Malaysian Journal of Computer Science, Vol. 13 No. 1, June 2000, pp.76-83

OBJECT-ORIENTED APPROACH TO SPECIFY SECRET SHARING PROTOCOL IN SECURITY CRITICAL
SYSTEM USING FORMAL METHOD

Kok Meng Yew, Mohammad Zahidur Rahman and Sai Peck Lee
Faculty of Computer Science & Information Technology
University Malaya
Kuala Lumpur, Malaysia
email: zahidur@siswazah.fsktm.um.edu.my

ABSTRACT

Computers are being used increasingly in different security
critical systems like electronic commerce and health care
systems. The formal analysis turns out to be very useful that
its application should be routine for financial and security
critical systems. To win the confidence of users of a secured
system, like secure secret sharing protocol, there is no other
alternative than the formal method.

In this paper, we first briefly introduce the secret sharing
system and Object-Z formal specification tool. Then we
present our design of the secret sharing scheme. In our
model, the participating user and the information sharing
authority dealer are modeled. To exchange information
securely between users and the dealer, private channels
are used. Broadcast channel is used for open information
exchange. Both types of channels have been modeled. The
model is formally specified by introducing the concept of
combine object for collecting secret shares and for checking
whether they lie in the perfect secret sharing scheme. We
finally conclude with our experience.

Keywords: Formal method, secret sharing.

1.0 INTRODUCTION

Computers are being used increasingly in different security
critical systems like electronic commerce and health care
systems. The formal analysis turns out to be very useful that
its application should be routine for financial and security
critical systems [1]. Formal specification is defined in
the IEEE Software Engineering Standards Collection as [2]
“a specification written and approved in accordance with
established standards”, and “a specification written in a
formal notation, often for use in proof of correctness”.

To avoid single point of failure and achieve confidentiality
of users so that their vital information is not compromised,
various secret sharing schemes are proposed which will be
discussed in Section 2.0. The secret sharing mathematical
schemes do not specify the structure of information system
(IS) to which formal methods are employed.

In this paper, we investigate the issues involved in the design
of the mechanism for the secret sharing. We present a

76

generic model of secret sharing that can be used to support
software engineers in reusing existing system designs and
in developing new systems. The paper also shows how a
formal software engineering notation, in this case Object-Z,
extension of Z notation, can be used to develop models. In
our model, the participating user and the information sharing
authority dealer are modeled. To exchange information
securely between users and the dealer, private channels are
used. The broadcast channel is used for open information
exchange. Both types of channels have been modeled. The
model is formally specified by introducing the concept of
combine object for collecting secret shares and for checking
whether they lie in the perfect secret sharing scheme.

2.0 SECRET SHARING SCHEME

Formally, a secret sharing scheme can be defined as a method
of sharing a secret s among a set of participants P, in
such a way that qualified subsets of P can reconstruct the
value of s, whereas any other (non-qualified) subset of P
cannot determine anything about the value of s. Each of the
participants receives a share of the secret s. In the rest of
the text, the share means the secret share distributed among
the participants P. Secret sharing schemes are useful in any
important action that requires the concurrence of several
designated people to be initiated. They are also used in the
management of cryptographic keys and multi-party secure
protocols.

The earliest secret sharing schemes studied were (Kk,n)
threshold schemes. A (Kk,n) threshold scheme allows a secret
to be shared among n participants, in such a way that any
k of them can recover the secret, but any k-1 of them
have absolutely no information on the secret. Shamir [3]
and Blakley [4] independently showed how to realize (k,n)
threshold schemes. Subsequently, Ito et al [S] and Benaloh
and Leishter [6] described a more general method of secret
sharing. They showed how to realize a secret sharing scheme
for any monotone access structure. Other threshold schemes
have been devised following the contribution of Shamir and
Blakley [7, 8].

The issue of efficiency (i.e. share sizes) of such schemes has
been considered in several papers [9, 10, 11]. Benaloh and
Leichter [6] suggested a scheme for structures represented by

Object-Oriented Approach to Specify Secret Sharing Protocol in Security Critical System Using Formal Method

monotone formulae. The span program is the most general
access structure for which efficient secret sharing schemes are
used. Krawczyk [12] suggested the notion of computational
secret sharing.

To avoid cheated by a dealer by not sharing a secret and to
avoid the denial of service due to non-cooperation of some
of participants in reconstruction phase, fault-tolerant secret
sharing scheme known as verifiable secret sharing scheme
(VSS) was first proposed by Choretal [13]. After the original
introduction of the concept of VSS, several VSS protocols
were proposed which were motivated by various applications
like secure multi-party computation [14].

In this paper, we formally specify the Shamir’s (K, n)
threshold secret sharing scheme. In this scheme, the Dealer
sends secret shares to n Players secretly through private
channels. The information through a private channel is only
known to the recipient. To protect the Dealer’s integrity
over the share, the Dealer broadcasts a hashed value for each
share to all the participants and every participant collects it
for future verification. The context diagram of the secret
sharing scheme is shown in Fig. 1.

Dealer

Player 2 Playern

Fig. 1: Secret sharing scheme

3.0 FORMAL METHOD AND OBJECT-Z

The model presented here is written using the object-oriented
extension of software engineering notation Z, Object-Z.
Since Object-Z is not a typical choice of modeling language
within the secret sharing community, our choice deserves
some explanations. The suitability of object-Z for our task
derives from some observations about secret sharing scheme.
Firstly, a secret sharing scheme involves a set of users.
Object-Z provides all the usual machinery of set notation.
Secondly, a generic model of secret sharing scheme requires
the abstract description of a function. Object-Z is well-suited
in defining constraints on functions without specifying the
function explicitly.

Object-Z [15, 16] is an extension to Z [17] to support
specification in an object-oriented style. An object-oriented
specification describes a system as a collection of interacting
objects, each of which has a prescribed structure and
behavior. A Z specification defines a number of state and

71

operation schemas. In object-Z, a state schema and schemas
operating on that state can be grouped together to form a class.
A class is a template for objects. Each object of the class has
a state conforming to the class state schema and is subject
to state transitions which conform to the class operations.
Classes can be related by inheritance and the inheritance can
be used as a type:instances of that type. This allows objects
to refer to other objects. A general class definition has the
following form:

__ ClassName[generic parameters]
visibility list
inherited classes
type definitions
constant definitions
state schema
initial state schema
operation schemas

history invariant

An operation can refer only to the state of the object to which
itbelongs. The possible constituents of a class are: a visibility
list, inherited classes, type and constant definitions, a state
schema, an initial state schema, operation schemas and a
history invariant. The visibility list (prefixed by [) restricts
access to the listed features. If it is omitted, then all features
are visible. The inherited classes denote those classes that are
inherited by the defining class. Inheritance results in a merger
of state, initial state schema Init and operation schemas
having the same name. Complex classes can be specified
to inherit from other classes, or to include references to
instances of objects. The type and constant definitions of the
inherited classes and those declared explicitly in the derived
class are merged. Any schemas with the same name and the
state schemas are conjoined. Also, the history invariants are
conjoined. Name clashes can be resolved by renaming. The
visibility lists may be used to disable inheritance of properties
of a class. Redefinition of properties may be achieved by
hiding and renaming of properties.

Type and constant definitions are same as in Z. The state
schema is nameless and comprises declarations of state
variables and state predicate. The state predicate forms the
class invariant. It is implicitly included in every operation
and the initial state schema. The initial state schema defines
the possible initial states. The initial state is not unique.
Operation schemas describe the methods defined for the
class. The operations have a A-list of those individual state
variables whose values may change when the operation is
applied to an object of the class. State variables which are not
listed in the A-list are unchanged by an operation. The lower
part defines a predicate relating the initial and final states of
the operation. The precondition and postcondition describe
the effect of an operation. The history invariant is a predicate
over histories of objects of the class. It further constraints
the possible behavior of such objects. Fairness and safety
properties are typical constraints of object histories. History

Yew, Zahidur and Lee

invariants are typically stated in temporal logic. Temporal
logic provides a means of specifying certain dynamic aspects
of a possibly, highly complex system.

A declaration ¢:C declares ¢ to be a reference to an object of
the class C. A declaration does not mean that a new object is
introduced nor does it mean that the object is initialized.
Initialization of objects is attained by including the INIT
schema of the class in an operation schema or the INIT schema
of another class. Object creation is not directly provided
in Object-Z. If this concept is necessary in a specification,
it can be expressed by modeling a set of existing objects.
Dot notation (C.var, C.op, ...) is used to refer to class
properties. Objects may have object references as attributes
and such references may either be individually named or
occur in aggregates. If the references do not change, they
can be declared as constants. However, this does not mean
that the contents of the stacks remain constant.

The polymorphic operator ({)defines the type of an attribute
as any class which inherits from the specified base class.
Operations applied to such an attribute must be polymorphic,
i.e. regardless of the actual class of the object, the
operation must be able to proceed. The containment
operator ((©)defines an ownership relationship between class
instances. Operations may be combined using the Z schema
calculus [17], including conjunction (A) and sequential
composition (§). Object-Z provides two further operators:
concurrency (||) and angelic choice ([]). The concurrency
operator merges state and predicates of operation schemas
and identifies inputs and outputs. The angelic choice operator
selects one of two operations according to which one can be
performed. If both operations can be performed, a non-
deterministic choice is made between the two.

4.0 FORMAL SPECIFICATION OF OUR MODEL

The formal specification of the secret sharing can be
represented by introducing a set of registered users. The
dealer is a trusted agent who mediates the secret sharing
using private channels to communicate with the users and
broadcasts information on a broadcast channel.

The information to be shared among the users are represented
by a sequence of characters. We are not concerned with the
internal detail of the text information. The encoded secret
should be represented by a sequence of characters and it is
specified as

[INFO]

When the text information is shared among different users, it
changes to shared information and its construction is different
from the text information. Hence we introduce

[SHARE]

which will be received by designated users only.

78

The response to any request is defined as Boolean, which is
either true or false.

Boolean ::

true | false

The status of data in a communication channel can either be
cleared, sent or received and is defined as STATUS

STATUS := clear ‘ send ‘ receive

To identify a user uniquely, two sets are introduced. Each of
the participants of secret sharing has an identification number
and a name. The set of unique identifiers, UID, is needed to
identify a registered user.

[UID, NAME]

denotes the set of all possible identifications of users and a
special case for one dealer.

The users can be represented by

USERS == P(UID x NAME)

A set of users forms a possible key group, who can reconstruct
secret information. This set of users can be represented as

SharedUserGroup == P USERS

The information of the SharedUserGroup set is to be known
to the dealer for sharing the secret. The hashing of
information can be abstracted by a total function of INFO and
HASHVALUE so that INFO has only one HASHVALUE.
The HASHVALUE can contain any value.

[HASHVALUE]

4.1 Public Key List

In the proposed specification of secret sharing scheme, the
private channel uses the asymetric encryption technique. To
accomodate the public keys for the users, a public key list is
introduced. The public key list is open to all users. Any user
can update his/her own public key, but can access anyone’s
public key for read only. There will be one instance of public
key. Given that the type Key denotes the set of key values to
which the public and private keys will be set.

[Key]

We define publicKey as Key. The Key is a large natural
number.

publicKey == Key

The public key list can be represented as follows.

Object-Oriented Approach to Specify Secret Sharing Protocol in Security Critical System Using Formal Method

__ PublicKeyList
[(ChangePublicKey, AddPublicKey)

PublicKey : P publicKey;
userList : P UID;
PublicKeyList : UID -+ publicKey

userList = dom PublicKeyList

_ AddPublicKey
A
(PublicKey, PublicKeyList)
user? : UID
PublicKey? : publicKey

user? & userList A PublicKeyList'
PublicKeyList U {user? — PublicKey?}

_ ChangePublicKey
A(PublicKey, PublicKeyList)
user? : UID

oldpublicKey? : publicKey
PublicKey? : publicKey

user? € userList A PublicKeyList' =
PublicKeyList & {user? — PublicKey?}

_ GetPublicKey
user? : UID
PublicKey! : P publicKey

user? € userList A PublicKey! = ran
({user?} < PublicKeyList)

__isMember
user? : UID

user? € userList

getpublicKey = GetPublicKey
changepublicKey = ChangePublicKey
addpublicKey = AddPublicKey
isMember = isMember

In the process domain, there will be only one public key
list. State component PublicKeyList is declared as a partial
function rather than a total function. The AddPublicKey adds
auser’s public key to the list if the user is not already enlisted.
In some occasions, public key of a user requires to be changed
and this change is performed if the user is in the list. To have
apublic key of a user, the user should be on the list, then only
it can be extracted by restricting the user in PublicKeyList.

4.2 Private Channel

The private channels are for secure communication between
the dealer and the users. The information being sent over the
private channel can only be opened by the recipient using its

79

private key. When a piece of information is required to send
to a given user, the information is encrypted by the public
key of the recipient. As the system uses a private channel
to transfer data between the dealer and a particular user, this
can be represented by the following specification.

___ PrivateChannel

PKList : PublicKeyList;
publicKey : Key;

info : INFO; EcdInfo : INFO;
uid : UID; prvKey : Key;
infoStat : STATUS

__INIT
infoStat = clear

__setInfo
A(info)
info? : INFO

infoStat = clear
prvKey' = pruKey A infoStat' = send

__setPrvKey
publicKey? : Key;
pruKey? : Key

prvKey' = pruKey?

_sendInfoPriv
Ruid? : UID;
EcdInfo? : INFO

infoStat = send
EcdInfo? # info A uid # Ruid?
A infoStat’ = clear

__receiwelnfo
recInfo? : INFO;
Ruid? : UID;
Suid? : UID;
EcdInfo! : INFO

infoStat = clear
EcdInfo' = EcdInfo! A EcdInfo! =
recInfo? A uid = Ruid? A infoStat = receive

__decodelnfo
Ruid? : UID;
EcdInfo? : INFO;
infol : INFO

wid = Ruid? A info! # EcdInfo?

setPruvKey = setPrvKey e PKList.chgPubKey
recetvelnfo = receivelnfo ¢ PKList.isMember
sendInfo = sendInfoPriv e PKList.getpubKey

~

Yew, Zahidur and Lee

In a private channel, information should be encrypted by the
public key and at the receiving end, encrypted information
received can only be decrypted by using the recipient’s
private key. This capability leads to the requirement of a
private and public key pair. To change a private key, it is
necessary to change the public key in the public key list.
When a piece of information is ready to be sent privately,
the information and the encrypted information cannot be the
same. To abstract out the method of encryption, the model
does not mention the mechanism. When the information is
received, the encoded information can be updated, as in the
private channel, only encoded information can be received.
The information received should address the owner of the
private channel. The received information is decoded by the
decryption algorithm which is not stated to abstract out in
decodeInfo. The PKList for the channel must be initialized
at the begining of the session. The dealer uses the private
channel to send data to the user. The specific private channel
is only known to the dealer and the specific user.

4.3 Broadcast Channel

The broadcast channel is used to transmit data to all
participants so that the receiver can reconstruct some
information which can be used to verify that the dealer is
fair and participating members are not being cheated. In the
broadcast channel, the same information is to be sent to all
the participants of the secret sharing scheme. As we are not
modeling a multicast broadcast scheme, information is sent
to each participant independently. the operation receivelnfo
just adds incoming information to its state.

___BroadcastChannel

info : INFO;
userlist : P UID

__sendinfo
mfo? : INFO
user? : UID

user? € userlist

__broadcast
info? : INFO;
u!: UID

YV u: userlist e u! = u

__recetve
info! : INFO

broadcast = broadcast e sendinfo
receive = receive

80

4.4 User

The user in this model is defined to send and receive
information over both private channel and broadcast
channel. The user has to verify the share received from the
dealer. He/she also receives information from other users
who are in the public key list. The broadcast channel is
used for disseminating information to all the participants
in secret sharing scheme. The private channel is used
for communication between the dealer and the participant
secretly. The user sends and receives information privately
using the private channel. While sending information
over the private channel, the method sendinfoPriv is used.
To receive information over the private channel, receive
method is used. To receive information over the broadcast
channel, receiveb method is used. The verifyShare is used
to check that the hashed value of the received share and the
broadcasted hashed value by the dealer is the same. The
verify method is used when information is to be disseminated
over the broadcast channel, and only the information that is
in user’s possession is to be broadcasted.

__User

pchannel : PrivateChannel;

bchannel : BroadcastChannel;
MySharedUserGroup : P SharedUserGroup;
Hash : INFO - HASHVALUE;

hShr : SharedUserGroup + HASHVALUE;
MyShare : P INFO

broadcast
share? : INFO

receive
share! : INFO

sendPriv
Ruid? : UID;

share? : INFO;

aSharedUsrGrp : SharedUserGroup;
aUser : USERS

aSharedUsrGrp € MySharedUserGroup
A Ruid? € dom aUser
A aUser € aSharedUsrGrp

verify
info? : INFO;
answer! : Boolean

info? € MyShare N answer! = true

Object-Oriented Approach to Specify Secret Sharing Protocol in Security Critical System Using Formal Method

__wverifyShare
info? : INFO; Ruid? : UID;
zUser : USERS; answer! : Boolean;
zSharedUsrGrp : SharedUserGroup

xSharedUsrGrp € MySharedUserGroup
A Ruid? € dom zUser

A zUser € xzSharedUsrGrp

info? <\ Hash = xUser < hShr

A answer! = true

sendInfoPriv = sendPriv e pchannel.sendInfoPriv
broadcast = broadcast e bchanell.broadcastinfo
receive = receive ® pchannel.receivelnfo

receiveb = receive ® bchannel.receive

verify = verify)\ broadcast

verifyShare = verifyShare

4.5 Dealer

A dealer is modeled as an object that offers particular
services, as specified by the class dealer. The dealer is
actually a user, but when a user wants to share a secret among
others, the user now plays the role of the dealer. At that time,
the dealer will not receive any share of secret. The dealer
has more responsibility than the user. The dealer starts its
job when it receives a document to be shared. In verifiable
secret sharing algorithm, information is shared. The dealer
shares the information (secret) with a group of users who
are composition from users known as SharedUserGroup.
The dealer calculates all shares in SharedUserGroup. In
the definition of calculateShare, the algorithm of sharing
is abstracted out. The share should be different from
information to be shared. The share for each participating
user has to be sent privately. To receive information over
the private channel and the broadcast channel, receive and
receiveb are defined respectively.

__ Dealer
User

| MyInfo : INFO

MySharedUserGroup : P SharedUserGroup

__calcShare
group? : SharedUserGroup;
info? : INFO;

share! : UID — INFO

group? € MySharedUserGroup

YV u : dom group? e dom share! = u
Vi: INFO e i € ran share!

A i # info?

81

__calcHash
info? : INFO;
HashValue! : HASHVALUE

HashValue! = info? > Hash

sendPriv = calcShare o sendPriv

e pchannel.sendInfopriv

brdcast = brdcast ® bchanell.broadcastinfo
brdHash = calcHash e bchannel.broadcastinfo
receive = receive o pchannel.receivelnfo
receiveb = bchannel.receive

The dealer knows all the private channels between the dealer
and the users; but, one user can know only the private channel
directed towards the dealer.

4.6 Proposed Specification of Secret Sharing Scheme

We define a secret sharing scheme as a class which contains
one dealer and a set of users. To definetemporal specification
of the secret sharing scheme, we follow || operation
defined in Object-Z. The dealer first calculates share and
sends privately to all the users. At the same time, all the users
receive information secretly over the private channel between
the dealer and the particular user. The dealer broadcasts
hashed value of share for all the users and all the users receive
all information broadcasted by the dealer simultaneously. All
the users verify the share they receive and broadcast the result.
This time the dealer receives all the responses from the users
over the broadcast channel.

—_ SecretSharingScheme

myDealer : Dealer;
myUser : P User

—_distribSecret
myDealer.sendSharePrivately

__secretReceive
Vi : User e i.receive A © € myUser

__brdcastHash
Dealer.broadcastHash

__hashReceive
Vi : User o i.recetveb A i € myUser

—brdcastVerify
Vi : User e i.verifyShare

—_wverifyReceive
myDealer.receiveb

Yew, Zahidur and Lee

stepl = distribSecret || secretReceive
step2 = brdcastHash || hashReceive
stepd = brdcastVerify || verifyReceive

In this context, the cocept of combine object has to be
introduced. The role of the combine object is to collect
shares and checks whether they lie in the perfect sharing
scheme. If a share does not comply with the sharing scheme,
the combine object discards the share. Using the valid shares,
the combine object recombines the shares and extracts the
secret.

___Combine
Dealer

share : seq INFO;

secret : seq INFO;

limit : N;

behannel : BroadcastChannel;
MySharedUserGroup : P Shared User Group

INIT
secret = &

getShare
A(share)
group? : SharedUserGroup;
share? : UID — INFO

group? € MySharedUserGroup
Y u : dom group? e dom share? = u
Vi : INFO e i € ran share? A i # info?

__reCombine
A(secret)

#share > limit

collectShare = user? e getshare
reCombineShare = reCombine

5.0 CONCLUSION

The case study demonstrates that formal methods can be
useful for describing the specification of a secure information
system like secret verifiable information sharing. The case
study shows that Object-Z can be used to structure a secure
information system to fulfill its security requirements, and
at the same time, gracefully isolates the underlying VSS
protocol from the specification. The proposed generic formal
model of secure ISs can be used to support software engineers
in reusing existing system designs and in developing new
systems.

82

ACKNOWLEDGEMENTS

We would like to thank Wendy Johnston whose Wizard 1.5,
the type checker for object-Z, is used to type-check the
specifications presented in this paper. The specification
is written in BTEX document setting format and passed
directly to Wizard to be type-checked. Wizard is actually a
type-checking system for Object-Z specifications that work
with the IXTEX text formatter on Unix platforms. The
wizard program works on the same input file as KTEX. It
extracts and parses the formal text to check for syntax errors
and then type-checks the specification to find typing and
scope errors. It is available from the Software Verification
Research Center’s ftp area. This ftp area is located at:
ftp:/ftp.cs.uq.edu.au/pub/SVRC/software .

REFERENCES

[1] J. Bowen and M. Hinchey, “The Use of Industrial-
Strength Formal Methods,” In 217st International
Computer Sofiware and Application Conference,
COMPSAC 97,1997, pp. 332-337, IEEE Computer
Society Press.

[2] IEEE, “IEEE Standard Glossary of Terminology,”
In IEEE Software Engineering Standards Collection,

IEEE press, 1991.

A. Shamir, “How to Share a Secret,”
Communications of the ACM, Vol. 22, No. 11,
1979, pp. 612-613.

(3]

[4] G. Blakley, “Safeguarding Cryptographic Keys,”
In National Computer Conference, Vol. 48, 1979,

pp. 313-317, AFIPS.

A. S. M. Ito and T. Nishizeki, “Secret Sharing
Schemes Realizing General Access Structure,”
In Global Telecommunication Conference,
Globecom’87,1987, pp. 99-102.

(3]

J. Benaloh and J. Leichter, “Generalized Secret
Sharing and Monotone Functions,” In Advances in
Cryptology-CRYPTO’88, Vol. 403 of LNCS, 1988,
pp. 27-36, Springer-Verlag.

(6]

[71 C. Asmuth and J. Bloom, “A Modular Approach
to Key Safeguarding,” IEEE Transaction of

Information Theory, Vol. IT-30, 1983, pp. 208-210.

[8] J. G.E.Karnin and M. Helman, “On Sharing Secret
Systems,” IEEE Transaction of Information Theory,

Vol. IT-29, 1983, pp. 35-41.

E. F. Brickell and D. Davenport, “On the
Classification of Ideal Secret Sharing Schemes,” In
Advances in Cryptology-CRYPTO’89, Vol. 435 of
LNCS, 1990, pp. 278-285, Springer-Verlag.

9]

Object-Oriented Approach to Specify Secret Sharing Protocol in Security Critical System Using Formal Method

[10] L. G. C. Blundo, A. De Santis and U. Vaccaro, “On
the Information Rate of Secret Sharing Schemes,”
In Advances in Cryptology-CRYPTO’92, Vol. 740 of

LNCS, 1992, pp. 148-167, Springer-Verlag.

[11] A. Beimel and B. Chor, “Universally Ideal Secret
Sharing Schemes,” In Advances in Cryptology-
CRYPTO’92, Vol. 740 of LNCS, 1992, pp. 183195,

Springer-Verlag.

[12] H. Krawczyk, “Secret Sharing Made Short,” In
Advances in Cryptology-CRYPTO’93, Vol. 773 of

LNCS, 1994, pp. 136146, Springer-Verlag.

[13] S. M. B. Chor, S. Goldwasser and B. Awerbuch,
“Verifiable Secret Sharig and Achieving
Simultaneity in Presense of Faults,” In 26th
IEEE Symposium on Foundations of Computing

Science, 1985, pp. 383-395, IEEE.

[14] I.D.Ronald Cramer and U. Maurer, “Span Programs
and General Secure Multi-Party Computation,”

Brics, 1997.

[15] G. R. Roger Duke, Paul King and G. Smith, “The
Object-Z Specification Language: Version 1.,” Tech.
Rep. Technical Report 91-1, Software Verification
Research Centre, Department of Computer Science,

The University of Queensland, Australia, April 1991.

[16] G. R. Roger Duke and G. Smith, “Object-Z: A
Specification Language Advocated for Description
of Standards,” Tech. Rep. Technical Report 94-45,
Software Verification Research Centre, Department
of Computer Science, The University of Queensland,

Australia, December 1994,

[17] J. M. Spivey, The Z Notation: A Reference Manual.
Computer Science, Pretice Hall International, 2 ed.,

1992.

BIOGRAPHY

Kok Meng Yew was an Associate Professor of the Faculty of
Computer Science and Information Technology, University
of Malaya.

Mohammad Zahidur Rahman received B.Sc. degree
in Electrical and Electronics from Bangladesh University
of Engineering and Technology, Bangladesh in 1986 and
M.Sc. in Computer Science and Engineering from the same
university in 1989. He is currently pursuing his PhD in the
Faculty of Computer Science and Information Technology,
University of Malaya, Malaysia. His research interests
are security in E-commerce, electronic voting and Formal
Methods.

Sai Peck Lee obtained her Master of Computer Science
from University of Malaya in 1990, her D.E.A of Computer
Science from University of Paris VI Pierre et Marie

Curie in 1991 and her PhD of Computer Science from
University of Paris I Panthéon-Sorbonne in 1994. She is an
Associate Professor at the Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia.

