
Malaysian Journal of Computer Science, Vol. 13 No. 1, June 1999, pp.12-16

TOWARDS FORMALIZING OOMODELS: A CASE STUDY

Kok Meng Yew, Helena Bulbul and Mashkuri Hj. Yaacob

Faculty of Computer Science and Information Technology

University of Malaya,

50603 Kuala Lumpur, Malaysia

email: helena@siswazah.fsktm.um.edu.my

ABSTRACT

Object Oriented SystemDevelopment (OOSD) is gaining vast

popularity among the software developers and researchers.

However, the main challenge is to build a system which is

reliable and less error-prone. The application of graphical

informal Object Oriented (OO) technique for developing an

OO system lacks validity checking though it can represent

the system with more clarity. On the other hand, formal

specification can facilitate the development of a correct

implementation through automated reasoning techniques.

The incorporation of formal specification together with

informal technique helps in building complex and safety

critical system.

In this paper, we analyzed a case study system applying both

formal and informal techniques. The informal technique

for developing object model is Object Modeling Technique

(OMT), the notation used is of Unified Modeling Language

(UML) and the formal specification language used is Object-

Z.

Keywords: Formal method, Object-Z, OMT

1.0 INTRODUCTION

The use of graphical informal techniques for representing

system's architecture and behavior particularly with respect

to object oriented methodologies is gaining vast popularity

among the software developers today. While providing

system's information in a user friendly way and with

more clarity, these types of methodology suffer from a

lack of mathematical precision that allows misinterpre-

tation. The semantics of the graphical languages associated

with these methodologies are typically ambiguous, and thus

imprecise. The business logic executed by the system is

not predictable if the informal modeling technique is used.

On the other hand, formal technique to the task of system

development offers significant advantages. Formal methods

are amenable to machine manipulation and their precision

facilitates detailed methods of analysis [1],[2]. As both

formal and informal techniques have theirmerits in the proper

context during system development, it is better to incorporate

both the techniques in the course of system development.

The informal technique will provide system's information

visually and with clarity, whereas the formal technique will

ensure the correctness and reliability of the system developed

with the informal technique through complex validation and

extensive testing at every stage of development which is a

must [3] to produce a reliable and less error-prone system.

The main goal of this paper is to use a formal modeling

technique together with an informal technique in order to

model and analyze the "LoanSch Processing System" of

University ofMalaya. The informal techniquewhichwe used

to develop the graphical model of the system is Rambaugh's

OMT and the formal technique which we have chosen is

Object -Z.

Fig. 1 illustrates the process followed in developing and

validating the object model.

Informal Graphical
OO model 

Formalization

Object-Z 
Specification

Fig. 1: The development and validation process

The formalizing activity starts in transforming the semantics

captured by the graphical model into Object-Z specifi-

cations. The formalization was done manually. Typically,

formalization helps in finding problems related to missing

information and ambiguous structures. Once the flaws are

12



Towards Formalizing OO Models: A Case Study

diagnosed the informal model can be corrected to produce

more clarified and enhanced model.

This paper reveals our experience in applying the

development process to the case study system. Section

2 gives an overview of the notations and techniques used

and also presents a brief overview of the case study

system. Section 3 describes our experience in applying the

development process to some scenarios of the case study

problem. The conclusion is drawn in section 4 regarding our

overall experiences throughout the development process.

2.0 BACKGROUND

2.1 The OMT Method (Notation UML )

The Object Modeling Technique (OMT), developed by

J. Rumbaugh[4], can be seen as a design methodology

which consists of a collection of predefined techniques

and notational conventions in order to support the process,

which consists of several phases(e.g. analysis, design and

implementation) for the organized production of software.

OMT, like many other popular modeling and development

methods uses diagrams or graphical notations to represent

system's architecture and operational behavior. This

methodology uses three kinds of models to describe a system,

each capturing different aspects of the system, on the whole

describing the complete system. The object model describes

the static, structural data aspects of the system. The dynamic

model represents the temporal, behavioral, control aspects

of the system whereas the functional model represents the

transformational "function" aspects of the system.

2.2 Object-Z : An Overview

Object-Z [5] is a formal specification language which is

basically an extension to the Z-specification to incorporate

object orientation. The main motivation towards the

extension is to improve the clarity of large specifications

through enhanced structuring.

A Z-specification is typically based on predicate logic and set

theory. The primary structuring construct of Z is the schema.

A schema has two parts: a declaration and a predicate part.

Schemas are used to model both static and dynamic aspects

of the system. A state schema groups together variables

and defines the relationship that holds between their values.

The operation schema defines the relationship between the

`before' and `after' states corresponding to one or more state

schema. To know the operations which affects a particular

schema, it needs to go through all the operation schema

signatures which is impracticable for large specifications.

Object-Z overcomes this drawback of Z by grouping the

operations to refer to one state schema which is closer to

the concept of class. It supports the concept of inheritance

and instantiation which builds towards a class representing

the entire system. However, Object-Z does not explicitly

specify the association between two classes.

Syntactically, a class definition is a named box, optionally

with generic parameters. In this box, the constituents of the

class are defined and related. Possible constituents are a

visibility list, inherited classes, type and constant definitions,

a state schema, an initial state schema, operation schemas,

and a history invariant.

ClassName
visibilitylist
inheritedclasses
typedefiniions
constantdefinitions
stateschema
initialstateschema
operationschemas
historyinvariants

2.3 The LoanSch Problem Scenario

This section briefly describes the LoanSch system scenarios.

1. A sponsor offers many scholarships, for which a student

may apply. A student may apply more than one

scholarship. A student is said to be applied when he/she

applies by filling in the application form and submit to

the Student Affair division.

2. A student is said to be awarded if the Sponsor selects

him/her after an interview and is said to be rejected if

the sponsor does not select. An awarded student has to

sign an agreement with the sponsor.

3. Keeping and managing sponsor information as well as

student information updating is within the scope of the

system.

3.0 FORMALIZATION OF CASE STUDY OO

GRAPHICAL ANALYSIS MODEL

In this section we present our case study system requirement

model and outline the rationale underlying the model.

3.1 The Concepts/Classes of the Case Study System

Sponsor: The attributes of a Sponsor which are of

concern for the system are its name and

address. The sponsor has an aggregation

relationship with one or more scholarships.

The aggregation in between the sponsor and

the scholarships can be modeled as a data

attribute of the sponsor. An instance of a

scholarship must belong to a unique sponsor.

13



Yew, Bulbul and Yaacob

Scholarship: The properties of a scholarship which are

relevant are its amount, duration, its bond

type. A scholarship is a part of a sponsor.

Student: The attributes which are of concern for

the student are his/her name, faculty name,

metric no., year of study as well as his/her

address. A student can apply for more than

one scholarship. There is an association in

between scholarship and student.

Notice: A notice has to be produced after the sponsor

declares offerings. It has a deadline as its

attributes as well as the sponsor's information

as a reference.

Interview schedule: The interview schedule class has

date,time, venue as attributes. Different

interview schedule are produced and allocated

to different students who applied.

Agreement schedule: After the interview is over and the

student is selected, an agreement has to be

signed between the student and the sponsor.

The agreement schedule class generates the

agreement signing date, time and venue

information as well as allocating a particular

schedule to a particular student.

The class diagram reflecting the above scenario is given in

Fig. 2. The notation used is of UML[6] because it is an

industrial standard and it is very effective in modeling a

system [7].

-Code
-Name
-Address

+SetSponsorCode()
+SetSponsorName()
+setSponsorAddress()
+getSponsorCode()
+getSponsorName()
+getSponsorAddress()
+AddScholarship()
+getScholarship()

Sponsor

-SchCode
-SchAmount
-Duration
-Bond Type

+setSchCode()
+setSchAmount()
+setDuration()
+setBondType()
+getSchCode()
+getSchAmount()
+getDuration()
+getBondType()
+addStudent()
+getStudent()

Scholarship

*
1

-Name
-Address
-Faculty
-Metric
-IC

+setName()
+setAddress()
+setFaculty()
+setMetric()
+setIC()
+getName()
+getAddress()
+getMetric()
+getIC()
+getFaculty()
+addSchedule()
+addaschedule()

Student
applied by

*1

-Date

+setDate()
+getDate()

Notice

-TimeRange
-Venue

+setTimeRange()
+getTimeRange()
+setVenue()
+getVenue()

Interview
Schedule

-Time
-Venue

+setTime()
+getTime()
+setVenue()
+getVenue()

Agreement
Schedule

has
11

has

1

1

Fig. 2: The class diagram of �LoanSch Processing System�

3.2 Formalizing the Analysis Model Using Object- Z

Notation

Formalization of graphical OO model can be done in one of

the three ways namely supplemental, OO-extended formal

notation, and method integration approaches [8]. Among

them, we followed the method integration approach. In this

section, we present the Object-Z formalization of our Case

Study analysis model. The formalization was carried out

according to the guidelines presented in section 2. Formal-

ization starts its first step by formalizing the parts of the class

diagram and then composing them in an Object-Z schema

formally characterizing the system view of the class diagram.

The Object-Z formalization of the class diagram is given

below:

The class schema for Notice class is as follows:

[DATE]

Notice

Date : PDATE

INIT
Date= ∅

setDate
∆(Date)
Date? : PDATE

Date= ∅

Date′ = Date?

getDate
Date : PDATE

Date 6= ∅

Date= Date!

setDate=̂ setDate
getDate=̂ getDate

The class schema for agreement schedule class is stated as

follows:

[TIME,VENUE]

Ashedule
Notice

Time: PTIME
Venue: PVENUE

INIT
Time= ∅

Venue= ∅

setTime
∆(Time)
Time? : PTIME

Time= ∅

Time′ = Time?

getTime
Time: PTIME

Time 6= ∅

Time= Time!

14



Towards Formalizing OO Models: A Case Study

setVenue
∆(Venue)
Venue? : PVENUE

Venue= ∅

Venue′ = Venue?

getVenue
Venue: PVENUE

Venue6= ∅

Venue= Venue!

setTime=̂ setTime
getTime=̂ getTime
setVenuê= setVenue
getVenuê= getVenue

The class schema for the class Student is as follows:

[STDNAME,FACULTY,METRIC,YSTUDY, IC]

Student

Name: PSTDNAME
Faculty : PFACULTY
Metric : PMETRIC
Ystudy: PYSTUDY
Ic : P IC
aschedule: PAschedule

INIT
Name= ∅

Faculty= ∅

Metric = ∅

Ystudy= ∅

Ic = ∅

setName
∆(Name)
Name? : STDNAME

Name= ∅

Name′ = Name?

getName
Name: PSTDNAME

Name6= ∅

Name= Name!

setNamê= setName
getNamê= getName

The class schema for the class scholarship is as follows:

[SCHCODE]

Scholarship

schcode: PSCHCODE
schamount: R
schduration: N
schbond: B
nos: PN
student: PStudent

INIT
schcode= ∅

schamount= ∅

schduration= ∅

schbond= ∅

nos= ∅

SetScholarshipCode
∆(schcode)
schcode? : SCHCODE

schcode= ∅

schcode′ = schcode?

getScholarshipCode
schcode! : PSCHCODE

schcode6= ∅

schcode= schcode!

AddStudent
∆(nos)
student? : Student

nos′ = nos+ 1

setScholarshipCodê= setScholarshipCode
getScholarshipCodê= getScholarshipCode
AddStudent̂= AddStudent

The class schema for the class Sponsor is as follows:

[SPCODE,SPNAME,SPADDRESS]

Sponsor

spcode: PSPCODE
spname: PSPNAME
spadd: PSPADDRESS
nosch: N
scholarship: PScholarship

INIT
spcode= ∅

spname= ∅

spadd= ∅

nosch= ∅

SetSponsorCode
∆(spcode)
spcode? : SPCODE

spcode= ∅

spcode′ = spcode?

getSponsorCode
spcode! : PSPCODE

spcode6= ∅

spcode= spcode!

15



Yew, Bulbul and Yaacob

AddScholarship
∆(nosch)
scholarship? : Scholarship

nosch′ = nosch+ 1

setSponsorCodê= setSponsorCode
getSponsorCodê= getSponsorCode
AddScholarship̂= AddScholarship

4.0 CONCLUSION

The goal of using formal specifications together with

informalOOmodeling is to develop an object oriented system

which is less error-prone and reliable. Graphical OO model

as derived using Object Modeling Technique (OMT) has

its advantage in closely representing real world concepts

with more clarity. Once the model is specified in formal

language, the model can be checked using the corresponding

language type checker. For developing our case study

system, both formal and informal methods have been used.

Most of the concepts of our case study system could be easily

specified in Object-Z. However, the central role of associ-

ations between classes such as Sponsor and Scholarship

as represented in the OMT analysis model raises problem

for the formalization process. The problem arises because

Object-Z and none of the formal object oriented specification

languages have an explicit representation of associations

between object classes[9]. Hence the design decision may

be quite immature as its dependency on the analysis specifi-

cations. As the available formal object oriented specification

is quite incomplete in specifying all features of an object

model as represented graphically, the specification is not

complete too. Full formalization of these models requires

more research in the concurrent and dynamic properties of

objects in the formal specification languages. However, the

integration of formal specification together with informal

technique will enable rigorous consistency and refinement

checks that are not possible with the sole use of the graphical

modeling techniques.

REFERENCES

[1] M. W. Jeannette, �A Specifier's Introduction to

Formal Methods,� IEEE Computer , September 1990,

pp. 8�24.

[2] H. C. C. Betty, �Applying Formal Methods in

Automated Software Development,� Journal of

Computer and Software Engineering , Vol. 2, No. 2,

1994, pp. 137�164.

[3] R. S. Pressman, Software Engineering: A Practi-

tioner's Approach . McGraw Hill, 3rd ed., 1992.

[4] J. Rambaugh, M. Blaha, W. Premerlaniand, F. Eddy,

and W. Lorenson, Object Oriented Modeling and

Design. Prentice Hall, 1991.

[5] D. Carrington, D. Duke, R. Duke, P. King, G. A.

Rose, and G. Smith, �Object-Z: An Object-Oriented

Extension to Z,� in Formal Description Techniques,

II(FORTE'89) , 1990, pp. 281�296, North-Holland.

[6] T. U. Group, Unified Modeling Language. Version

1.0. Rational Software Corporation, Santa Clara, CA-

95051, USA, January 1997.

[7] Zahidur R.M., Bulbul H., Zaitun. A.B., and

M. Yaakob, �Object Oriented Modeling: An

Experience Using The UML Approach,� in

REDECS97: National Conference on Research

and Development in Computer Science and its

Applications , 1997, pp. 69�75, School of Computer

Sciences, Universiti Sains Malaysia, Penang,

Malaysia.

[8] R. France, A. Evans, K. Lano, and B. Rumpe, �The

[UML] as a Formal Modeling Notation,� submitted to

Computer Standards and Interfaces , 1998.

[9] K. Lano and H. Haughton, eds., Object-oriented

Specifications Case Studies . The Object-Oriented

Series, PrenticeHall International(UK)Limited, 1994.

BIOGRAPHY

Kok Meng Yew was an Associate Professor of the Faculty

of Computer Science and Information Technology at

University of Malaya.

Helena Bulbul received B.Sc. degree in Electrical

and Electronic Engineering from Bangladesh University

of Engineering and Technology in 1992. She is currently

pursuing her Master degree in the Faculty of Computer

Science and Information Technology, University of Malaya,

Malaysia.

Mashkuri Hj. Yaacob is a Professor of Computer

Science and Dean of the Faculty of Computer Science and

Information Technology, University of Malaya. He joined

University of Malaya in 1976. He has published over 130

research papers and presented papers at both local and

international conferences. He is a member of the IASTED

Conference Organizing Committee and IEEE Computer

Society. His research interests are software engineering,

and computer architecture which includes ATM network

architecture, virtual circuit management performance and

others.

16


