
Malaysian Journal of Computer Science, Vol. 13 No. 2, December 2000, pp. 21-32

21

AN INFORMATIONAL OBJECT MODEL FOR ODP APPLICATIONS

Bouabid El Ouahidi and Mohamed Bouhdadi
Mohamed V University, Faculty of Science

Department of Mathematics and Computer Sciences
P. O. 1014 Rabat Morocco

Tel. and Fax: 00 (212) 7 77 54 71
email: {ouahidi, bouhdadi}@fsr.ac.ma

ABSTRACT

The Reference Model-Open Distributed Processing (RM-
ODP) provides a framework for the standardization of
Open Distributed Processing (ODP). It defines an object
model and an architecture for the construction of ODP
systems in terms of five viewpoints. However, the RM-ODP
is abstract and therefore cannot be easily applicable.
Indeed, several issues must be addressed. The objective of
this paper is twofold. Firstly, based on RM-ODP itself, we
define a concrete typing system for the ODP information
objects. This model is a contribution for defining the ODP
type repository function. Secondly, we show that the Object
Constraint Language (OCL) can be used for the ODP type
descriptions, and for the ODP information viewpoint
specifications. Using OCL we apply that typing system to
describe the ODP trading information viewpoint.

Keywords: RM-ODP, Object Model, Information,

Description Language, OCL, Trading

1.0 INTRODUCTION

Distributed processing is rapidly expanding as it allows
increasing the performance, the evolution, and the use of
existing systems. However, it is very difficult to benefit
from distributed processing without any support because of
its inherent properties such as concurrency, asynchronism,
transactions, and so on. Furthermore, the heterogeneity of
computer systems makes this task even more difficult. This
heterogeneity includes the heterogeneity of programming
languages, operating systems, hardware, communication
protocols and also the heterogeneity of the application
domains. The object-oriented approach would permit
masking these heterogeneities. The OMG (Object
Management Group) consortium is working towards
defining an architecture, OMA [1] whose objective is to
define the object -oriented concepts to ensure the
interoperability of applications running on heterogeneous
systems. It defines the architecture CORBA (Common
Object Request Broker Architecture) [2] whose core is the
ORB (Object Request Broker) that realizes the
communications between client objects and server objects
by brokering requests between them. It also defines a
universal language for the definition of interfaces (IDL)
(Interface Definition Language) [2]. IDL masks the
heterogeneity of programming languages by developing

compiler IDLs to other programming languages [2].
CORBA is in fact an integration of the client -server
paradigm and the object -oriented paradigm. It is the
specification, which allows the invocation of an operation
on a distant object independently of the localization and
programming language used. CORBA specifies the
implementation of the object oriented distributed
applications but does not specify how to design these
applications. However, the objective of the inter-working
of heterogeneous applications is not effective unless it is
considered in the overall process of development. This is
the aim of the Open Distributed Processing. The RM-ODP
[3, 4, 5, 6] provides a framework within which supports of
distribution, interworking and portability can be integrated.
It defines an object model and an architecture for the
construction of open distributed systems. The object model
defines concepts for information and processing. The
architecture defines five viewpoints, which are enterprise
viewpoint, information viewpoint, computational
viewpoint, engineering viewpoint and technology
viewpoint. Each viewpoint handles a particular aspect of
an ODP system. The architecture also defines a viewpoint
language for each viewpoint, the ODP functions and the
ODP transparencies.

Elsewhere, in order to be applied in a specific domain, RM -
ODP must be extended and specialised. For instance, the
TINA (Telecommunication Information Network Archi-
tecture) [7, 8] is based on RM-ODP.

However, the RM-ODP is abstract and does not constitute a
methodology itself, and hence cannot be directly applicable.
It only provides a framework for the definition of ODP
standards. These standards include standards for ODP
functions; standards for modelling and specifying ODP
systems; standards for methodology, programming,
implementing, and testing of ODP systems. Furthermore,
the RM-ODP recommends to define concrete types of
information to use in the viewpoint specifications. The
type repository function constitutes an important subject of
standardization for the ISO/ITU-T WG7 Group.

Several issues must be addressed to construct ODP systems
[9, 10]. Current researches are focussing on different
aspects such as the applicability of UML (Unified
Modelling Language) [11, 12] to develop ODP systems,
and in particular the ODP enterprise specification [13, 14,
15, 16, 17].

Ouahidi and Bouhdadi

22

Substitutes

The UML language is rapidly emerging as the de-facto
standard for modelling Object-Oriented (OO) systems.
Given this role, it is imperative that the UML needs a well-
defined, fully explored semantics. Such semantics is
required in order to ensure that UML concepts are precisely
stated.

Whereas grammars are well suited for text, the UML meta-
model works well as a description of the structure of UML
grammars [18]. The UML meta-models capture a precise
notion of the syntax of the UML modelling techniques (this
is what meta-models are typically used for), but they do
little in the way of answering questions related to the
interpretation of non-trivial UML structures [19, 20, 21].

Rather than generate formal specifications from informal
OO models and require that developers manipulate these
formal representations, a more workable approach is to
provide formal semantics for graphical modelling notations
and develop rigorous analysis tools that allow developers to
directly manipulate the OO models they have created. The
degree of formality of a model is not necessarily related to
its form of representation. This is the objective of the
pUML group (Precise UML) [22].

The structure of the document is as follows. We define two
UML meta-models of the ODP information concepts in
Section 2. These meta-models describe the syntax of a

modelling language for ODP applications. We propose a
concrete information object model in Section 3. Section 4
is about the adequate formal language for ODP type
descriptions; we show that the OCL (Object Constraint
Language) [23] language can be used to meet this attempt.
We apply this work to describe the ODP trading
information viewpoint in Section 5. A conclusion and
perspectives end this paper.

2.0 THE RM-ODP OBJECT MODEL

In general, the term object model refers to the collection of
concepts used to describe objects in an object-oriented
specification (OM G CORBA object model, RM-ODP
object Model, UML meta-model object model). It
corresponds closely to the use of the term data model in the
relational data model. RM-ODP is a framework for the
construction of open distributed systems. It defines a
generic object model, a set of architectural concepts in the
foundations part, and an architecture, which contains the
specifications of the required characteristics that qualify,
distributed processing as open. The architecture extends
and specialises the concepts of the foundations part. To
define concrete information object model, we will describe
all the RM-ODP object concepts.

1..1

Action
Template

Provides Performs

SuperType
SubClass

Type Class Interaction

SuperClass
SubType

Satisfies

Satisfies

Satisfies

Fig. 1: RM -ODP Object Model

Identity

Interface
Object

Interface
Template

Object
Template

Template

Action

Has
1..*

Description

1..*
1..*

1..*

Description Description

An Informational Object Model for ODP Applications

23

2.1 The RM-ODP Foundations

The object model [4] defines the basic concepts concerned
with existence and activity: the expression of what exists,
where it is and what it does. We describe these concepts
graphically using the UML notation (Fig. 1).

The core concepts defined in the object model are object
and action. An action is something, which happens. An
object is a model of an entity. It is characterised by its
behaviour, and dually by its states. Depending on the RM -
ODP viewpoint, the emphasis may be placed on the
behaviour or on the states. When the emphasis is placed on
behaviour an object is said to perform functions and offer
services, theses functions are specified in terms of
interfaces. It interacts with its environment at its
interaction points that are its interfaces. An object is
distinct from any other object by its identity.

The other concepts defined in the object model are derived
from the concepts of object and action; they are Class,
Template, Type, Subtype, Supertype, Subclass, Superclass,
Composition, and Behavioral Compatibility.

An object is behaviorally compatible with a second object if
the first object can replace the second object without the
environment being able to notice the difference in the
object behaviour. The RM-ODP behavioral compatibility
concept corresponds to the OMA substitutability concept.
Composition of objects is a combination of two or more
objects yielding a new object. A type (of an <x>) is a
predicate characterizing a collection of <x>s. A class (of
an <x>) defines the set of all <x>s satisfying a type. The
type concept corresponds to the type concept of UML. The
class concep t corresponds to the OMG extension concept,
the extension of a type is the set of values that satisfy the
type at any particular time. A <x> template is the
specification of the common features of a collection x in a
sufficient detail that an x can be instantiated using it; the
template has the meaning of C++ class.

Note that an object has a type, a class, and a template. It is
the case for actions and interfaces.

2.2 The RM-ODP Architecture

The architecture [5] comprises: (1) five viewpoints, (2) a
viewpoint language for each viewpoint, (3) specifications
of functions required to support ODP systems, and (4)
transparency prescriptions showing how to use the ODP
functions to achieve distribution.

The distribution transparencies hide the aspects of
distributed processing in a desired way from the viewpoint
of the users. Each of the viewpoints handles a particular
aspect of the ODP system. The enterprise viewpoint
focuses on the purpose, scope and policies for the ODP
system. The information viewpoint focuses on the
semantics of information and the semantics of the

information processing. The computational viewpoint
enables distribution through functional decomposition of
the system into objects, which interacts at interfaces. The
engineering viewpoint focuses on the mechanisms and
functions required to support distributed interaction
between objects in the system. The technology viewpoint
focuses on technology in that system.

The definition of a language for each viewpoint describes
the concepts and rules for specifying ODP systems from the
corresponding viewpoint. The object concepts defined in
each viewpoint language are specializations of those
defined in the foundation part of RM-ODP.

The ODP functions define the functionalities of the ODP
operating system assumed to process the difficulties
inherent to distribution. They are classified into categories,
which include among others the repository functions related
to database management functions. In the following
section, we describe briefly the enterprise, information, and
computational languages, the other viewpoint languages
have no interest for our study.

An enterprise specification defines the purpose, scope and
policies of an ODP system. A policy is a set of rules
related to a particular purpose. A rule can be expressed as
an obligation, a permission, or a prohibition. An ODP
system consists of a set of enterprise objects. An enterprise
object may be a role, an activity or a policy of the system.

An information specification defines the semantics of the
information and the semantics of information processing in
terms of a configuration of information objects, the
behaviour of these objects and environment contracts for
the system. An information object template is defined in
terms of static, invariant and dynamic schema;

Invariant schema: A set of predicates in one or more
information objects, which must always be true. The
predicates constrain the possible states and state changes of
the objects to which they apply.

Static schema: A set of predicates in one or more
information objects, at some point in time, subject to the
constraints of any invariant schema.

Dynamic schema: A specification of the allowable state
changes of one or more information objects, subject to the
constraint s of any invariant schema.

An information object is either atomic or composite. The
state of the composite object is represented by the
combined state of its component information objects. The
information objects resulting from the instantiation of a
composite information object template only exist as part of
the instantiated composite object and have no meaning
outside it.

Ouahidi and Bouhdadi

24

1..*
1..1

FCI SCI OCI

OCIT

Instance 1..*
1..1

Instance 1..*
1..1

Instance

FCIT SCIT

A computational specification defines the functional
decomposition of an ODP system into objects, which
interact at interfaces. The basic concepts of the
computational language are the computational interface, the
computational object, the interaction and the binding object.
The binding object is a computational object, which
supports a binding between a set of other computational
objects. An interaction is either a signal, a flow or an
operation. A signal is an atomic shared action resulting in
one-way communication from an initiating object to a
responding object. A flow is an abstraction of a sequence
of interactions resulting in a conveyance of information
from a producer object to a consumer object. An operation
is an interaction between a client object and a server object.
Like interaction kinds, an interface is either signal,

operation or flow. A signal interface is an interface in
which all the interactions are signals. In an operation
interface all the interactions are operations. All the
interactions are flows in a flow interface. A computational
object template comprises a set of computational interface
templates which the object can instantiate, a behaviour
specification and an environment contract specification.
The behaviour of the object and the environment contract
are specified in terms of a set of properties (attributes). A
computational interface template is associated to each kind
of interface. It comprises a signal, a flow, or an operation
interface signature as appropriate, a behaviour specification
and an environment contract specification. The behaviour
and the environment contract are defined as set of
properties.

Policy
Information

Object
Computational

Object
Computational

Interface

Template

Instance

1..1

1..*

Template

Instance

1..1

1..*

Template

Instance

1..1

1..*

Provides

Description

Enterprise
Object

Computational
Interface Template

Information
Object Template

Computational
Object Template

FCI : Flow Computational Interface
FCIT : Flow Computational Interface Template
SCI : Signal Computational Interface
SCIT : Signal Computational Interface Template
OCI : Operation Computational Interface
OCIT : Operation Computational Interface Template

1..*

Result Parameter
Property

Property Behaviour and
Environment
Contract

Operation
Signature

Rule
Object

Template

 0..*

Fig. 2: RM -ODP Architecture Object Model

An Informational Object Model for ODP Applications

25

3.0 THE ODP INFORMATIONAL OBJECT MODEL

An object is characterized by its behaviour and dually by its
states. Depending on the RM -ODP viewpoint, the
emphasis may be placed on the behaviour or on the states.
When the emphasis is placed on behaviour, an object is said
to offer services and to interact at its interfaces; this is the
concept of a computational object. When the emphasis is
made on states, an object does not have interfaces, it cannot
interact, this is the concept of an information object.

The information object and computational object have
respectively the meaning of non-object and object in the
OMA core object model. Indeed, from the viewpoint of
OMA, an object provides services at an interface, while a

non-object is not an object, but may be used as a value.
RM-ODP recommends the definition of the concrete types
of information (of values) to be used in the viewpoint
specifications. This is the subject of this section.

In the OMA object model, the primitive values are not
objects, however in our model, these primitive values are
really objects. This is the case of Java programming
language, whose all-primitive types are objects.

3.1 The Classification of Information

We define in this section, the criteria of the classification of
the information objects. We describe three main criteria of
classification of information.

Fig. 3: The ODP Informational Object Model

AtomicLiteral

Handle Java primitive types

Handle(t)

AtomicNonLiteral

Iterator Expression MetaType

Iterator(t)

CompositeLiteral

StructLiteral

Reference Date Time …

Reference(t)

CollectionLiteral

BitString CharString Enumeration

Object
NonDenotable

Property Interaction

Signal Flow Operation
Denotable

Literal

NonLiteral

CompositeNonLiteral

StructNonLiteral(t1, t2..) CollectionNonLiteral(t)

Set(t) Bag(t) Sequence(t) …

Ouahidi and Bouhdadi

26

Given an information object:

- Does the information object have an identity or not?

- How is the information object identity represented in

the machine; that is, does the identity of the
information contain the value of the information or
does it only contain the reference of the value of the
information? This describes the relationship between
the identity and the value of the information object.

- Is the information object atomic or composite?

We will describe and justify each of these criteria, which
are successively applied to build our information typing
system.

The information objects can be organised into a hierarchy
of sub-types and super-types; this corresponds to the
concept of behavioral compatibility. A subtype inherits all
the characteristics of its supertypes. An object is defined by
its characteristics, which include the signature of its
services, its behaviour and the contract of its environment.

An object has an intrinsic identity. A characteristic of an
object is an information object that has equally an identity
but this identity has no meaning outside of this object. This
corresponds to the first criteria of the classification of the
information objects. That is, the information objects are
classified into two categories, which are the information
objects that have an identity and the information objects
that have no identity.

The information objects which do not have an identity
(characteristics of objects) are called NonDenotable
objects. According to the RM-ODP definition of
computational interfaces, we define the NonDenotable
objects. They are signal, flow, operation, and property.
Note that, an information object is an aggregation of these
objects. For example, The getProperties() operation of the
Java Class System returns a set of properties of the system.

The information objects, which have an identity, are called
Denotable objects. This information object must identify a
local or a distant object depending on RM-ODP viewpoints.
Indeed, from the engineering viewpoint, to interact with a
distant object, one must have the ident ity of its
computational interface. In RM-ODP the identity of
distributed computational interface is denoted Reference.
This type has to be included in an ODP typing system.

In the following, we do not consider the distribution
aspects. The hierarchy of the Denotable objects can be
defined according to the representation of the value of the
identity. Indeed, the representation used to translate this
identity into the machine code is not the same for all the
information objects. We distinguish two categories of
Denotable information objects, which are the literal

(Literal) information objects and the non literal
(NonLiteral) information objects.

The identity of a literal object contains exactly the value of
that object. In contrast, the identity of a NonLiteral
information object does not contain the value of that object,
but only a value, which references the value of the object.
This means that the identity of a NonLiteral object contains
a handle. To this end, our system contains the type
Handle. In fact, each object of type t has a handle of type
Handle(t). The type handle is an abstraction of any
Handle(t). This implies that a NonLiteral object
necessitates an operation, which allocates the necessary
space for the representation of the value of the object and
returns this space as the result of that operation. In contrast,
a Literal object does not necessitate any allocation of
memory since the Literal objects implicitly pre-exist.

The Java programming language illustrates; this criterion
(Literal/NonLiteral) although it is a “pure” object-oriented
language in the sense that everything is an object. This
means, that we manipulate objects through handles and
hence must create all the objects. However, for primitive
types Java falls back on the approach taken by C and C++:
instead of creating the variable using new, an “automatic”
variable is created which is not a handle. The variable
holds the value itself. Most of the primitive data types have
“wrapper” classes for them. That means if we want to treat
a primitive type as a non-literal, we use the associated
wrapper.

After applying the two previous criteria we apply the
criteria of the structure of the information object such as
that being described in the ODP information viewpoint.
That is, is the value (of the object) atomic or composite?

We obtain:
(1) the atomic literal object (AtomicLiteral),
(2) the composite literal object (CompositeLiteral),
(3) the atomic non literal object (AtomicNonLiteral), and
(4) the composite non literal object (CompositeNonLiteral).

In the AtomicLiteral objects, we include Java primitive
types, handle and handle(t).

The CompositeLiteral objects are classified into two
subtypes, which are the struct literal (StructLiteral) objects
and the collection literal (CollectionLiteral) objects. A
struct literal object has a fixed number of named fields such
that each field contains a literal. A CollectionLiteral object
is a composition of literals having the same type. This
constitutes the criteria corresponding to the types of the
components of a composite information (that is, are they of
the same type or not). The StructLiteral objects we define
are Date, Time, Time-Stamp and Interval as defined in
the SQL ANSI standard. The sub-types of the
LiteralCollection object we define are BitString,
CharString and Enumeration.

An Informational Object Model for ODP Applications

27

The atomic non-literal (AtomicNonLiteral) objects are
defined according to the RM-ODP objects. Indeed, within
RM-ODP, an object may be an enterprise object, an
information object or a computational object from the
user’s viewpoint.

An enterprise object may be a use case of the system, a user
of the system or a policy which governs the activities of the
system. An information object is the data manipulated by a
computational object. The policy of the system consists of
a set of rules that govern the activities of the system
ensuring the objective of the system. In the information
viewpoint, these rules are criteria and constraints. Thus,
our typing system has to include the type defining values of
criteria and constraint. We will call this type Expression.
It is a sub-type and an instance of AtomicNonLiteral.

Note that another reason to include the expression type is
that the parameters of a database request are criteria and
constraints and the ODP functions include the functionality
of management of database systems. This necessitates the
use of a SQL request as ODP-operation. This integration is
very important and yet a non-traditional approach. This is
the main objective of Java Database Connectivity [24].

The types are themselves objects, and hence have equally
properties and operations. Each type is an instance of a
type that allows manipulation of the information concerning
types of objects. We call it MetaType.

In summary, our typing system of information includes
among others the types, Expression, Handle, MetaType
and Reference. However, the difficulty is how to define
them.

We think that the set of instances of types MetaType and
Expression can be defined only by grammars. The
grammar of OCL expressions is an example [23].

An instance of MetaType or of Expression or of Handle has
attributes and properties that we will make explicit. The
Handle type can be defined like in C++ with the semantics
of the creation and the copy operations.

However, making explicit the type Reference is a
challenge. We think that it is a sub-type and an instance of
StructLiteral.

The CompositeNonLiteral objects are classified into the
struct objects (StructNonLiteral) and the collection objects
(CollectionNonLiteral). The StructNonLiteral objects
have a fixed number of named fields such as each field is
either a literal or a non-literal object. These fields may be
of different types. A CollectionNonLiteral object contains
other objects that must be of the same type. Hence, we
define a generic type of collection denoted as Collection(t).
We classify the CollectionNonLiteral objects according to
two criteria; the obligation of the order and the permission
of the duplication of the components of the collection

objects. Applying these criteria we obtain the Sequence ,
Array(t), Set(t) and Bag(t), where Sequence and Array are
ordered components; Array and Bag permit duplication.
Also, we define a type of iterators of collections denoted
Iterator(t) like in Java programming Language (the
Enumeration).

3.2 Typing System

Our typing system includes types defined in many typing
systems such as CORBA IDL, OCL, C, C++ and JAVA.
The semantics of each information object can be easily
defined using the OCL mechanism of pre- and post-
conditions. Next, we define some of types, such as;
Property, Operation, Flow, Signal, Parameter, MetaType,
Object, Collection, Expression, Iterator and Handle.

When the semantic of a characteristic of a type is obvious,
we define it in English language.

Property
name : CharString
type : MetaType
mandatory : Boolean
readonly : Boolean

Operation

name : CharString
typeReturn : MetaType
parameters : Collection(Parameter)

Flow

name : CharString
typeReturn : MetaType
parameters : Collection(Parameter)

Signal

name : CharString
typeReturn: MetaType
parameters : Collection(Parameter)

Parameter

name : CharString
type : MetaType
passageMode : Enumeration ("in", "out", "in/out")

The types MetaType, Object, Collection and Expression,
correspond respectively to the types, OclType, OclAny,
collection and OclExpression.

Iterator(t)
Next() : t
First() : t
Last() : t
HasMoreElements() : Boolean
Reset()
Delete()

Ouahidi and Bouhdadi

28

The characteristics of Iterator(t) have the same meaning as
the Enumeration primitive type in Java. We call iterator(t)
an instance of Iterator(t) associated with an instance of
Collection(t) called collection. Next() gets the next object
in collection. HasMoreElements() sees if there are any
more objects in collection.

Handle(t)
Create () : Handle(t)
Create(aHandle : Handle): Handle(t)
Create(aHandle : Handle(t)): Handle(t)
Copy(aHandle : Handle): Handle(t)
Copy(aHandle : Handle(t)): Handle(t)

The characteristics of Handle(t) have the same definition as
the Reference type in C++.

Other obvious types are described in Fig. 3.

4.0 WHY OCL IS USED FOR THE ODP TYPE

DESCRIPTIONS

Several specification languages have been developed; each
handles a particular aspect of a system. For instance, Z [25]
and VDM [26] focus on specifying the behaviour of
sequential systems; others such as CSP [27] and CCS [28]
Statecharts [29] focus on specifying the behaviour of
concurrent systems. SDL [30] and LOTOS [31] are not
object -oriented and therefore do not support the expression
of basic object concepts, transaction or multi-threading
concepts. The SDL92 [32] and GDMO-GRM [33] are
object -oriented, but SDL’92 focuses on specialization and
inheritance while the formalism of GDMO does not cover
the behavioral aspects of a system.

In fact, no formal description technique is able to describe
in a complete way the ODP concepts. The inherent
characteristics of ODP systems imply the need to integrate
different specification languages, each specialized in a
particular kind of properties and also to handle non-
behavioral properties of ODP systems. It is recognized to
take benefits from the well-established verification
techniques; that is, to integrate the theorem proving and
model checking techniques. We can therefore conclude
that up to now, no formal method is likely to be suitable for
specifying and verifying every aspect of an ODP system.
We need to support all different kinds. Methods and tools
should work in conjunction with each other. More
precisely, rather than build a single method, we can build
meta-method which itself produces methods customized for
a particular problem domain. This represents the objective
of the inter-working in the area of formal methods.
Progress will depend on future directions on fundamental
concepts and principles. Those concepts would include
among others integration of formal methods, and
integration of those with the system development

process. Indeed, formal methods can complement less
formal methods that are used in the overall system
development process.

Elsewhere, the ISOWG7 group shows that the type
repository function standard must permit the use of multiple
type description languages. There are a number of widely
used and standardized languages for type descriptions, for
example CORBA-IDL, ASN.1, LOTOS, GDMO and SDL,
which fulfill some of the requirements of type descriptions
in RM-ODP. It is not anticipated that any one existing
language will address all of the needs of this standard,
however, some may be adopted for description of particular
ODP concepts. We choose OCL for the description of
types for many reasons:

- Current trend in software engineering technology is

the unification of methods which necessitates
unification and integration of basic concepts and
graphical notation. This is the objective of the UML
language for the object-oriented development. The
UML is formally being defined using the OCL
language. In this context, we think that OCL will
serve as a common denominator for formal method
semantics and software engineering method semantics.

- OCL is object-oriented.

- The disadvantage of traditional formal languages is

that they are usable to persons with a string
mathematical background, but difficult for the average
business or system modeler to use. OCL has been
developed to fill this gap.

- OCL can be used to specify invariants on classes and

types in the class model, to describe pre- and post
conditions on operations and methods.

- The RM-ODP information viewpoint specification is

described in terms of an invariant schema, a static
schema and a dynamic schema which can be
interpreted as follows: an invariant schema is the
specification of the types of one or more information
objects that will always be satisfied whatever
behaviour the objects may exhibit. A static schema is
the specification of the state of one or more
information objects at some particular point in time.
These types are subtypes of one or more of the types
specified in the invariant schema. Behaviour in an
information specification can be modeled as
transitions from one static schema to another that is
reclassification of instances from one type to another.

We deduce that OCL can be used to describe the
information object types and, hence to describe the ODP
informational specifications.

An Informational Object Model for ODP Applications

29

5.0 THE INFORMATIONAL SPECIFICATION OF
THE ODP TRADING FUNCTION

5.1 Overview

The ODP functions specify the functionality of the
execution environment for the ODP systems. The ODP
execution environment masks the complexities inherent to
the distribution and the openness ensuring several kinds of
transparencies. The trading function is an ODP function
that allows to realise other ODP functions. It is based on a
database management function.

A detailed analysis of the ODP functions shows that the
programming languages and the database management
systems must be integrated. That is why we choose the
ODP trading function as an application of our concrete
information object model.

As the ODP trading is very detailed in [34], we describe
here only its aspects, which are relevant to our study.

A definition of trading [34, 35] is as follows: “the activity
of choosing services, such that they match some service
requirements”. The choice is based on the comparison of
the specification of a service (provided by a prospective
consumer) and the service specification supplied by service
providers or their agents. Trading is based on the notion of
matching service offers and service requests. A service is a
function provided by a component at a computational
interface. The component responsible for the maintenance
of the trading space and the matching of offers and requests
is called a trader.

Current traders organise services in a service type
hierarchy. Each service type defines an interface that
prescribes the operations available for the interaction
between the service provider and the service consumer.
They also allow the association of a number of properties as
attribute value pairs with each service type.

Central to the service type matching is the notion of type
conformance. Type conformance is determined by the
interaction interface. The specification of interfaces is then
crucial and currently IDL-based.

Offering a service is called export, discovering a service is
called import. To export, an object gives a trader a
description of a service together with the location of a
computational interface at which that service is available.
To import, an object asks the trader a service having some
characteristics, the trader checks against the descriptions of
services and responds to the importer with the location of
the selected service interfaces.

Due to the sheer number of service offers that will be
offered worldwide, it is inevitable that the trading service
will be split up and the service offered will be partitioned.
Hence, the trading system consists of a collection of inter

working linked traders, each of them manages a partition of
service offers.

5.2 Informational Specification

The information of the trading system is a composite object
described by the template, we call Information:

Information
Invariant schema :
offers : Collection(Offer)
nodes : Collection(Node)
edges : Collection(Edge)
partitions : Collection(Partition)

Initial schema :
Information()
{ offers = {}; nodes = {}; edges = {} partitions ={} }

Dynamic schema :
Export() : adds a service offer to service offer space of
the trading system.

Withdraw() : withdraws a service offer from the service
offer space of the trading system.

ModifyOffer() : changes the service property and service
offer property values associated with a service offer
whilst preserving the service offer identifier.

AddEdge() : adds an edge to the trading system's set of
edges.

RemoveEdge() : removes an edge from the trading
system's set of edges.

ModifyEdge() : changes the property of an edge.

AddNode() : adds a node to the trading system's set of
nodes.

RemoveNode() : removes a node from the trading
system's set of nodes.

Import() : searches for the subset of service offers which
satisfy some matching criteria, scoping criteria and some
preference constraints.

The component objects of the information object of the
system are described as follows:

Offer
ServiceDescription : Service
ServiceOfferIdentifier : Reference(Offer)
ComputingInterfaceIdentifier : Reference(Interface)
OfferProperties : Collection(Property)

Ouahidi and Bouhdadi

30

Servicer
ServiceSignature : Collection(Operation)
ServiceProperties : Collection(Property)

Partition

NodeRef : Reference(Node)
NodeOffers : Collection(Offer)

Edge

FirstNode : Reference(Node
SecondNode : Reference(Node)
EdgeProperties : Collection(Property)

Node

NodeRef : Reference(Node)
NodeProperties : Collection(Property)

The semantics of the information processing of the trading
system is described in terms of pre- and post-conditions of
each operation of the system. All the pre- and post-
conditions are given in the context of an instance of the
information template of the system (self).

Export(in NewOffer : Offer, in Anode : Node, out
OfferRef: Reference(Offer))

Pre :
(1) self.nodes → includes(Anode)
(2) self.offers → forAll(p/ p.ServiceOfferIdentifier <>

OfferRef).
(1) self.offers → includes(NewOffer)
(2) self.partitions →

select(p/p.NodeRef=Anode.NodeRef).NodeOffers →
includes(NewOffer).

(3) self.partitions → forAll(p,q / p.NodeRef <> q.NodeRef
implies p.NodeOffers → Intersection(q.NodeOffers) →
isEmpty).

WithdrawOffer(in OfferRef : Reference(Offer))
Pre :
self.offers → Exists(p/ p.ServiceOfferIdentifier = OfferRef)
Post :

(1) self.offers → forAll(p / p.ServiceOfferIdentifier <>

OfferRef)
(2) self.partitions → forAll(p/ p.NodeOffers → Not

Exists(q/ q.ServiceOfferIdentifier = OfferRef))

ModifyOffer(in OfferRef:Reference(Offer),
ServiceProperties, OfferProperties:Collection(property))

Pre :
self.offers →Exists(p/p.ServiceOfferIdentifier = OfferRef)

Post :
(1) self.offers → Exists(p/p.ServiceOfferIdentifier =

OfferRef and p.ServiceDescription.ServiceProperties =
ServiceProperties and
p.OfferProperties=OfferProperties)

(2) self.partitions → Exists(p/p.NodeOffers → select(q/
q.ServiceOfferIdentifier = OfferRef and
q.ServiceDescription.ServiceProperties =
ServiceProperties and q.OfferProperties =
ServiceOfferProperties))

AddEdge(in NodeRef1,NodeRef2:Reference(Node); in
EdgeProperties:Collection(Property))

Pre :
(1) self.nodes → Exists(p/ p.NodeRef=NodeRef1)
(2) self.nodes → Exists(p/ p.NodeRef=NodeRef2)
(3) self.edges → Not Exists((FirstNode=NodeRef1 and

SecondNode=NodeRef2) or (FirstNode=NodeRef2 and
SecondNode=NodeRef1))

Post :
self.edges → Exists(p/((p.FirstNode=NodeRef1 and
p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2 and
p.SecondNode=NodeRef1)) and
p.EdgeProperties=EdgeProperties)

RemoveEdge (in NodeRef1, NodeRef2 : Reference(Node))

Pre :
(1) self.nodes → Exists(p/ p.NodeRef=NodeRef1)
(2) self.nodes → Exists(p/ p.NodeRef=NodeRef2)
(3) self.edges → Exists(p/((p.FirstNode=NodeRef1 and

p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2
and p.SecondNode=NodeRef1)))

Post :
self.edges→ Not Exists(p/ ((p.FirstNode=NodeRef1 and
p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2 and
p.SecondNode=NodeRef1)))

ModifyEdge(in NodeRef1,NodeRef2 :Reference(Node);in
EdgeProperties : Collection(Property))

Pre :
self.edges → Exists(p/ ((p.FirstNode=NodeRef1 and
p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2 and
p.SecondNode=NodeRef1)))

Post :
self.edges → Exists(p/ ((p.FirstNode=NodeRef1 and
p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2 and
p.SecondNode=NodeRef1)) and
p.EdgeProperties=EdgeProperties)

AddNode(in NodeRef : Reference(Node); in
NodeProperties : Collection(Property))

An Informational Object Model for ODP Applications

31

Pre :
self.nodes → Not Exists(p/ p.NodeRef=NodeRef)

Post :
(1) self.nodes → Exists(p/p.NodeRef=NodeRef and

p.NodeProperties = NodeProperties)
(2) self.partitions → Exists(p/p.NodeRef=NodeRef and

p.NodeOffers → isEmpty())

RemoveNode(in NodeRef:Reference(Node))

Pre :
(1) self.nodes → Exists(p/p.NodeRef=NodeRef)
(2) self.partitions → Not Exists(p/p.NodeRef=NodeRef and

Not(p.NodeOffers → isEmpty))
(3) self.Edges → forAll(p/p.FirstNode <> NodeRef and

p.SecondNode <> NodeRef)

Post :
self.Nodes → Not Exists(p/p.NodeRef=NodeRef)

Import(in Aservice:Service; in MatchingCriteria,
ScopeCriteria, refereneceCriteria:Expression; out
Offers:Collection(Offer))

Post :
Offers = (self.offers → select(MatchingCriteria and
ScopeCriteria and PreferenceCriteria)).

6.0 CONCLUSION

Now that the Reference Model for Open Distributed
Processing has stabilised, attention is shifting towards the
definition of ODP standards. The type repository function
standard requires a model describing the types to be used in
ODP systems. This would involve among others,
determining what entities need to be typed and identifying
(and characterising) language sufficient to describe the
types identified. The ISO/ITU-T WG7 gives guidelines to
achieve this objective, for example, the types required for
the ODP functions and for the ODP viewpoint
specifications should be considered.

Based on RM-ODP itself, we have defined a typing system.
We have equally enumerated several advantages to use
OCL for type descriptions. This work can be considered as
a step to achieve the WG7 objective. We have used that
typing system and OCL for the specification of the trading
information viewpoint. This specification is simple than
the ISO specification, which uses the Z language.

However, several areas require further work. One
important issue is to complete the typing system by
including the ODP engineering concepts. Also, we are
investigating to what extent UML and OCL can be used as
a formal notation for the development of ODP systems.

REFERENCES

[1] OMG, “The Object Management Architecture

(OMA)”. Technical Report, December 1991,
www.omg.com.

[2] OMG, “The Common Object Request Broker

Architecture (CORBA), Architecture and
Specification”. Revision 2.0 July 1995,
www.omg.com.

[3] ISO/ITU-T, “Basic of Reference Model of Open

Distributed Processing, Part 1: Overview and Guide
to Use”. ITU/TS X901-ISO 10746-1, January 1995.

[4] ISO/ITU-T, “RM -ODP, Part 2 : Description Model”.

ITU/TS X902-ISO 10746-2, January 1995.

[5] ISO/ITU-T, “RM -ODP, Part 3: Prescription Model”.

ITU/TS X903-ISO 10746-3, January 1995.

[6] ISO/ITU-T, “RM -ODP, Part 4: Architectural

Semantics”. ITU/TS X904-ISO 10746-4, January
1995.

[7] TINA-C, “Telecommunication Information Network

Architecture”, www.cygnet.co.ul/TinaC/.

[8] J. P. Gaspoz, “Methodology for the Development of

Distributed Telecommunication Services”, Journal
of Software and Systems, June 1996.

[9] B. El Ouahidi and M. Bouhdadi, “Metodology for

the Development of Distributed Sy stem”. JDIR’98
Conf. Paris, April 1998.

[10] B. El Ouahidi and M. Bouhdadi, “How to Develop a

Telecommunication Application”, Telcom'97, Fes
Morocco, 1997.

[11] G. Booch and al, “The Unified Modelling

Language”, A Reference Manual. Addison Wesley,
1998. www.omg.com.

[12] UML-ODP, http://enterprise.shl/.com/uml-odp/uml-

odp.html.

[13] E. Lupu and al, “A Policy Based Role Object

Model”, First International Enterprise Distributed
Object Computing Conference EDOC'97, Gold
Coast, Australia, 1997.

[14] J. O. Aagedal and al, “Enterprise Modelling and

QoS for Command and Control Systems”, Second
International Enterprise Distributed Object
Computing Conference (EDOC '98), San Diego, CA,
USA, 1998.

Ouahidi and Bouhdadi

32

[15] P. Linington and al, “Policies in Communities:
Extending the ODP Enterprise Viewpoint”,
EDOC'98, San Diego, CA, USA, 1998.

[16] Z. Milosevic, and al, “Towards New ODP Enterprise

Language”, IFIP/IEEE Open Distributed Processing
and Distributed Plateforms, 1997.

[17] ISO, http://enterprise.shl.com/other.

[18] B. Rumpe, “A Note on Semantics (with an Emphasis

on UML)”. Proceedings Second ECOOP, 1998.

[19] Ruth Breu and al, “Towards a Formalization of the

Unified Modelling Language”. In Proceedings of
ECOOP’97. Springer Verlag, NCS, 1997.

[20] Ruth Breu and al, “Towards a Precise Semantics for

Object -Oriented Modelling Techniques”,
ECOOP’97, Springer Verlag: NCS 1357, 1999.

[21] A. Evans and al, “Developing the UML as a Formal

Modelling Notation”, UML’98 Beyond the Notation,
Ecole Superieure Mulhouse, Universite de Haute-
Alsace, 1998.

[22] pUML, www.cs.york.ac.uk/puml.

[23] J. Warner and al., “Object Constraint Language

OCL”, Addison Wesley, October 1998.

[24] C. Hamilton and al, “JBDC Database Access with

Java”. JavaSoft Press, Addison Wesley, July 1998.

[25] J. M. Spirey, “The Z Notation, Reference Manual”,

International Series in Computer Sciences, Prentice-
Hall International, 1998.

[26] C. B. Jones, “Systematic Software Development

Using VDM”. Prentice-Hall International, NY,
1988.

[27] C. A. R. Hoare, “Communication Sequential

Process”. Prentice-Hall International, 1998.

[28] A. Milner, “A Calculus of Communications
Systems”. Computer Sciences Spring-Verlag, 1985.

[29] D. Harel, “Statecharts, a Visaul Formalism for

Complex Systems”. Technical Report, Weizmann
Institute of Sciences, Rehorot Isreal, February 1998.

[30] CCITT, “Specification and Description Language

SDL” Technical Report, CCIT Rec. Z. 100, March
1988.

[31] ISO/ITUT-T, “LOTOS, A Formal Description

Technique Based on the Temporal Ordering of
Observational Behavioral”. ISO 8807, August 1988.

[32] CCITT, “Specification and Description Language

92, SDL 92”. CCITT Rec. Z100, COMX-R 17 E,
March 1992.

[33] ISO/ITU-T, “OSI-Part 4 Guidelines of the Definition

of Management Objects”. September 1991.

[34] ISO/ITU-T, “ODP Trading Function”, ISO, Draft

Rec. X.9tr, June 1995.

[35] OMG, “Trading Object Service Specification”, in

CORBAservices: Common Object Services
Specification, December 1997.

BIOGRAPHY

Bouabid EL Ouahidi Obtained a PhD in Computer
Sciences from the University of Caen at France. His
current interests include developing specification and
design techniques for use within Intelligent Network and
TINA applications.

Mohamed Bouhdadi obtained a PhD in Computer
Sciences from the Mohamed V University at Morocco. His
current interests include developing specification and
design techniques for use within Open Distributed System.

