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ABSTRACT 
 
The number of comparisons involved in searching minimum 
and maximum elements from a set of data will determine 
the performance of an algorithm.  A Divide-and-Conquer 
algorithm is the most efficient algorithm for searching 
minimum and maximum elements of a set of data of any 
size.  However, the performance of this algorithm can still 
be improved by reducing the number of comparisons of 
certain sets of data.  In this paper a 2-block (2B) policy 
under the divide-and-conquer technique is proposed in 
order to deal with this problem.  On the basis of this policy, 
the divide-and-conquer algorithm is enhanced.  It is shown 
that the performance of the proposed algorithm performs 
equally at par when compared with the established 
algorithm of data size of power of two and better when 
compared with data size of not a power of two. 
  
Keywords: Algorithm, Divide-and-Conquer, Perform-

ance, Recursive 
 
 
1.0 INTRODUCTION 
 
One of the areas that is substantially important with storage 
I/O problems is an algorithm, which involves the technique 
of searching and computation [1, 2, 3, 6].  An algorithm can 
provide a statisfactory solution to a problem if it is efficient 
and produces a correct answer.  One measure of an 
algorithm’s efficiency is the time used by a computer in 
solving a problem when input values are of a specified size 
[5].  The time taken by an algorithm can be expressed in 
terms of the number of operations used by the algorithm for 
a certain number of input values. 
 
For the case of searching minimum and maximum elements 
from a set of data, the time complexity of the algorithm can 
be expressed in terms of the number of comparisons.  
Therefore, the smaller the number of comparisons needed, 
the better the algorithm is.  Hence, the performance of the 
algorithm increases with the decrease in the number of 
comparisons. 
 
Until now, Pohl’s algorithms are the most popular 
algorithms for searching minimum and maximum elements 

from a set of data. Pohl has established two different 
algorithms [4] to cater two different forms of data size.  The 
first algorithm is for the data size in a power of two, i.e., it 
has a form of n = 2k, where k is a positive integer.  The 
second one is for the case of n ≠ 2k.  According to Pohl, the 
algorithm for n = 2k is still the best algorithm and the 
algorithm for n ≠ 2k is still a very efficient algorithm [4].  
The number of comparisons in the algorithm for n = 2k is 
the same as the one expressed by the formula given by 
Rosen [5].  However, the algorithm for the case of n ≠ 2k 
requires a lot of comparisons due to the large number of 
recursive calls for splitting the data set.  Therefore, that 
algorithm does not perform well because a large number of 
comparisons are needed.  In this paper, an enhanced 
algorithm by means of a 2-block (2B) policy is proposed in 
dealing with a large number of comparisons used in divide-
and-conquer technique.  The 2B policy ensures that the 
algorithm is applicable in both cases, i.e., for the case of n≠ 
2k as well as n = 2k.  Prior to this, the formula for 
calculating the number of comparisons based on the 
enhanced algorithm will be presented.  We then use this 
formula to compute the performance or efficiency of the 
algorithm for different number of elements and hence make 
a comparison to the existing formula based on its 
performance. 
 
The rest of the paper is organized as follows: in section 2, a 
general formula for expressing the number of comparisons 
is presented.  The new formula to compute the number of 
comparisons by means of the 2B policy when a data set is 
of any size is derived in section 3.  In section 4, the 
enhanced divide-and-conquer algorithm is then presented.  
The performance comparison between the enhanced 
algorithm and Pohl’s algorithm is also described.  Finally, 
some concluding remarks are presented in section 5. 
 
 
2.0 THE NUMBER OF COMPARISONS  
 
Many recursive algorithms take a problem with a given 
input and divide it into one or more smaller problems.  This 
reduction is successively applied until the solutions of the 
smaller problems can be found quickly.  These procedures 
are called divide-and-conquer algorithms [1, 5].  Consider 
the following algorithm for locating the minimum and 
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maximum elements of a sequence a1, a2, …, an.  If n=1, then 
a1 is the minimum and the maximum.  If n > 1, split the 
sequence into two sets, where each set contains n/2 
elements when n is even.  If n is odd then one of the sets 
has one element more than the other.  For example, if n = 7, 
one set has 3 elements and the other has 4 elements.  The 
problem is reduced to finding the minimum and maximum 
of each of the two smaller sets.  The solution to the original 
problem results from the comparison of the separate 
minima and maxima of the two smaller sets to obtain the 
overall minimum and maximum. 
 
Let f(n) be the total number of comparisons needed to find 
the minimum and maximum elements of the set with n 
elements.  A problem of size n, where n is a power of two 
can be reduced into two problems of size n/2, using two 
comparisons, one to compare the minima of the two sets 
and the other to compare the maxima of the two sets.  This 
gives the divide-and-conquer recurrence relation: 
 
 f(n) = f(n/2) + f(n/2) + 2 
  = 2 f(n/2)+ 2 
 
For any positive integer n, the above recurrence relation can 
be express as: 
 
f(n) = f(n/2)+ f(n- n/2)+ 2 … (1) 
 
where (n/2) means the largest integer that is less than or 
equal to a.  Equation (1) can be deduced recursively and it 
is (Appendix 1.1 for the derivation): 
 

 ... (2) 
 
For the case where n is a power of 2, then n- n/2 = n/2.  
Therefore, from equation (2), f(n) (Appendix 1.2 for the 
derivation); 
 
Equation (3) is the same as discussed by Rosen [5]. 

 
 
3.0 THE 2B POLICY AND SOLUTION METHOD 
 
In what follows, the terms an array of data and a set of data 
will be used interchangeably.  An array of integers of size n 
will be split recursively using the divide-and-conquer 
technique until an array with two elements when n = 2k, or 
an array containing 1 element when n ≠ 2k  is obtained.  The 
initial conditions for f(2) = 1 and  f(1) = 0 are used, when n 
= 2k and n≠ 2k  respectively.  For the case of n = 2k, Pohl has 
given the algorithm such that the number of comparisons is 
the same as the equation (3) where the minimum number of 

elements in an array of integers is 2.  In other words, no 
recursive calls will be required for n = 2.  Therefore 
equation (3) should be rewritten as follows: 

 
However, for the case of n ≠ 2k, a number of recursive calls 
will be required until an array contains 1 element.  
Therefore, Pohl’s algorithm [4] will cause a lot of 
comparisons due to a large number of recursions.  This is 
due to the fact that, if n is the number of data in a data set, 
then there will be n base cases, each with no comparison, 
and n-1 recursive calls, each of which is followed by two 
comparisons, hence a total of 2(n-1) comparisons.  For 
instance, let n=5, then the number of recursive calls is 4 and 
the number of comparisons is 8.  This can be shown 
graphically as in Fig. 1. 
 

 
Fig. 1: Graphical representation for n = 5 

 
We will hence introduce a policy, which reduces the 
number of recursive calls.  In this policy, the smallest size 
of an array is 1.  However, an array with size 2 will not be 
further split or blocked.  Therefore, the minimum size of 
sub arrays is either 1 or 2.  When n = 2 or n = 1, no 
recursive call is required.  This policy is called 2-block (2B) 
policy.  Due to the initial conditions of n, the range of n 
should be 2k+1< n< 2k+2, where k is a positive integer.  Thus, 
the present formula from equation (2) can be deduced as: 
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where k =  log2n - 1. 
 
By applying equation (5), for the case of n =5, the number 
of recursive calls is 2, and the number of comparisons is 6.  

 
Property 1:  Equation (5) is also applicable for the case of 
n = 2k. 
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Proof: To prove the property (2) it must be shown that 
equation (5) holds for the case of n = 2k. 
 
First, consider equation (5a).  Since 2k ≤ 3* 2k-1, then by 
substituting k with k-1, we have, 
 

f(n) = 2k-1f(2)+(2k-2 k)f(1) + 2(2k-1)-2 k 

= 2k-1f(2)+ 0f(1) + (2k-2) 
= 2k-1f(2)+ 2 (2k-1-1) 

= 2 k-1 f(2) +2∑
−

=

2

0

2
k

j

j,  for k ≥ 2 

 
Similarly, since 2k > 3* 2k-2, we substitute k with k-2 in 
equation (5b).  Hence  
 

f(n) = (2k - 2k-1 ) f(2)+(2k-2k)f(1) + (2k-2) 

= 2k-1f(2)+ 0f(1) + 2(2k-1-1) 

= 2 k-1 f(2) +2∑
−

=

2

0

2
k

j

j,  for k ≥ 2 

 
This property is the same as in equation (4). 
 
Property 2: The number of comparisons for equation (5) 
can be derived explicitly as below: 
 

 
Proof: The original divide-and-conquer requires the 
following numbers of comparisons and recursions: Let n be 
a number of data in a data set.  If n is a power of two, there 
will be n/2 base cases, each with one comparison, and n/2-1 
recursive calls, each with two comparisons, for a total of 
n+n/2-2 comparisons [4].  If n is not a power of two, the 
total number of comparisons are 2(n-1) as mentioned in the 
earlier section. 
 
From property (1), the coefficient of f(2) and f(1) are the 
number of base cases for f(2) and f(1) respectively. 
 
Therefore, from equation (5a), for the case of f(2), there 
will be 2k base cases, each with one comparison, and 2k -1 
recursive calls, each with two comparisons, for a total of 2k 
+2(2k-1)  = 3* 2k -2 comparisons.  For the case of f(1), there 
will be n-2k+1 base cases, each with no comparison, and n-
2k+1 recursive calls, each of which is followed by two 
comparisons, hence a total 2 ( n-2k+1) comparisons. 
 
Thus,  

 f(n) = (3* 2k -2) + 2 ( n-2k+1) 
        = 2n-2 k -2. 
 

Similarly, from equation (5b), for the case of f(2), there will 
be n-2k+1 base cases, each with one comparison, and n-2k+1 - 
1 recursive calls, each with two comparisons, for a total of  
n- 2k+1 +2(n-2k+1-1)  = 3( n- 2k+1 )-2 comparisons.  For the 
case of f(1), there will be (2k+2- n) base cases, each with no 
comparison, and 2k+2-n recursive calls, each of which is 
followed by two comparisons, hence a total 2 (2k+2-n) 
comparisons. 
 
Thus, 
 f(n) = 3(n- 2k+1 )-2 + 2 (2k+2-n) 
 
  = n+2k+1 -2 
 
Therefore, equation (6) holds. 
 
 
4.0 THE PROPOSED ALGORITHM AND 

PERFORMANCE COMPARISON 
 
As an implementation of the 2B policy, the algorithm, 
which guarantees the least number of comparisons 
expressed by equation (5), is presented below.  This 
algorithm contains two base cases, namely when number of 
elements (n) in an array is 1 and 2 respectively.  The 
algorithm is described as follows: 
 
 
 /* the size of the array a is n  */ 
  divide-and-conquer: 
                   if( n =1) 
                          min = max = a[0] 
                   else 
                   if( n =2) 
                     find min_max (a[0] , a[1]) 
 
                   else 
                    divide-and-conquer (a,n/2, min,max) 
      divide-and-conquer (a+n/2, n-n/2,min,max)  
                         
      find_min (min1,min2) 
      find_max(max1,max2) 
                end. 
 

Fig. 3: Divide-and-Conquer Algorithm using 2B policy 
 
A comparison of performance between the 2B policy 
algorithm and Pohl’s algorithm based on the number of 
comparisons to get the minimum and maximum elements 
from the sets of data is given in Table 1.  The present 
algorithm, which applies to the present formula, will be 
known as model 1 and the existing algorithms (for n = 2k 
and n ≠ 2k) given by Pohl [4] will be known as model 2.  
The performance of model 1 compared to model 2 for the 
case of n =2k is the same due to the same number of 
comparisons.  For instance, let n = 16, from Pohl’s 
algorithm, there will be a total of 16+ 16/2 - 2 = 22 
comparisons.  Similarly, by considering equation (5a), since 
16 ≤ 3*23,  
 

2n-2k -2              for n ≤ 3*2 k (6a)

n+2k+1- 2            for n > 3*2 k (6b)

f(n)  =
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f(16) =  23f(2)+(16-2 3+1 )f(1)+ 2(16-1)-23+1 
= 8 f(2) + 0f(1) + 30-16 
= 8 + 14 = 22 

 
However, for the case of n ≠ 2k the performance is 
different, i.e., equation (6) has a smaller value than 2(n-1).  
This can be proved by the following proposition. 
 
Proposition 1: 
Let n be the number of data in a data set, if f(n) as in (6), 
then f(n) < 2(n-1). 
 
Proof: 
First, from equation (6a), since 2k > 1, where k is a non-
negative integer, 
then, 

2n-2k -2 < 2n-2 
= 2(n-1). 

 
Secondly, from equation (6b), since 2k+1 < 3.2 k < n, 
then, 

n+2k+1 -2 < 2n-2 = 2(n-1).  
 
Therefore, it is clear that the number of comparisons, using 
the 2B policy algorithm is smaller than the number of 
comparisons given by Pohl. 
 
Table 1 shows the performance results obtained for n ≠ 2k.  
The processing time taken for model 1 and model 2 were 
running under the PC computer system with the 16.0 MB 
RAM memory. 
 

Table 1: Performance comparison between model 1 (m1) 
and model 2 (m2).  Number of elements varies from 1000 

to 7000 
 

No. of 
recursive 

calls 

No of 
comparisons 

f(n) 

Processing 
time (sec) 

No of 
elements 

(n) 
m1 m2 m1 m2 m1 m2 

1000 511 999 1510 1998 3 6 
2000 1023 1999 3022 3998 6 12 
3000 1975 2999 4974 5998 11 17 
4000 2047 3999 6046 7998 12 24 
5000 2951 4999 7950 9998 18 30 
6000 3951 5999 9950 11998 23 36 
7000 4095 6999 11094 13998 24 41 

 
It was found that model 1 shows a lower value of the 
number of comparisons when compared to model 2 for the 
case of the number of elements from a set of data is not in a 
power of 2.  This is due to the least number of recursions of 
model 1 when compared to the number of recursions of 
model 2.  For instance, when n = 7000, the number of 
recursions of formula 2 is 6999 whereas the number of 
recursions given by model 1 is 4095 making the number of 
comparisons of model 1, 21.05% lower than that of model 
2, and also, the processing time of model 1 is 41.5% 

smaller than that of model 2.  Hence the performance of 
model 1 is better than that of model 2 since the number of 
comparisons from model 1 are smaller than that of model 2 
(Fig. 5 – Fig. 7). 
 

 
Fig. 5: Graph number of comparisons versus number of 

elements 
 

 
Fig. 6: Graph number of recursions versus number of 

elements 

 
Fig. 7: Graph number of processing time versus 

number of elements  

0
1000
2000
3000
4000
5000
6000
7000
8000

50
0

25
00

45
00

65
00

no. of elements

no
. o

f r
ec

ur
si

on
s

model 1

model 2

0
2000
4000
6000
8000

10000
12000
14000
16000

500
2500

4500
6500

no. of elements

no
. o

f c
om

pa
ris

on
s

model 1

model 2

0
5

10
15
20
25
30
35
40
45

50
0

15
00

25
00

35
00

45
00

55
00

65
00

no. of elements

no
. o

f p
ro

ce
ss

in
g 

tim
e 

(s
ec

)

model 1

model 2



Deris, Hamzah and Mamat 

20 

5.0 CONCLUSION 
 
We have proposed a so-called 2B policy for the formula of 
calculating the number of comparisons in searching the 
minimum and maximum elements in a set of data of size n.  
As an implementation of the 2B policy, the divide-and-
conquer algorithm was enhanced and its performance has 
been compared with that of Pohl’s algorithm.  It was 
observed that the enhanced divide-and-conquer algorithm 
developed in this paper under the 2B policy has performed 
equally at par when compared with Pohl’s algorithm for 
data size in power of two and better when compared with 
data size not in a power of two. 
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APPENDIX 1.1 
 
Let  f(n) = f(n/2) + f(n-n/2) + 2 be the equation as in 
section (2). 
 
where n means the largest integer that is less than or equal 
to n.  The above equation can be deduced recursively as 
follows: 
 
  = [f(n/22) + f(n/2 - n/22 ) + 2] +  
           [f(n/2- n/22) + f(n-2n/2 + n/22) + 2 ]+  2. 
 
   = f(n/22) + 2f(n/2 - n/22 ) + f(n-2n/2 +  n/22) 
 
      + 2(3). 
     . 
     :     
 

 
 
APPENDIX 1.2 
 
As the equation in Appendix 1.1, for the case where n is a 
power of 2, then n- n/2 = n/2.  Therefore,  
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