
Malaysian Journal of Computer Science, Vol. 12 No. 1, June 1999, pp. 67-75

67

HYBRID CONVERGENCE LIFE-CYCLE MODEL FOR LARGE SCALE PROJECTS

Vasuthevan Balakrishnan
Monash University
Sunway Campus

No. 2, Jalan Kolej, Bandar Sunway
46150 Petaling Jaya

Selangor Darul Ehsan
Malaysia

email: vasu@academic.musm.edu.my

Sai Peck Lee
Faculty of Computer Science and

Information Technology
University of Malaya
50603 Kuala Lumpur

Fax : 603-7579249
email: saipeck@fsktm.um.edu.my

ABSTRACT

Much has been said about the problems that software
engineers face in developing large systems. Traditionally,
developers have adopted structured analysis and design
methodology in developing systems that has been working
fairly efficiently until now. Much complaint has been
thrown at this methodology. As with this methodology,
most complex software systems raise numerous software
engineering problems such as design, development,
requirements compliance, evolution and maintenance. To
these problems, Object-Oriented (OO) methods and tools
claim to bring a solution. The trend now is to use OO
technology. But is this new approach mature enough for
developing large and industrial strength applications? This
paper presents an overview of the two methodologies,
assesses its strength and weaknesses and suggests a new
model for efficient development of large-scale systems
incorporating both the strengths of structured and object-
oriented methodologies.

Keywords: Large Scale Systems, Structured Analysis
and design methodology, Object-Oriented
technology

1.0 INTRODUCTION

Systems designers are becoming more and more interested
in object technologies, not only because of the recent
explosion of methods and tools and the hype about them,
but also because of the technological revolution they seem
to imply. These potential users see in them a paradigm
closer to the real world, an abstraction capability higher
than traditional approaches, and above all, the long
dreamed of benefits of reusing components and of a
modularity allowing an easy evolution of systems [1].

But what are the real consequences, advantages and
drawbacks of those technologies on a large-scale system,
which is equivalent to hundreds of thousands of traditional
lines of code? What about those organizations that have
systems developed using traditional systems development
life cycle that are working perfectly now and wish to
incorporate OO technology in these systems. Will this be

impossible with the constraints of budget, time, and market
share?

This paper reviews the strengths and weaknesses of both
structured and object-oriented methodologies and proposes
a new life-cycle paradigm that addresses these issues. This
life-cycle model, referred to as the hybrid convergence
model, filters the weaknesses of both methodologies and
incorporates their strengths. The model derives its strength
from a number of features, which most software engineers
would agree as necessary prerequisites for successful
systems development. These features are: faster software
production, reengineering of legacy systems, reusability of
components, concurrent system development, consistent
user involvement in the development of systems, and a
continuous process of refinement through validation and
verification up to the point of systems implementation. In
order to achieve the required model, a review of the matter
is presented. This comparative review may be used to
justify the real needs for the development of a software
development process model.

2.0 CONVENTIONAL VS OO APPROACH

Is OO Analysis (OOA) really different from the structured
analysis approach? Structured analysis takes a distinct
input-process-output view of requirements. Data are
considered separately from the processes that transform the
data. System behavior, although important, tends to play a
secondary role in structured analysis. The structured
analysis approach makes heavy use of functional
decomposition. Fishman and Kemerer [1] suggest eleven
“modeling dimensions” given below that may be used to
compare various conventional and OOA methods.

1. identification/classification of entities
2. general to specific and whole to part entity

relationships
3. other entity relationships
4. description of attributes of entities
5. large scale model partitioning
6. states and transition between states
7. detailed specification of functions
8. top-down decomposition
9. end-to-end processing sequences

Balakrishnan and Lee

68

10. identification of exclusive services
11. entity communication (via messages or events).

As there are many variations that exist for structured
analysis and dozens of OOA methods are available, it is
difficult to develop a generalized comparison between the
two methods. It can be stated, however, that modeling
dimensions 8 and 9 are always present with structured
analysis and are rarely present when OOA is used [2].

2.1 Strengths of OO Methodologies

Object technologies do lead to a number of inherent
benefits that provide advantages at both the management
and technical level. These are:-

1. Correctness – The reuse of existing software
components of OO methodologies allows prototyping
systems to be built before the actual systems are
developed. Here it differs from prototyping in
structured methodology by the fact that the the class
itself is closer to the users view of the real world
objects and hence even before implementation, the
users could validate the accuracy of the model. In
structured methodology, prototyping is mainly done
after the code implementation, which is actually an
implementation model.

2. Robustness – There are two approaches of handling
abnormal conditions. The first approach is to ignore
the errors, change the system to a known ‘safe’ state,
and continuing to run in some ‘degraded’ manner. OO
methodologies support this approach by keeping the
‘safe’ state values in the ‘safe’ state variables within
each object and copying them back when abnormal
conditions are detected. Overheads are reduced
because only the state values need to be restored. The
second approach is to restore the system to the pre-
erroneous condition. OO methodologies support this
approach by keeping a copy of all the state values and
restoring them on detection of errors.

3. Extendibility – Using inheritance, new objects can be
built out of old ones. Systems can be extended quickly
using this concept.

4. Maintainability – The modularity, inherent structure,
and the insulation of objects from one another help to
facilitate system maintenance. Changes can be made
within one class without affecting others.

5. Reusability – Reusability of existing software
components can be promoted in two ways. Firstly, new
classes can be built out of old classes through
inheritance. This reduces the need to build new classes
from scratch. Secondly, systems can be built by using
existing libraries either directly or with some
modifications.

6. Integrity – ability of protecting data from corruption is
achieved through encapsulation and information
hiding. Only the encapsulated operations within an
object can access the data structures of that object.
This means that the data structures of an object are
hidden from another object. Information hiding
protects data from invalid access and thus from
corruption.

7. Increased Modeling power - The increase in modeling
flexibility and modeling power enables more complex
systems to be built. Most of the system problems are
detected in the early stage of design. Designers first
identify the important system components (objects) and
their relationships without having to worry about the
implementation details that may complicate the overall
design of the system.

8. Smooth transformation – OO systems closely model
real - world systems. There is also a smooth transition
from analysis to design because of the same concepts
used throughout these phases [3].

2.2 Weaknesses of OO Methodologies

Object methodology is not without its failings. Some of its
weaknesses are being addressed but at a rather slow pace.
The weaknesses in object methodology are not mainly
technical but its slow absorption by users in applying the
methodology into existing systems development. Some of
the weaknesses are:-

1. Lack of system decomposition – Decomposition is
important because many systems are too large to be
developed by one team in order to meet the deadline.
Therefore, systems need to be broken down into
smaller components that can be assigned to multiple
teams to be worked on concurrently. Decomposition
needs to be initiated at an early stage of the
development process. Decomposition must have a
strong connection between components to allow
smooth integration of the components at a later stage.
In OO methodologies there are difficulties in breaking
systems down into smaller components.

2. Lack of end-to-end process modeling – According to
Fichman and Kemerer (1992), global processes, which
involve forward and backward execution of
intermediate steps between start and end, exist in many
problem domains. Although OO methodologies use
operations to model parts of the process, there is no
specific model to describe global processes. Therefore,
a separate tool is required to arrange different
encapsulated operations into a model that describes
global processes.

3. Lack of supporting programming languages
/programming skills in OO – Although OO
methodologies can be implemented using traditional

Hybrid Convergence Life-Cycle Model for Large Scale Projects

69

programming languages, special languages supporting
OO features are needed to facilitate the implementation
of the OO systems. OO programming languages must
have the ability to create classes, objects, subclasses
{through inheritance), and to support messaging and
dynamic binding. Only recently that programming
languages such as JAVA and C++ are beginning to be
widely used by organizations especially with the
proliferation of the Internet. Many organizations
cannot benefit from the use of OO methodologies until
there are sufficient trained programmers who are
skillful in OO programming and methodology.

4. Lack of supporting databases and tools – OO databases
are required to store objects permanently on files.
Currently, there are not many data base management
systems that can handle applications such as
CAD/CAM, which require many complex objects to be
created and stored. Quality OO tools is needed to
automate the analysis and design processes. Currently
there are some OODBMS such as GEMSTORE, O2,
JASMINE, etc., but user awareness or extensive usage
is still limited.

5. Lack of reusable software – Software reusability
claimed by OO methodologies may be difficult to
implement and achieve. Pre-defined objects need to be
well catalogued, documented, and easy to understand
to facilitate their reuse. DCOM and CORBA are two
examples of OO software architecture that addresses
reusable component issues, but again the application is
not widespread. Companies have to make a strong
commitment to change to these new methodologies in
order for them to be implemented. Investment at the
front end must be made in order to reap the benefits
from this new approach. Software components must
be carefully designed to allow future reusability. The
whole organization must be involved in identifying and
designing organization-wide objects which help to
establish the basis for stable, long term systems.
Increased training costs are required for this approach.

2.3 Weaknesses of Structured Methodology

Why is there a change of mindset in the use of structured
methodology that has stood the test of time? Is it because
software professionals simple yearned for a “new”
approach, or is it because systems are becoming too large
and complex due to the proliferation of the internet,
intranet, distributed computing and concurrent processing
which structured methodology failed to address? Most
software engineers would agree that the following could be
the reasons why structured methodology is being replaced
by object methodology.

1. Difficulties in managing more complex systems-
Planning and control become increasingly difficult as
the software systems become more complex. As a
result, many systems are overdue, over budget, and of

little use and limited quality. Many development
projects even grow out of control and eventually have
to be terminated.

2. Difficulties in handling unstructured problem –
Existing structured methodologies are designed mainly
to handle structured problems where system behavior
is quite well understood and may be easily described
using processing algorithms. However, they are
inadequate in handling complex, unstructured
problems. The focus of structured methodologies is in
the solution to the problem rather than in the problem
itself. There can be a huge gap between the actual
problem and its representation and implementation.
Traditional languages are not designed to handle
complex relationships and natural structure. Problems
modeled using conventional methodologies can easily
display characteristics very different from the actual
situation.

3. Low software reusability – Development productivity
is low resulting from low reusable of past or present
software components. Many functional equivalent
modules that already exist are redeveloped again
because either their existence is unknown or they are
difficult to understand. There have been many
unsuccessful attempts to construct reusable software
component libraries. Only a few organizations have
been successful at reusing software in a systematic way
and on a large scale.

4. Poor software design techniques – Programs and data
are linked together in complex and subtle manners. It
is often difficult to understand and identify interactions
between software components. Common data is not
protected and can easily be misused and corrupted,
leading to low system quality. Users are responsible
for checking for data integrity, binding and correct data
typing. Applications need to be programmed so that
the user can properly understand and use common data
structures.

5. Difficult and costly systems maintenance – A large
portion of the software costs over its lifecycle is spent
on maintenance. Maintenance is an important activity
because systems are changing as requirements are
changed, enhancements are made, problems are
corrected, and operating environments are updated.
Historically, system development does not include
consideration for maintenance and enhancement.
Therefore, developers often have to work with poorly
written documentation and ill-structured code.

2.4 Strengths of Structured Methodology

Structured methodology not only derives its strength from
its separation of process and data in its analysis model but
also, due to its “divide and conquer” approach that most

Balakrishnan and Lee

70

developers find easy to understand. Some of its strengths
are:-

1. In structured analysis, systems are analyzed by
processes and by data within these processes i.e. using
the dataflow diagram, entity relationship diagrams,
and functional decomposition diagram. The
advantage of analyzing systems by separating data and
processes is that in very large systems, there could be
myriad functions and data that has to be analyzed to
avoid redundancy and duplication of data and
functions. Functional decomposition helps the
systems engineers to break-up a complex function into
its subfunctions and subfunctions into their tasks.

2. In structured methodology, the completion of one
phase triggers the start of another phase e.g. systems
design starts only after when systems analysis has
been completed. This ensures that the preceding
phase must be thoroughly verified and completed so
that errors, misrepresentations, and ambiguities does
not get carried on to the next stage. The successful
development of an information system requires that
we follow the SDLC phases in order; that is, we must
complete one phase one phase before we start on the
next.

3. Focus on end products – Each phase of the Systems
Development Life Cycle (SDLC) culminates in end
products. Each end product represents a milestone or
checkpoint in the information system’s development
and signals the completion of a specific phase.
Management uses each checkpoint to assess where the
development stands and where it should go next.
Management’s choices at each checkpoint are to
proceed to a subsequent phase, to redo portions of the
work just completed, to return to an earlier phase, or
to terminate the development entirely. One major
factor in management’s decision is the quality of the
end product. Because the end product from the SDLC
phases is highly visible measures of the developers
progress, it is imperative that attention be focused on
the content and quality of these end products.

3.0 ANALYSIS PRINCIPLES

Over the past two decades, investigators have identified
analysis problems and their causes, and have developed a
variety of modeling notations and corresponding sets of
heuristics to overcome them. Each analysis method has a
unique point of view. However, all analysis methods are
related by a set of operational principles:
1. The information domain of a problem must be

represented and understood
2. The functions that the software is to perform must be

defined
3. The behavior of the software (as a consequence of

external events) must be represented

4. The models that depict information, function, and
behavior must be partitioned in a manner that uncovers
detail in a layered (or hierarchical) fashion

5. The analysis process should move from essential
information toward implementation detail.

By applying these principles, the analyst approaches a
problem systematically. The information domain is
examined so that the characteristics of function and
behavior can be communicated in a compact fashion.
Partitioning is applied to reduce complexity. Essential and
implementation views of the software are necessary to
accommodate the logical constraints imposed by processing
requirements and the physical constraints imposed by other
system elements [2].

Just like structured systems analysis, OO approach must
follow a development cycle. Many of the early object
modeling methods concentrate on the data representations
and usually applied to only a subset of the development
process. Thus, for example, Coad & Yourdon (1990)
concentrated on using objects to develop analysis models,
whereas Booch (1993) primarily concentrated on the design
model. A methodology requires models at each
development phase with techniques to convert models
developed at one phase to those at the next phase. The
analysis principles described above are used to derive the
proposed model.

4.0 HYBRID CONVERGENCE MODEL FOR
LARGE SCALE SYSTEM

One of the most important objectives of information
systems development is to deliver high quality software.
This implies that the delivered software must satisfy both
user and business requirements, be functionally operational
and be adaptable to environmental change. Much of the
research work carried out within information systems in the
past three decades has been to improve the quality of the
delivered software, through quality development process,
i.e. through a complete and refined life-cycle model. The
hybrid model that we propose in this paper can be used for
evolutionary development as well as for synthesis of new
systems. As shown in Fig. 1 and Fig. 2, this model
addresses post-implementation problems at a very early
stage of the development cycle such as maintenance, which
can be time-consuming and costly, through a process of
prototyping and refinement.

In the hybrid model, the process of analysis, design, and
testing goes on in a cycle through prototyping, validation
and verification with heavy user involvement. Here we
start with some functions, decompose them into classes and
then objects, connect them into a system, experiment with
the system and so on. We can begin to add new
functionality to design by allowing objects to be easily put
together to form systems. Alternatively, we can begin to
specialize objects and store them into a library and then

Hybrid Convergence Life-Cycle Model for Large Scale Projects

71

Fig. 1: Hybrid Convergence Model with Functional and Class Disintegration with Process and Analysis Phases

reuse them or reuse their specialized versions. This new
methodology supports both evolution and synthesis of
systems.

4.1 PROTOTYPING

The core idea that we have focused on when making the
first design of the methodology presented in this paper is a
continuous refinement through validation and verification
not throughout the production but up to functional
integration only. That is, by the time we reach the system
integration stage there is no need for validation and
verification with the users because the model asserts the
requirement of complete and correct analysis and design
before system integration. This is an absolute prerequisite.
To reach this goal, several approaches were possible;
formal methods, simulation or prototyping. We chose
prototyping for the following reasons:

- Prototypes are partially developed product that
enables customers and developers to examine some
aspects of the proposed system and decide if it is
suitable or appropriate for the finished product

- Implement a small portion of some key requirements
to ensure that the requirements are consistent,
feasible and practical; if not revisions are made at
the requirement stage, rather than at the more costly
testing stage

- Assess alternative design strategies and decide
which is best for a particular project

- Prototyping is essential for producing correct
software as well as promoting better communication
between users and developers

- Prototyping is used for producing better user
interfaces as well as for producing correct and
understandable specifications

- It eliminates the discrepancies between the
specifications and the implementations.

The hybrid convergence model allows to build very early
and rapidly executable prototypes inspired from the OOAD
method [9] – based on building real prototypes, each of
them representing an agreed on step toward the final
prototype. The prototype component in the figure, and not
of rapid prototype (which is throwaway by definition) gives

Requirements Analysis

Task Disintegration

Class Analysis

Identify Common Classes Identify Variant Classes

Design Classes

Test Classes

Function (System)
Integration

System Testing

Subfunction Integration 1 Subfunction Integration n

Subfunction 1 Subfunction n Process Analysis

Object Analysis

Prototyping

Balakrishnan and Lee

72

Fig. 2: Hybrid Convergence Life-Cycle Model

to these steps the main property of being an evolution i.e. a
permanent convergence toward the final product.
Therefore in this model, a prototype is being built and is
converging toward the expected result while showing
continuously that it is meeting the customer’s
requirements. All along the continuous development of the
product through all these prototypes, we do not only plan
for the refinement of code itself but also for the following
(see also Fig. 3):

- A refinement of user requirements. In fact, each
prototype will be defined according to a specific
user requirement that we call prototype requirement.
The converging evolution of the prototype
requirement should lead to the sum of the originally
specified user requirement and of its evolutions

- A refinement of specifications matching the
prototype requirement.

The production of each functional and class prototype is
composed of two generic and tightly coupled actions:

“building/checking”. These actions instantiation depends
on the step we are at in the project cycle. Therefore, in this
approach, a software life cycle is a kind of convergent
stacking up of identical <building/checking> cycles. The
result is a convergent “V” life cycle model in order to
evoke convergence. A prototype is developed by following
generalization life cycles. When these cycles stop, we
obtain for the current step a stable state, which is the
targeted prototype (See Fig. 4) [1].

4.2 USER INVOLVEMENT

There are many benefits from user involvement in
application development. First, it builds commitment by
users who automatically assume ownership of the system.
Second, users who are the real experts at the jobs being
automated are fully represented throughout development.
Third, many tasks are performed by users, including design
of screens, forms, and reports, development of user
documentation, and development and conduct of

Qualitative Analysis
- validity
- reasonableness
- consistency
- completeness

Requirements
Analysis

Prototype

System Implementation

System Testing

System Integration

Functional /
Subfunction

Analysis

Reusable
Functional
and class

Library

Acceptance
by user

Concurrent Application
Development

Class Analysis
- identify common and

variant classes

Complete and Correct
System

Structured
Analysis

OO
Analysis

Users
Input

Put into Library

Hybrid Convergence Life-Cycle Model for Large Scale Projects

73

Fig. 3: General Phases of the Hybrid Convergence model

Fig. 4: Convergence to Final Product by Continuous Refinement

acceptance tests. There are two kinds of users in this
model.

a) Users who are unfamiliar with technical and
analysis jargons and,

b) Users who are familiar with systems analysis
issues as well as analysis concepts.

We assume that user involvement is not only desirable, but
also mandatory to truly effective application development
product and process. The most important aspect of user
involvement is that it must be meaningful. The users must
be decision-makers and staff who fully understand the
impact of their decisions, and who are interested in
participating in the development process. User

Requirement Analysis

Functional Analysis

Class Analysis

System Integration

Qualitative Analysis

Functional Validation

Class Validation

System Validation

Final Product

Requirements
Analysis

Functional
Analysis,

Design and
Testing

Class Analysis,
Design and

Testing

System
Integration and

Testing

Prototyping
Library of
Reusable

Components

Balakrishnan and Lee

74

involvement is absolutely necessary in the hybrid model.
Software engineers and users who have participated in user-
involved application development tend to be fully
committed to user involvement as a requirement in
application development [8].

5.0 JUSTIFICATIONS FOR THE HYBRID
CONVERGENCE MODEL

The synthesis of two methodologies with the emphasis on
amalgamation of their strengths should produce a model
that has twice the strengths, that is the model should be
better than the individual methods. The model filters the
weaknesses that are found in both OO and structured
methodologies and incorporates and amplifies the strengths
of both methodologies. The model basically combines both
process as well as object-oriented concepts. The “divide
and conquer” approach used in this model closely
resembles the concept of modularity and composability and
the following strengths are derived from these concepts.
1. Two or more application systems can be developed at

the same time by using available components in the
library, thus supporting reusability.

2. Supports the reengineering of legacy systems from
traditional structured methodology to OO
methodology. Traditional systems would already
have the functional decomposition aspect done before
the system was implemented. Use the decomposition
chart as a starting point for subfunctional and class
analysis. Recode the classes using OO programming
languages. It does not matter in what language the
legacy systems are in. The model suggests that
functions should be decomposed into subfunctions and
then into classes.

3. It overcomes the problems of systems decomposition
by focusing on functional decomposition at the outset
of the analysis phase, thus improving system
manageability particularly for large and complex
systems.

4. Systems maintenance cost which occurs at later stage
is greatly reduced due to the rigorous testing and
prototyping methodology introduced at the early
stages of systems development.

5. The model helps to control the thrashing by including
activities and subprocesses that enhance under-
standing by using prototyping. In thrashing
developers may thrash from one activity to the next
and then back again as they strive to gather knowledge
about problems and how the proposed solution
addresses it.

6. It forces developers to analyze systems in a domain
specific context rather than in application specific
context, thus encouraging at an early stage potentially
reusable assets. Domain engineering reflects the idea

that sharing between related applications occurs in one
or more application domains – or problem domains or
solution domains. It looks beyond a single system.
Table 1 depicts at a glance a comparative summary of
the three analysis methodologies.

6.0 CONCLUSION

Different systems can be developed in different ways using
different methodologies. The hybrid paradigm proposed in
the paper takes into consideration important factors such as
speed of software production, re-engineering of legacy
systems, reusability of components, concurrent system
development and consistent user involvement in the
development of systems. It is strongly encouraged that
organizations that are engaged in hybrid development first
experiment the model on a pilot medium sized project.
With this new paradigm, it is hoped that many of the
software engineering problems encountered by developers
could be avoided.

REFERENCES

[1] Christopher ROUXEL, “Object-Oriented
Methodologies for Large Scale Projects: does it
work?” Journal of Object-Oriented Programming,
1994, pp. 84-86.

[2] Roger S. Pressman, “Software Engineering – A
Practitioner’s Approach”, McGraw Hill 1997, p.
278.

[3] David Chun Sov, “ Object-Oriented Case Tool
Development Using The C++ Language”, M. Buss.
Sys, Monash University, March 1994, pp. 64-71.

[4] Schach, Classical and Object-Oriented Software
Engineering, 3rd. Ed., IRWIN, 1996.

[5] I. Sommerville, Software Engineering, Addison-
Wesley, 1992.

[6] L. C. Briand, V. R. Basili, Y. M. Kim, and D. R.
Squier, “A Change Analysis Process to Characterise
Software Maintenance Projects”, Proceedings of the
International Conference on Software Maintenance,
Victoria, Canada, 1994.

 [7] C. Ghezzi, M. Jazayeri and D. Mandrioli,
Fundamentals of Software Engineering, Prentice
Hall, 1991.

[8] Sue Conger, The New Software Engineering,ITP
1994, pp. 39-40.

Hybrid Convergence Life-Cycle Model for Large Scale Projects

75

Table 1: Comparative Summary of the Three Methodologies

METHODOLOGY STRUCTURED OBJECT-ORIENTED HYBRID

ANALYSIS FUNCTIONAL AND DATA CLASS AND DOMAIN FUNCTIONAL, CLASS AND
DOMAIN

REENGINEERING
DIRECT CONVERSION TO
OO IS DIFFICULT

CONVERSION TO
STRUCTURED IS NOT
DIFFICULT

O-O-F TO F-O-O AND
VICE-VERSA

ROBUSTNESS
DISRUPTION OF SERVICE
DUE TO FUNCTIONAL
COHESION

SAFE-STATE SAFE-STATE

EXTENDIBILITY
DIFFICULT DUE TO
APPLICATION SPECIFIC

EASIER DUE TO CLASS
MODULARITY

EASIER DUE TO
FUNCTIONAL AND CLASS
MODULARITY

MAINTAINABILITY
DIFFICULT AND TIME-
CONSUMING

EASIER DUE TO CLASS
MODULARITY

LESS MAINTENANCE AT
END-STAGE

REUSABILITY FUNCTIONAL LIBRARIES CLASS LIBRARIES

CLASS AND FUNCTIONAL
LIBRARIES
(CONCURRENT
APPLICATION
DEVELOPMENT)

INTEGRITY
ADDITIONAL SECURITY
MEASURES REQUIRED

ENCAPSULATION AND
INFORMATION HIDING
(INHERENT)

ENCAPSULATION AND
INFORMATION HIDING
(INHERENT)

MODELING
HIGHER TO LOWER
LEVEL (DECOMPOSITION)

CONSISTENT
THROUGHOUT
ANALYSIS AND DESIGN

HYBRID MODELING

SMOOTH
TRANSFORMATION

CHECKPOINT PRODUCT
ANALYSIS TO DESIGN
NOTATIONS ARE THE
SAME

PHASEWISE REFINEMENT

CORRECTNESS PROTOTYPING
PROTOTYPING AND
CLASS REUSE

PROTOTYPING, CLASS
REUSE AND USER
VERIFICATION IS
CONTINUOUS

[9] Booch, G. (1991). Object-Oriented Design: With
Applications. Redwood City, CA, USA:
Benjamin/Cummings.

[10] David M.Hilbert, Jason E.Robbins, David
F.Redmiles, EDEM: Intelligent Agents for
Collecting Usage Data and Increasing User
Involvement in Development, Proceeding of the 1998
International Conference on Intelligent User
Interfaces, Tasks and Usage, pp. 73-76, 1998.

BIOGRAPHY

Vasuthevan Balakrishnan obtained his B.S. in Computer
Science in 1985 from the University of Southern California
and Masters in Software Engineering from the University
of Malaya in 1999. He is currently lecturing at Monash
University Sunway Campus in the area of Computer
Science.

Sai Peck Lee obtained her Master of Computer Science
from University of Malaya in 1990, her D.E.A of Computer
Science from University of Paris VI Pierre et Marie Curie
in 1991 and her Ph.D of Computer Science from University
of Paris I Pantheon-Sorbonne in 1994. She is a lecturer at
Faculty of Computer Science and Information Technology,
University of Malaya.

