoint language are specidizations of those
defined in the foundation part of RM-ODP.

The ODP functions define the functiondities of the ODP
operaing sysem assumed to process the difficulties
inherent to digtribution. They are classfied into categories,
which include among others the repostory functions related
to database management functions. In the following
section, we describe briefly the enterprise, information, and
computationd languages, the other viewpoint languages
have no interest for our study.

An enterprise specification defines the purpose, scope and
policies of an ODP system. A policy is a st of rules
related to a particular purpose. A rule can be expressed as
an obligation, a permisson, or a prohibition. An ODP
system consists of a set of enterprise objects. An enterprise
object may be arole, an activity or apolicy of the system.

An information specification defines the semantics of the
information and the semantics of information processing in
tems of a configuraion of information objects the
behaviour of these objects and environment contracts for
the sysem. An information object template is defined in
terms of gatic, invariant and dynamic schema;

Invariant schemaz A st of predicates in one or more
information objects, which must aways be true The
predicates condrain the possble states and state changes of
the objects to which they apply.

Saic shema A st of predicaes in one or more
information objects, a some point in time, subject to the
congraints of any invariant schema

Dynamic schema. A specification of the dlowable ate
changes of one or more information objects, subject to the
congraint s of any invariant schema.

An information object is ether atomic or composite The
date of the composite object is represented by the
combined gsate of its component information objects. The
information objects resulting from the indantigtion of a
composite information object template only exist as part of
the ingantiated composte object and have no meaning
outsideit.

Ouahidi and Bouhdadi

A computational specification defines the functiond
decomposition of an ODP system into objects, which
interact a interfaces. The basc concepts of the
computationa language are the computationa interface, the
computational object, the interaction and the binding object.
The binding object is a computationa object, which
supports a hinding between a set of other computationa
objects. An interaction is either a sgnd, a flow or an
operation. A dgnd is an atomic shared action resulting in
one-way communication from an initiating object to a
responding object. A flow is an abdtraction of a seguence
of interactions resulting in a conveyance of information
from a producer object to a consumer object. An operation

operation or flow. A dgnd inteface is an interface in
which al the interections are sgnads. In an operation
interface dl the interactions are operations. All the
interactions are flows in a flow mterfface. A computationa
object template comprises a set of computationa interface
templates which the object can indantiate, a behaviour
specification and an environment contract Specification.
The behaviour of the object and the environment contract
are specified in terms of a set of properties (attributes). A
computationd interface template is associated to each kind
of interface. It comprises a 9gnd, a flow, or an operation
interface dgnature as agppropricte, a behaviour specification
and an ewironment contract specification. The behaviour

is an interaction between a client object and a server object. and the environment contract ae defined as set of
Like interaction kinds, an inteface is dther dgnd, properties.
Property
Reqlt Parameter é
Rule 0.* . Operation
- Object opert S Behaviour and Sondure
Template Environment g
1 Z% Contract AN
Enterprise Information Computational Computationd
1
Object Object Template Object Template . Interface Templte
Descriptior AN
Template 1.1 Template 1.1 Template 1.1
Instance 1.* Instance 1.* Instance 1.*
] Information Computational Provides Computational
Policy Object Object = Interface
FCl X ocCl
Instance | 1 * Ingtance | 1 * Ingtance | 1 *
1.1 1.1 1.1
FCIT SCIT ocatr M
FCI : How Computationd Interface
FCIT : Flow Computationa Interface Template
Cl : Signd Computationd Interface
SCIT : Signd Computationa Interface Template
OCI : Operation Computational Interface
OCIT : Operation Computetiona Interface Template

Fg. 22 RM -ODP Architecture Object Model

24

30 THE ODPINFORMATIONAL OBJECT MODEL

An object is characterized by its behaviour and dualy by its
states. Depending on the RM-ODP viewpoint, the
emphasis may be placed on the behaviour or on the Stetes.

When the emphasis is placed on behaviour, an object is sad
to offer services and to interact at its interfaces, this is the
concept of a computational object. When the emphasis is
made on dates, an object does not have interfaces, it cannot
interact, thisisthe concept of an information object.

The information object and computationa object have
respectively the meaning of nonrobject and object in the
OMA core object modd. Indeed, from the viewpoint of
OMA, an object provides services & an interface, while a

An Informational Object Model for ODP Applications

non-object is not an object, but may be used as a vaue
RM-ODP recommends the definition of the concrete types
of information (of vaues) to be used in the viewpoint
specifications. Thisisthe subject of this section.

In the OMA object modd, the primitive vaues are not
objects, however in our modd, these primitive vdues are
redly objects. This is the case of Java programming
language, whose dl-primitive types are obj ects.

31 The Classification of Information

We déefine in this section, the criteria of the classfication of
the information objects. We describe three main criteria of
classfication of information.

Object
NonDenotable /
—7
Property Interaction
Sgd Flow Operaion/ Denotable
Literd \
o \ NonLitera
AtomicLiterd
/? 1\ CompositeLiteral
Handle Javaprimitivetypes
StructL iterd
Handle(t
e()/ /¢ /P CollectionLiteral
Reference Date Time / /
q\ BitString CharString Enumeration
Ref t
erence(t AtomicNonLitera . .
// CompositeNonLitera
Iterator Expression MetaType /
/? StructNonLiteral(t1, t2..) CollectionNonLitera(t)
Iterator(t) / / /P 1\
Set(t) Bag(t) Sequence(t)

Fig. 3: The ODP Informational Object Model

Ouahidi and Bouhdadi

Given an information object:
Doestheinformation object have an identity or not?

How is the information object identity represented in
the machine, that is, does the identity of the
information contain the value of the information or
does it only contain the reference of the vaue of the
information? Ths describes the relationship between
the identity and the value of the information object.

Isthe information object atomic or composite?

We will describe and judtify eech of these criteria, which
are successively gpplied to build our information typing
system.

The information objects can be organised into a hierarchy
of subtypes and super-types, this corresponds to the
concept of behaviora compatibility. A subtype inherits al
the characteristics of its supertypes. An object is defined by
its characterigics, which include the signaure of its
sarvices, its behaviour and the contract of its environment.

An object has an intrindc identity. A characterisic of an
object is an information object that has equally an identity
but this identity has no meaning outside of this object. This
corresponds to the first criteria of the classfication of the
information objects. That is, the information objects are
casdfied into two categories, which are the information
objects that have an identity and the information objects
that have no identity.

The information objects which do not have an identity
(characteritics of objects) ae cdled NonDenotable
objects. According to the RM-ODP definition of
computational interfaces, we define the NonDenotable
objects. They are signd, flow, operation, and property.
Note that, an information object is an aggregation of these
objects. For example, The getProperties() operation of the
Java Class System returns a set of properties of the system.

The information objects, which have an identity, are called
Denotable objects. This information object must identify a
locd or a digtant object depending on RM-ODP viewpoints.
Indeed, from the engineering viewpoint, to interact with a
digant object, one must have the identity of its
computational interface. In RM-ODP the identity of
digributed computationd interface is denoted Reference.
Thistype hasto be included in an ODP typing system.

In the following, we do not consder the distribution
agpects. The hierarchy of the Denotable objects can be
defined according to the representation of the vaue of the
identity. Indeed, the representation used to trandate this
identity into the machine code is not the same for dl the
information objects. We diginguish two categories of
Denotable information objects, which ae the literd

26

(Literal) information objects and the non literd

(NonL iteral) information objects.

The identity of a litera object contains exactly the value of
that object. In contrast, the identity of a NonLitera
information object does not contain the vaue of that object,
but only a vaue, which references the vaue of the object.
This means that the identity of a NonLitera object contains

a handle. To this end, our system contans the type
Handle In fact, each object of type t has a handle of type
Handlef). The type handle is an abstraction of any
Handlg(t). This implies that a NonLiterd object

necessitates an operation, which dlocates the necessary
space for the representation of the value of the object and
returns this space as the result of that operation. In contrast,
a Literd object does not necesstate any dlocation of
memory sincethe Literal objectsimplicitly pre-exist.

The Java programming language illustrates, this criterion
(Litera/NonLiterd) dthough it is a “puré’ object-oriented
language in the sense that everything is an object. This
means, that we manipulate objects through handles and
hence must creste dl the objects. However, for primitive
types Java fals back on the approach taken by C and C:
indead of creging the variable usng new, an “automaic’
vaiable is crested which is not a hande. The variable
holds the value itsdf. Most of the primitive data types have
“wrapper” classes for them. That means if we want to treat
a primitive type as a nonliteral, we use the associated
wrapper.

After applying the two previous criteria we apply the
criteria of the dtructure of the informaion object such as
that being described in the ODP information viewpoint.
That is, isthe vaue (of the object) atomic or composite?

We obtain:

(1) theatomic literd object (AtomicLiterd),

(20 thecompodteliteral object (CompositeLiteral),

(3) theatomic non literal object (AtomicNonLiteral), and

(4) thecomposite non literal object (CompositeNonLiteral).

In the AtomicLiterd objects, we include Java primitive
types, handle and handl&(t).

The CompositeLiterd objects ae classfied into two
subtypes, which are the struct litera StructLiteral) objects
and the collection literd (CollectionLiteral) objects. A
struct literal object has a fixed number of named fields such
that each field contains a literdl. A CollectionLiteral object
is a compodtion of literals having the same type. This
condtitutes the criteria corresponding to the types of the
components of a composite information (that is, are they of
the same type or not). The StructLiteral objects we define
ae Date, Time, Time-Stamp and Interval as defined in
the SQL ANS dgandard. The subtypes of the
LiterdCollection object we define ae BitString,
Char String and Enumer ation.

The aomic non-itera (AtomicNonLiterd) objects are
defined according to the RM-ODP objects. Indeed, within
RM-ODP, an object may be an entepriss object, an
information object or a computationa object from the
user’s viewpoint.

An enterprise object may be a use case of the system, a user
of the system or a policy which governs the activities of the
system. An information object is the data manipulated by a
computational object. The policy of the system consists of
a st of rules that govern the activities of the system
ensuring the objective of the sysem. In the information
viewpoint, these rules are criteria and constraints. Thus,
our typing system has to include the type defining values of
criteria and congraint. We will cdl this type Expression.
It isasub-type and an ingtance of AtomicNonLiterd.

Note that another reason to include the expression type is
that the parameters of a database request are criteria and
congraints and the ODP functions include the functiondlity
of management of database sysems. This necesstates the
ue of a SQL request as ODP-operation. This integration is
very important and yet a non-traditiona approach. This is
the main objective of Java Database Connectivity [24].

The types are themsalves objects, and hence have equaly
properties and operations. Each type is an ingance of a
type that alows manipulation of the information concerning
types of objects. We call itMetaType.

In summary, our typing system of information includes
among others the types, Expresson, Handle, MetaType
and Reference. However, the difficulty is how to define
them.

We think that the set of instances of types MeaType and
Expresson can be defined only by grammars The
grammar of OCL expressonsisan example[23].

An instance of MetaType or of Expresson or of Handle has
attributes and properties that we will make explicit. The
Handle type can be defined like in C™ with the semantics
of the creation and the copy operations.

However, making explicit the type Reference is a
chdlenge. We think tha it is a sub-type and an instance of
StructLiterd.

The CompositeNonLiterd objects are classfied into the
struct objects (StructNonLiteral) and the collection objeds
(CollectionNonLiteral). The StructNonLiteral objects
have a fixed number of named fidds such as esch fidd is
dther a literd or a nonditerd object. These fidds may be
of different types. A CollectionNonLiterad object contains
other objects that must be of the same type. Hence, we
define a generic type of collection denoted as Collection(t).
We cdassfy the CollectionNonLitera objects according to
two criterig; the obligation of the order and the permisson
of the duplication of the components of the collection

27

An Informational Object Model for ODP Applications

objects. Applying these criteria we obtain the Seguence,
Array(t), Set(t) and Bag(t), where Sequence and Array ae
ordered components; Array and Bag permit duplication.
Also, we define a type of iterators of collections denoted

Iteratar(t) like in Java progranming Language (the
Enumeration).
32 Typing System

Our typing system includes types defined in many typing
systems such as CORBA IDL, OCL, C, C™ and JAVA.
The samantics of each information object can be eadly
defined usng the OCL mechanism of pree and post-
conditions. Next, we define some of types such as
Property, Operation, Flow, Signa, Parameter, MetaType,
Object, Collection, Expression, Iterator and Handle.

When the semantic of a characterigtic of a type is obvious,
we defineit in English language.

Property
name: CharString
type: MetaType
mandatory : Boolean
readonly : Boolean

Operation
name : CharString
typeReturn: MetaType
parameters : Collection(Parameter)

Flow
name : CharString
typeReturn : MetaType
parameters : Collection(Parameter)

Sgd
name: CharString
typeReturn: MetaType
parameters : Collection(Parameter)

Parameter

name : CharString
type: MetaType
passageMode : Enumeration ("in", "out", "in/out")

The types MetaType, Object, Collection and Expression,

correspond respectively to the types, OclType, OclAny,
collection and OclExpression.

Iterator(t)

Next() : t

First() : t

Last() : t

HasMoreElements() : Boolean
Reset()

Delete()

Ouahidi and Bouhdadi

The characterisics of Iterator(t) have the same meaning &
the Enumeration primitive type in Java We cdl iterator(t)
an indance of Iterator(t) associated with an indance of
Collection(t) cdled collection. Next() gets the next object
in collection. HasMoreElements) sees if there are any
more objectsin collection.

Handle(t)
Creete () : Handle(t)
Create(aHandle : Handle): Handl&(t)
Create(aHandle : Handle(t)): Handle(t)
Copy(aHandle : Handle): Handle(t)
Copy(aHandle : Handlg(t)): Handle(t)

The characterigtics of Handle(t) have the same definition as
the Referencetypein C™.

Other obvioustypes are described in Fig. 3.

40 WHY OCL IS USED FOR THE ODP TYPE

DESCRIPTIONS

Severd specification languages have been developed;, each
handles a particular aspect of a system. For instance, Z [25]
and VDM [26] focus on specifying the behaviour of
sequential systems; others such as CSP [27] and CCS [28]
Statecharts [29] focus on specifying the behaviour of
concurrent systems. SDL [30] and LOTOS [31] are not
object-oriented and therefore do not support the expression
of basc object concepts, transaction or multi-threading
concepts. The SDL92 [32] and GDMOGRM [33] ae
object-oriented, but SDL'92 focuses on specidization and
inheritance while the formadism of GDMO does not cover
the behavioral aspects of asystem.

In fact, no forma description technique is able to describe
in a complete way the ODP concepts. The inherent
characteristics of ODP systems imply the need to integrate
different specification languages, eech specidized in a
particular kind of properties and adso to handle non
behaviora properties of ODP systems. It is recognized to
take benefits from the wel-established verification
techniques, that is, to integrate the theorem proving and
modd checking techniques. ~ We can therefore concdude
that up to now, no forma method is likely to be suitable for
specifying and verifying every aspect of an ODP system.
We need to support al different kinds. Methods and tools
should work in conjunction with each other. More
precisdy, rather than build a sngle method, we can build
metamethod which itsdf produces methods customized for
a paticular problem domain. This represents the objective
of the inte-rworking in the aea of formad methods
Progress will depend on future directions on fundamental
concepts and principles. Those concepts would include
among others integration of forma methods, and
integration of those with the sysem development

28

process. Indeed, forma methods can complement less
formal methods that ae used in the overall systen
development process.

Elsawhere, the ISOWG7 group shows that the type
repository function standard must permit the use of multiple
type destription languages. There are a number of widely
used and standardized languages for type descriptions, for
exanple CORBA-IDL, ASN.1, LOTOS, GDMO and SDL,
which fulfill some of the requirements of type descriptions
in RM-ODP. It is not anticipated that any one existing
language will address dl of the needs of this standard,
however, some may be adopted for description of particular
ODP concepts. We choose OCL for the description of
types for many reasons:

Current trend in software enginegring technology is
the unification of methods which necesstates
unification and integration of basc concepts and
graphicd notdion. This is the objective of the UML
language for the object-oriented development. The
UML is formdly beng defined usng the OCL
language. In this context, we think that OCL will
srve as a common denominator for forma method
semantics and software engineering method semantics.

OCL isobject-oriented.

The disadvantage of traditiond forma languages is
that they are ussble to persons with a sring
mathematica background, but difficult for the average
busness or sysem modder to use. OCL has ben
devel oped to fill this gap.

OCL can be used to specify invariants on classes and
types in the class modd, to describe pre and post
conditions on operations and methods.

The RM-ODP information viewpoint specification is
described in terms of an invaiant schema, a daic
shema ad a dynamic schema which can be
interpreted as follows an invariant schema is the
specification of the types of one or more information
objects tha will aways be sdisfied whatever
behaviour the objects may exhibit. A static schema is
the pecification of the date of one or more
information objects a& some particular point in time.
These types are subtypes of one or more of the types
specified in the invariant schema Behaviour in an
information specification can be modded as
trandgtions from one datic schema to another that is
reclassification of instances from one type to another.

We deduce that OCL can be used to describe the
information object types and, hence to describe the ODP
informational specifications.

50 THE INFORMATIONAL SPECIFICATION OF

THE ODP TRADING FUNCTION
51 Overview
The ODP functions specify the functionaity of the
execution environment for the ODP sysems. The ODP
execution environment masks the complexities inherent to
the distribution and the openness ensuring several kinds of
trangparencies. The trading function is an ODP function
that alows to redise other ODP functions. It is based on a
database management function.

A detalled analysis of the ODP functions shows that the
programming languages and the datdbase management
sysems must be integrated. That is why we choose the
ODP trading function as an application of our concrete
information object model.

As the ODP trading is very detailled in [34], we describe
here only its aspeds, which are relevant to our study.

A definition of trading [34, 35] is as follows: “the activity
of choosng sarvices, such that they match some service
requirements’. The choice is based on the comparison of
the gpecification of a service (provided by a prospective
consumer) and the service specification supplied by service
providers or their agents. Trading is based on the notion of
matching service offers and service requests. A sarvice is a
function provided by a component a a computationa
inteface. The component responsible for the maintenance
of the trading space and the matching of offers and requests
iscaled atrader.

Current traders organise sarvices in a service type
hierarchy. Each sarvice type defines an interface that
prescribes the operdtions avalable for the interaction
between the sarvice provider and the service consumer.
They dso dlow the association of a number of properties as
attribute value pairs with each service type.

Centrd to the service type matching is the notion of type
conformance. Type conformance is determined by the
interaction interface. The specification of interfaces is then
crucid and currently 1DL-based.

Offering a sarvice is cdled export, discovering a sarvice is
cdled import. To export, an object gives a trader a
description of a service together with the location of a
computational interfface a which tha service is avalable.
To import, an object asks the trader a service having some
characterigtics, the trader checks againgt the descriptions of
sarvices and responds to the importer with the location of
the selected serviceinterfaces.

Due to the sher number of service offers that will be
offered worldwide, it is inevitable that the trading service
will be split up and the service offered wil be partitioned.
Hence, the trading system condsts of a collection of inter

29

An Informational Object Model for ODP Applications

working linked traders, each of them manages a partition of
sarvice offers.
52 Informational Specification

The information of the trading system is a compodte object
descri bed by the template, we cdl Information:;

Information

Invariant schema :

offers: Collection(Offer)

nodes : Collection(Node)

edges : Collection(Edge)
partitions : Collection(Peartition)

Initial schema:
Information()
{ offers={}; nodes={}; edges={} partitions={} }

Dynamic schema :
Export() : adds a service offer to service offer space of
the trading system.

Withdraw() : withdraws a service offer from the service
offer space of the trading system.

ModifyOffer() : changes the service property and service
offer property values associated with a service offer
whilst preserving the service offer identifier.

AddEdge() : adds an edge to the trading system's set of
edges.

RemoveEdge() removes an edge from the trading
system's set of edges.

ModifyEdge() : changes the property of an edge.

AddNode() : adds a node to the trading system's st of
nodes.

RemoveNode() removes a node from the trading
system's set of nodes.

Import() : searches for the subset of service offers which
satisfy some matching criteria, scoping criteria and some
preference condraints.

The component objects of the information object of the
system are described as follows:

Offer
ServiceDescription : Service
ServiceOfferldentifier : Reference(Offer)
Computinglnterfacel dentifier : Reference(Interface)
OfferProperties : Collection(Property)

Ouahidi and Bouhdadi

Servicer
ServiceSignature : Collection(Operation)
ServiceProperties : Collection(Property)

Partition
NodeRef : Reference(Node)
NodeOffers : Collection(Offer)

Edge
FirstNode : Reference(Node

SecondNode : Reference(Node)
EdgeProperties : Collection(Property)

Node
NodeRef : Reference(Node)
NodeProperties : Collection(Property)

The semantics of the information processng of the trading
system is described in terms of pre- and post-conditions of
eech operation of the sysem. All the pre- and post
conditions are given in the context of an ingance of the
information template of the system (sdif).

Export(in NewOffer : Offer, in Anode : Node, out
OfferRef: Reference(Offe))

Pre:

(1) sdf.nodes® includes(Anode)

(2 f.offers® forAll(p/ p.ServiceOfferldentifier <>
OfferRef).

(1) sdf.offers® includes(NewOffer)

(2 sdf.partitions®
sdlect(p/p.NodeRef=Anode.NodeRef).NodeOffers®
includes(NewOffer).

(3 self.partitions ® forAll(p,g / p.NodeRef <> q.NodeRef
implies p.NodeOffers ® Intersection(g.NodeOffers) ®
isEmpty).

WithdrawOffer(in OfferRef : Reference(Offer))

Pre:

sdf.offers® Exists(p/ p.ServiceOfferldentifier = OfferRef)
Post:

1) sdf.offers ®
OfferRef)

(2 sdf.patitions ® forAll(pf p.NodeOffers ®
Exis(q/ g.ServiceOfferldentifier = OfferRef))

forAll(p / p.ServiceOfferldentifier <>

Not

ModifyOffer(in OfferRef:Reference(Offer),
ServiceProperties, OfferProperties.Collection(property))

Pre:
sf.offers® Exigty(p/p.ServiceOfferl dentifier = OfferRef)

30

Post:

1) «f.offers ® Exists(p/p.ServiceOfferldentifier
OfferRef and p.ServiceDescription.ServiceProperties
ServiceProperties
p.OfferProperties=OfferProperties)

(2 sef.partitions® Exists(p/p.NodeOffers® sdect(qf
g.ServiceOfferl dentifier = OfferRef and
g-ServiceDescription.ServiceProperties =
ServicePropertiesand g.OfferProperties=
ServiceOfferProperties))

g_ll 1

AddEdge(in NodeRef1,NodeRef2: Reference(Node); in
EdgeProperties.Collection(Property))

Pre:

(1) sdf.nodes® Exists(p/ p.NodeRef=NodeRef1)

(2 sdf.nodes® Exists(p/ p.NodeRef=NodeRef2)

(3 HAfeedges ® Not Exigy((FirssNode=NodeRefl
SecondNode=NodeRef2) or (FirstNode=NodeRef2
SecondNode=NodeRef1))

and

Post:

df.edges ® Exists(p/((p.FirstNode=NodeRef 1
p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2
p.SecondNode=NodeRef 1))
p.EdgeProperties=EdgeProperties)

and

and

RemoveEdge (in NodeRef1, NodeRef2 : Reference(Node))

Pre:

(1) sdf.nodes® Exists(p/ p.NodeRef=NodeRef1)

(2 sf.nodes® Existsp/ p.NodeRef=NodeRef2)

(3 Hfedges ® Existsp/((p.FirstNode=NodeRefl and

p.SecondNode=NodeRef2) or (p.FirsNode=NodeRef2
and p.SecondNode=NodeRef1)))
Post:
sdfedges® Not Exists(p/ ((p.FirsNode=NodeRefl and
p.SecondNode=NadeRef2) or (p.FirstNode=NodeRef2 and
p.SecondNode=NodeRef1)))
ModifyEdge(in NodeRef1,NodeRef2 :Reference(Node);in
EdgeProperties : Collection(Property))
Pre:
sdfedges ® Exists(p/ ((p.FirstNode=NodeRefl and
p.SecondNode=NodeRef2) or (p.FirssNode=NodeRef2 and
p.SecondNode=NodeRef1)))
Post :
sdfedges ® Exigs(p/ ((p.FrstNode=NodeRefl and
p.SecondNode=NodeRef2) or (p.FirtNode=NodeRef2 and
p.SecondNode=NodeRef1)) and
p.EdgeProperties=EdgeProperties)
AddNode(in NodeRef Reference(Node); in

NodeProperties : Collection(Property))

Pre:
sf.nodes® Not Exists(p/ p.NodeRef=NodeRef)

Post:

(1) sf.nodes ® Exists(p/p.NodeRef=NodeRef
p-NodeProperties = NodeProperties)

(@ sdfpatitions ® Exists(p/p.NodeRef=NodeRef
p-NodeOffers® isEmpty())

and

and

RemoveNode(in NodeRef: Reference(Node))

Pre:

(D) sdf.nodes® Exists(p/p.NodeRef=NodeRef)

(@ sdf.partitions ® Not Exists(p/p.NodeRef=NodeRef
Not(p.NodeOffers® isEmpty))

(3 sdf.Edges ® forAll(p/p.FirssNode <> NodeRef
p.SecondNode <> NodeRef)

and
and
Post :

self.Nodes® Not Exists(p/p.NodeRef=NodeRef)

Import(in Asarvice Service, in

ScopeCriteria, refereneceCriteria Expression;
Offers.Callection(Offer))

MatchingCriteria,
out

Post :
Offers = (df.offrs ® sdect(MatchingCriteria and
ScopeCriteriaand PreferenceCriteria)).

60 CONCLUSON

Now that the Reference Model for Open Distributed
Processing has abilised, atention is shifting towards the
definition of ODP standards. The type repository function
sandard requires a modd describing the types to be used in
ODP systems. This would involve among others,
determining what entities need to be typed and identifying
(end characterisng) language sufficient to describe the
types identified. The ISO/NTU-T WGT7 gives guiddines to
achieve this objective, for example, the types required for
the ODP functions and for the ODP viewpoint
specifications should be considered.

Based on RM -ODP itsdlf, we have defined a typing system.
We have equdly enumerated severd advantages to use
OCL for type descriptions. This work can be consdered as
a dep to achieve the WG7 objective. We have used that
typing system and OCL for the specification of the trading
information viewpoint. ~ This specification is smple than
the 1SO specification, which usestre Z languege

However, severd aeas require further work. One
important issue is to complete the typing system by
induding the ODP enginesring concepts. Also, we ae
investigeting to what extent UML and OCL can be used as
aformal notation for the development of ODP systems.

31

An Informational Object Model for ODP Applications

REFERENCES

[4 OMG, “The Object Management Architecture
(OMA)". Technicd Report, December 1991,

[OMG, “The Common Object Request Broker
Architecture (CORBA), Architecture and
Specification”. Revision 20 Jduly 1995,

[3 ISONTU-T, “Basic of Reference Modd of Open
Distributed Processing, Part 1: Overview and Guide
toUsg". ITU/TS X901-1SO 10746-1, January 1995.

[4 ISO/NTU-T, “RM -ODP, Part 2 : Description Moddl”.
ITUTSX902-1S0 10746-2, January 1995.

[5 ISONTU-T, “RM-ODP, Pat 3: Prescription Modd”.
ITU/TSX903-1S0 10746-3, January 1995.

[6] ISONTU-T, “RM-ODP, Pat 4. Architecturd
Semantics’. ITU/TS X904-1SO 10746-4, January
1995.

[7] TINA-C, “Tdecommunication Information Network
Architecture”, www.cygnet.co.ul/TinaC/.

(8] J. P. Gaspoz, “Methodology for the Development of
Didributed Teecommunication Services’, Journd
of Software and Systems, June 1996.

9 B. El Ouahidi and M. Bouhdadi, “Metodology for
the Development of Didributed System”. JDIR' 98
Conf. Paris, April 1998.

[10] B. El Ouahidi and M. Bouhdadi, “How to Develop a
Telecommunication Application”, Telcom97, Fes
Morocco, 1997.

[11] G. Booch and d, “The Unified Modeling
Language’, A Refeaence Manud. Addison Wedey,
1998. www.omg.com.

[12] UML-ODP, http://enterprise.shl/.com/uml-odp/uml-
odp.html.

[13] E Lupu and d, “A Policy Based Role Object
Model”, First International Enterprise Distributed
Object Computing Conference EDOC97, Gold
Coadt, Audtrdia, 1997.

[14] J. O. Aagedd and d, “Enterprise Moddling and

QoS for Command and Control Systems’, Second
International Enterprise Digtributed Object
Computing Conference (EDOC '98), San Diego, CA,
USA, 1998.

Ouahidi and Bouhdadi

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(23]

[26]

[27]

P. Linington and d, “Polices in Communities
Extending the ODP Enterprise Viewpoint”,
EDOC'98, San Diego, CA, USA, 1998.

Z. Milosevic, and a, “Towards New ODP Enterprise
Language’, IFIPIEEE Open Didributed Processng
and Distributed Plateforms, 1997.

ISO, http://enterprise.shl.com/other.

B. Rumpe, “A Note on Semantics (with an Emphasis
onUML)”. Proceedings Second ECOOP, 1998.

Ruth Breu and a, “Towards a Formdization of the
Unified Moddling Language’. In Proceedings of
ECOOP 97. Springer Verlag, NCS, 1997.

Ruth Breu and d, “Towards a Precise Semantics for
Object -Oriented Moddling Techniques’,
ECOOP 97, Springer Verlag: NCS 1357, 1999.

A. Evans and d, “Deveoping the UML as a Formd
Modeling Notation”, UML’98 Beyond the Notation,
Ecole Superieure Mulhouse, Univerdte de Haute
Alsace, 1998.

pUML, www.cs.york.ac.uk/puml.

J Waner and d. “Object Condrant Language
OCL”, Addison Wedey, October 1998.

C. Hamilton and a, “JBDC Daadbase Access with
Javal'. JavaSoft Press, Addison Wesley, July 1998.

J. M. Spirey, “The Z Notation, Reference Manud”,
International Series in Computer Sciences, Prentice
Hall International, 1998.

C. B. Jones “Sydematic Software Development
Usng VDM". PrenticeHdl Internationd, NY,
1988.

C. A. R Hoae “Communicaion Sequentid

Process’. PrenticeHall International, 1998.

32

[28] A. Milner, “A Cdculus of Communicaions
Systems’. Computer Sciences Spring-Verlag, 1985.

[29] D. Had, “Saechats a Visal Formdism for
Complex Systems’. Technicd Report, Weizmann
Ingtitute of Sciences, Rehorot |sreal, February 1998.

[30] CCITT, “Specification and Description Language
SDL” Technica Report, CCIT Rec. Z. 100, March
1988.

[31] [ISONTUT-T, “LOTOS, A Forma Description
Technique Based on the Tempora Ordering of
Observationa Behaviord”. 1SO 8807, August 1988.

[32] CCITT, “Specification and Description Language
92, SDL 92". CCITT Rec. Z100, COMX-R 17 E,
March 1992.

[33] ISONTU-T, “OS-Pat 4 Guiddines of the Definition
of Management Objects’. September 1991.

[34] [ISONTU-T, “ODP Trading Function”, 1SO, Draft
Rec. X.9tr, June 1995.

[35] OMG, “Trading Object Service Specification’, in
CORBAsarvices Common Object Sarvices
Specification, December 1997.

BIOGRAPHY

Bouabid EL Ouahidi Obtaned a PhD in Computer

Sciences from the Universty of Caen a France His

current interests include developing pecification and

design techniques for use within Intdligent Network and
TINA applications.

Mohamed Bouhdadi obtaned a PhD in Computer
Sciences from te Mohamed V University at Morocco. His
current interests include developing pecification and
design techniques for use within Open Distributed System.

