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ABSTRACT

The number of comparisons involved in searching minimum
and maximum dements from a st of data will determine
the performance of an algoritm A Divide-and-Conquer
algorithm is the mogt efficient algorithm for searching
minimum and maximum dements of a s of data of any
sizez  However, the performance of this algorithm can ill
be improved by reducing the number of comparisons of
certain sets of data.  In this paper a 2-block (2B) policy
under the divide-and-conquer technique is proposed in
order to deal with this problem. On the bass of this policy,
the divide-and-conquer algorithm is enhanced. It is shown
that the performance of the proposed algorithm performs
equally at par when compared with the established
algorithm of data sze of power of two and better when
compared with data Size of not a power of two.

Keywords Algorithm,  Divideand-Conquer,  Perform
ance, Recursve
10 INTRODUCTION

One of the areas that is substantialy important with storage
I/0 problems is an dgorithm, which involves the technique
of searching and computation [1, 2, 3 6]. An agorithm can
provide a datisfactory solution to a problem if it is efficient
and produces a correct answer. One messure of an
dgorithm’'s efficiency is the time used by a computer in
solving a problem when input values are of a specified sze
[5]. The time taken by an dgorithm can be expressed in
terms of the number of operations used by the agorithm for
acertain number of input values.

For the case of searching minimum and maximum dements
from a set of data, the time complexity of the agorithm can
be expressed in tems of the number of comparisons.
Therefore, the smdler the number of comparisons needed,
the better the dgorithm is. Hence, the peformance of the
dgorithm increases with the decrease in the number of
comparisons.

Until now, Pohl's dgorithms are the most popular
dgorithms for searching minimum and maximum dements
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from a st of daa Pohl has egtablished two different
agorithms [4] to cater two different forms of data sze. The
first dgorithm is for the data size in a power of two, i.e, it
hes a fom of n = 2 where k is a positive integer. The
second one is for the case of n * 2 According to Pohl, the
dgorithm for n % is il the best agorithm and the
dgorithm for n t Fis ill a very efficient agorithm [4].
The number of comparisons in the agorithm for n = 2 is
the same as the one expressed by the formula given by
Rosen [5]. However, the agorithm for the case of n *
requires a lot of comparisons due to the large number of
recursve cdls for gplitting the data set.  Therefore, that
agorithm does not perform wel because a large number of
compaisons ae needed. In this paper, an enhanced
algorithm by means of a 2block (2B) policy is proposed in
deding with a large number of comparisons usal in divide
and-conquer technique.  The 2B policy ensures that the
agorithm is applicable in both cases, i.e, for the case of A

as well as n 2 Prior to this, the formula for
cdculating the number of compaisons based on the
enhanced dgorithm will be presented.  We then use this
formula to compute the performance or efficiency of the
dgorithm for different number of dements and hence make
a compaison to the exiging formula based on its
performance.

The rest of the paper is organized as follows: in section 2, a
generd formula for expressng the number of comparisons
is presented. The new formula to compute the number of
comparisons by means of the 2B policy when a data st is
of any sSze is derived in section 3. In section 4, the
enhanced divideand-conquer agorithm is then presented.
The peformance comparison between the  enhanced
agorithm and Pohl’s agorithm is dso described.  Findly,
some concluding remarks are presented in section 5.

20 THE NUMBER OF COMPARISONS

Many recursive dgorithms take a problem with a given
input and divide it into one or more smaler problems. This
reduction is successively applied until the solutions of the
smaler problems can be found quickly. These procedures
ae cdled dvideand-conquer dgorithms [1, 5. Consder
the following dgorithm for locaing the minimum and



maximum eements of a sequence & &, ..., & If n=1, then
a is the minimum and the maximum. If n > 1, solit the
sequence into two sets, where each st contains n/2
dements when n is even. If n is odd then one of the sets
has one dement more than the other. For example, if n = 7,
one &t has 3 dements and the other has 4 dements. The
problem is reduced to finding the minimum and maximum
of each of the two smaler sets. The solution to the origind

problem results from the comparison of the separate
minima and maxima of the two smdler sets to obtain the
overdl minimum and maximum.

Le f(n) be the totd number of comparisons needed to find
the minimum and maximum eements of the set with n
edements. A problem of size n, where n is a power of two
can be reduced into two problems of Sze n/2, using two
comparisons, one to compare the minima of the two sets
and the other to compare the maxima of the two sets. This
givesthe divide-and-conquer recurrence relation:

f(n) =f(&v20) + f(en/20) + 2
= 2f(&n20+ 2

For any postive integer n, the above recurrence relation can
be express as:
f(n) =f@E&nv20)+ f(n- ev20+ 2 (h)
where (E20) means the largest integer that is less than or
equa to a Equaion (1) can be deduced recursvely and it
is (Appendix 1.1 for the derivation):
& B/ O a6 5
= K2f - Fen/2x- i)+ 2 2
a (g @ 1 & enr210) a

@

For the case where n is a power of 2, then n év20 = év2Q
Therefore, from equation (2), f(n) (Appendix 1.2 for the
derivation);

Equation (3) isthe same as discussed by Rosen [5].

_ ok Ry
= 2“f (1) + 28 2

j=0

©)

30 THE2BPOLICY AND SOLUTION METHOD

In what follows, the terms an array of data and a set of data
will be used interchangesbly. An aray of integers of size n
will be split recursvely using the divide-and-conquer
technique until an array with two elements when n = 5 or
an array containing 1 element when n 1t 2 is obtained. The
initial conditions for f(2) = 1 and (1) = O are used, when n
= Xandnt & respectively. For the case of n = %, Pohl has
given the agorithm such that the number of comparisons is
the same as the equation (3) where the minimum number of
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dements in an aray of integers is 2. In other words, no

recursve cdls will be required for n = 2 Therefore
equation (3) should be rewritten as follows:
k-2 .
f(n)=2*f(2)+234 2', for k3 2.
j=0
(4)

However, for the case of n 1 Zﬂ a number of recursgve cdls
will be required untii an aray contans 1 dement.
Therefore, Pohl's  dgorithm [4] will cause a lot of
comparisons due to a large number of recursons. This is
due b the fact that, if n is the number of data in a data set,
then there will be n base cases, each with no comparison,
and n-1 recursive cdls, each of which is followed by two
comparisons, hence a tota of 2(nl) comparisons.  For
ingtance, let n=5, then the number of recursve cdls is 4 and
the number of comparisons is 8. This can be shown
graphicdly asin Fg. 1.

f(5)
/ (< >(3\
f(1) f1) f(1) f(2)

f(2) f(1)

Fig. 1: Graphicd representation for n=5

We will hence introduce a policy, which reduces the
number of recursve cdls. In this policy, the smdlest size
of an array is 1. However, an aray with size 2 will not be
further split or blocked. Therefore, the minimum sze of
sub arays is either 1 or 2 Whenn =2 or n = 1, no
recursve cdl is required. This policy is caled 2block (2B)
policy. Due to the initid conditions of n, the range of n
should be "< n< 22 where k is a positive integer. Thus,
the present formulafrom eguation (2) can be deduced as:

_K RO L - i@0 ki, S
f(n)—igo(gig(jgo( 1) g“—-a@/Z U)+21.302

wherek =€logn- 10

By applying equation (5), for the case of n =5, the number
of recursive cdlsis 2, and the number of comparisonsis 6.
%2"f(2)+(n -2 f@+2n- -2 for
I

} (n- 2k+l)f (2)+ (2k+2 -n)f@)+ k2 _

n£3*2%... (5a)

2 for n>3*2%.. (%)

Propety 1:
n=2

Equation (5) is dso gpplicable for the case of
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Proof: To prove the property (2) it must be shown that
equation (5) holdsfor thecasedf n= 2

Fird, consder equation (53). Since 2 £ 3* 2%, then by
substituting k with k-1, we have,

f(n) = 2¢1(2)+(2% 2 9f(1) + 2(Z<1)-2*
=2X%(2)+ 0F(1) + (22)
=2"%(2)+ 2 (2*-1)

kd 2
=212 +2Q 2/,
j=0

fork3 2

Smilaly, snce 2 > 3* 2“2 we substitute k with k-2 in
equeation (5b). Hence

f(n) = (2% 2') (2+2“29f(1) + (22)
=2M(2)+ 0f(1) + 2(Z-1)
k-2
-2 q2) +2é 21,
j=0

fork3 2

This property isthe same asin equation (4).

Property 2: The number of comparisons for eguation (5)
can be derived explicitly as below:

2n2%-2 forn£ 3+2k
f(n) = ©a
n+2k1. 2 forn>32k  (6b)
Proof: The origind divideand-conquer  requires the

following numbers of comparisons and recursons. Let n be
a number of data in a data set. If n is a power of two, there
will be n/2 base cases, each with one comparison, and n/2-1
recursve cals, each with two comparisons, for a totd of
n+n/2-2 comparisons [4]. If n is not a power of two, the
tota number of comparisons are 2(n-1) as mentioned in the
ealier section.

From property (1), the coefficient of f(2) and f(1) are the
number of base cases for f(2) and f(1) respectively.

Therefore, from equation (53), for the case of f(2), there
will be 2¢ base cases, each with one comparison, and 2 -1
recursve cdls each with two comparisons, for a total of p)
+2(2k-l) =3 5.2 comparisons.  For the case of f(1), there
will be n-2*! base cases, each with no comparison, and n
2 recursive calls, each of which is followed by two
comparisons, hence atotal 2 (2% comparisons.

Thus,
f(n) = (3* 2°-2) + 2 (n2*Y
=2n2%-2.
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Smilarly, from eguation (5b), for the case of f(2), there will
be n2“" base cases, each with one comparison, and n2“** -
1 recursive cals, each with two comparisons, for atotal of
n 2 +2n2t1) = 3( n 2')-2 comparisons. For the
caxe of f(1), there will be (2“2- n) base cases, each with no
comparison, and 221 recursve cdls, each of which is
followed by two compaisons, hence a totd 2 (Z*%n)
Comparisors.

Thus,
f(n) = 3(n 2**)-2+ 2 (2*%n)
=m2¥12
Therefore, equetion (6) holds.
40 THE PROPOSED ALGORITHM AND

PERFORMANCE COMPARISON

As an implementation of the 2B policy, the agorithm,
which guarantees the least number of comparisons
expressal by equation (5), is presented below. This
agorithm contains two base cases, namely when number of
dements (n) in an aray is 1 and 2 respectivdy. The
agorithm isdescribed asfollows:

[* thedzeof thearray aisn */
divide-and-conquer:
if(n=1)
min =max = g0]
else
if(n=2)
find min_max (g[0] , g1])

else
divide and-conquer (an/2, min,max)
divide-and-conquer (a+n/2, n-n/2minmax)

find_min (min1,min2)
find_max(max1,max2)
end.

Fg. 3: Divide-and-Conquer Algorithm using 2B policy

A comparison of peformance between the 2B policy
dgaithm and Pohl’s agorithm based on the number of
comparisons to get the minimum and maximum eements
from the sats of data is given in Table 1. The present
agorithm, which applies to the present formula, will be
known as modd 1 and the existing dgorithms (for n = pa
andn ? 2k) given by Pohl [4] will be known as modd 2.
The performance of modd 1 compared to modd 2 for the
cae of n is the same due to the same number of
comparisons. For ingance, let n 16, from Pohl's
dgorithm, there will be a tota of 16+ 16/2 - 2 2
comparisons.  Similarly, by considering equation (5a), since
16 £32°,



f(16) = Zf(2)+(16-2>M)f(1)+ 2(16-1)-2**
=8f(2) +0f(1) + 30-16
=8+14=22

However, for the case of n t 2° the peformance is
different, i.e, equation (6) has a smdler vaue than 2(n-1).
This can be proved by the following proposition.

Proposition 1:
Let n be the number of data in a data set, if f(n) asin (6),
thenf(n) <2(n-1).

Proof:
First, from equation (6a), snce Z > 1, where k is a non-
negativeinteger,
then,
2n2*2<2n-2
=2(n-1).

Secondly, from equation (6b), since 2** < 3.2%< n,
then,
m2X"1-2<2n-2=2(n-1).

Therefore, it is clear that the number of comparisons, using
the 2B policy agorithm is smdler than the number of
comparisons given by Pohl.

Table 1 shows the performance results obtained for n *
The processing time taken for modd 1 and modd 2 were
running under the PC computer system with the 16.0 MB
RAM memory.

Table 1. Performance comparison between modd 1 (m1)
and mode 2 (m2). Number of elements varies from 1000

to 7000
No of No. of No of Processing
elements recursive comparisons time (sec)
(n) calls f(n)
ml m2 ml m?2 ml | m2
1000 511 999 1510 | 1998 | 3 6
2000 1023 | 1999 | 3022 | 3998 | 6 12
3000 1975 | 2999 | 4974 | 5998 | 11 | 17
4000 2047 | 3999 [ 6046 | 7998 | 12 | 24
5000 2051 | 4999 [ 7950 | 9998 | 18 | 30
6000 3951 [ 5999 | 9950 | 11998 [ 23 | 36
7000 4095 | 6999 | 11094 | 13998 | 24 | 41

It was found that mode 1 shows a lower vaue of the
number of comparisons when compared to modd 2 for the
case of the number of dements from a set of datais not in a
power of 2. This is due to the least number of recursions of
modd 1 when compared to the number of recursons of
modd 2. For instance, when n = 7000, the number of
recursons of formula 2 is 6999 whereas the number of
recursons given by modd 1 is 4095 making the number of
comparisons of model 1, 21.05% lower than tha of modd
2, and aso, the processing time of modd 1 is 41.5%
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gndler than that of modd 2. Hence the performance of
modd 1 is better than that of model 2 since the number of
comparisons from modd 1 are smdler than that of modd 2
(Fig.-5—Fig. 7).

16000 1 - -~ """t --c----
14000 A -
12000 1
10000 1
8000
6000 T -
40007 -
2000 A

‘| —+—model 1
-—-A--model 2

no. of comparisons

no. of elements

Fig. 5: Graph number of comparisons versus number of
elements

H—+—model 1
1 -—#&—-model 2

no. of processing time (set

no. of elements

Fig. 6: Graph number of recursions versus number of
dements

4 —e—model 1
——&---model 2

no. of recursions

no. of elements

Fig. 7: Graph number of processing time versus
number of dements
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50 CONCLUSON

We have proposed a so-cdled 2B palicy for the formula of
cdculating the number of comparisons in searching the
minimum and maximum eements in a st of data of sze n.
As an implementation of the 2B policy, the divideand-
conquer dgorithm was enhanced and its peformance has
been compared with that of Pohl's agorithm. It was
obsarved that the enhanced divideand-conquer dagorithm
developed in this paper under the 2B policy has performed
equaly a par when compared with Pohl's dgorithm for
data size in power of two and better when compared with
data size not in a power of two.
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APPENDIX 1.1

Let f(n) = f(&v2Q + f(né&v20) + 2 be the equation as in
section (2).

where énll means the largest integer that is less than or equd
to n. The above equaion can be deduced recursvely as
follows:

= [f(en2%0 + f(evan - &vZa) + 2] +
[f(&n/20- &V2%) + f(n-2&v20+ &vFg + 2]+ 2.

= f(@n'2°0) + 2f(En/20 - &/ 220) + f(n-2en/ 20+ én/2%))

+2(3).

= £ (@240 +KF (/210 @ 20+
k(k - - ~ . A ~
A 180220 28y 210 820 +

o kk- ). ~ " . 1
+L (- k) 20020 (1) Gu2G+ 28 2
1=0

k .. i .o k-1
=8 (XU (8 (-1 1B %2 p)+ 28 2!
a (&5 (& -nrigre 0) a

APPENDIX 12

As the equation in Appendix 1.1, for the case where n is a
power of 2, then n- &V20= én/20. Therefore,

k " i k-1
fM=3 E%UQ - 18RI +23 2!
(n) go(g,kg CACERIF: ) a

k(k - 1)
2!

k(k- 1) k1
= f@Q+kf(- 1+2)+Tf(l- 2A2+4h)+..+fD)+292
j=0

K1
+.+1+23 2!
j=0

= fQ[1+k+

kel
=2f(1)+23 2!

=0



