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ABSTRACT

Presents the design of variable array multipliers using
VHDL.  Multipliers of various operand sizes for different
target processes can be implemented using the proposed
VHDL based approach.  The multipliers will be testable
with a constant number of test vectors irrespective of the
operand word lengths.  A fast test pattern generator is also
developed for simulation of the multiplier designs and
subsequent testing of the fabricated chips.
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1.0 INTRODUCTION

With the continuing developments of VLSI technologies
and tremendous shrinkage of process features, the need to
develop process independent chip design tools are growing
[1, 2].  The use of a hardware description language (HDL)
for integrated circuit design eliminates the need to worry
about process design rules at the early stages of design [2,
3].  This reduces the design complexity and time required
to complete chip designs.  This is very important since
vendors need to market their products in the shortest
possible time.  The fact that such high level designs can be
implemented on a variety of target processes reduces the
design cost as well.

Multipliers are often one of the key elements in single chip
digital information processors [4, 5].  The different
modules within such processors have to be tried out for
various architectures in order to find an optimal speed and
area.  Since it is time consuming to verify many possible
layouts for each module, one approach is to use software
packages called module generators or silicon compilers to
provide fast and efficient design of parameterized modules.
The multiplier compilers presented in [6] and [7] generate
parameterizable layout for MOS technology.  The
technology independence of the compiler presented in [8]
is limited by the requirement that the leaf cells have to be
recharacterized in the new technology.  The aim of this
paper is to present the design of totally process
independent VLSI array multipliers of variable size
(parameterizable) using VHDL.  The multipliers are made

C-testable [9-13], i.e., they can be tested for all single
stuck-at faults with a constant number of test vectors
irrespective of the size of the operands.  Although stuck-at
fault models cannot adequately model transistor stuck-on
and stuck-open faults [14, 15], it is possible to derive
equivalent stuck-at test sets for logic gates to cover
transistor stuck-on and stuck-open faults [16].  Since the
number of test vectors is constant for any multiplier size,
the test generation time for the proposed designs is
considerably small.

In the next section the multiplier architecture is presented.
Section 3 presents the testability of the multiplier.  The
VHDL model for the multiplier is given in Section 4.

2.0 ARCHITECTURE

The architecture of the multiplier is shown in Fig. 1.  It is
based on the modified Booth algorithm [12-13], [17-18].
This algorithm considers the operands as two’s
complement numbers and gives the product output in two’s
complement form.  It reduces the number of partial
products by almost a factor of two compared to the
straightforward carry-save array multipliers [10, 11].  In
the architecture of Fig. 1, the explicit sign extension
circuitry has been eliminated by recoding the most
significant bits (MSBs) of the partial products as a two’s
complement number [19, 20].  The multiplicand and the
multiplier are denoted by X and Y respectively, where X =
( x5 x4 x3 x2 x1 x0 ) and Y= ( y7 y6 y5 y4 y3 y2 y1 y0 ) are
chosen for convenience.

Although the architecture shown in Fig. 1 is that of a 6 by
8 bit multiplier, the regularity of the architecture enables
one to draw larger multipliers quite easily.  The multiplier
of Fig. 1 contains six extra inputs x-1, y-1, e1, e2, e3, e4
for enhancing the testability of the multiplier.  For normal
multiplication operation these inputs should have the
following logic levels: x-1 = 0, y-1 = 0, e1 = e2 = 0 and e3 =
e4 = 1.  The architecture of Fig. 1 is very regular consisting
of only three different leaf cells, namely, the modified
Booth encoder (BE), multiplexer-complementers and the
adders.  The final adders often employ some form of fast
carry propagation scheme and are implemented differently
than the carry-save adders (FA) used in the array [21].
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Fig. 1: Architecture of the multiplier with recoded sign bits
(Horizontal signals are omitted for clarity)

However, both these adders perform the same logic
functions and therefore may be regarded to be the same
from the point of view of logic functionality.  Each
modified Booth encoder scans three multiplier bits and
generates three controls signals K1, K2 and CM.  The
multiplexer-complementers use these signals to generate
the proper version of the multiplicand as a partial product
(PPi) according to the modified Booth recoding scheme
[18].  The logic functions performed by the various cells of
the multiplier of Fig. 1 are expressed by the following
equations.  Note that Zi is the output of the multiplexer and
PPi is the partial product generated.

Modified Booth encoders:

K y yi i1 1 =   - ⊕ (1)

K y y y y y yi i i i i i2 1 1 1 =  +   - + - 1 + (2)

CM y y y yi i i i =     +    - +1 1 1+ (3)

Multiplexer-complementer:

Z K x K xi i i =    +    -1 2 1 (4)

ii ZCMPP ⊕  = (5)

Adders:

SUM A B C =  ⊕ ⊕ (6)

COUT AB BC CA =   +   +   (7)

3.0 TESTABILITY OF THE MULTIPLIER

Multipliers of any size based on the architecture presented
in Fig. 1 can be made testable using a set of only 19 test
vectors shown in Table 1.  In this table, an 8-bit
multiplicand (X) and an 8-bit multiplier (Y) are shown.
The underlined bits denote the extensions required for
larger multiplier [13].  For example, t9 shows that X=0101
0101 and Y=1100 1100. The vector X will be 010101010
and 0101010101 for 9-bit and 10-bit words respectively.
Note that extensions are made to the right side.  The vector
Y will be 0011001100 and 110011001100 for 10-bit and
12-bit words respectively.  In this case extensions are made
to the left side.  All the adders are tested exhaustively
using the vectors listed in Table 1.  However, the modified
Booth encoders and multiplexers are tested for stuck-at
faults.  This is because the complexity of exhaustively
testing the later is enormous.

All the carry-save full adders in the multiplier of Fig. 1 are
tested exhaustively by vectors t1 - t12.  Exhaustive testing of
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the final adders are accomplished by the vectors t1 - t16.
Since the sum outputs of the adders are XOR function of
the three inputs, and both the outputs of all the array full-
adders are cascaded through a number of such XOR gates
up to the final adders, the propagation of a faulty output in
any of the adders to the primary outputs is guaranteed [13].

Table 1: Test vectors for the proposed multiplier

Test
vectors

X x-1 Y y-1 e4e3e2e1

t1 0000
0000*

0 0000 0000 0 0000

t2 1000 0000 0 0101 0101 0 0000

t3 1111 1111 1 0101 0101 0 1111

t4 1000 0000 0 1010 1010 1 1111

t5 0000 0000 0 1111 1111 0 1100

t6 0000 0000 0 0011 0011 1 0011

t7 1111 1111 1 0101 0011 0 0011

t8 1111 1111 1 0100 0100 1 1100

t9 0101 0101 0 1100 1100 1 0110

t10 01010101 0 0011 0011 0 1001

t11 1111 1111 1 0011 0011 0 0011

t12 1111 1111 1 1100 1100 1 1100

t13 0000 0000 0 1010 1010 1 1100

t14 1111 1111 1 1010 1010 1 0000

t15 111 11111 0 1001 1001 1 1111

t16 111 11111 0 0110 0110 0 0000

t17 0000 0000 0 0110 0110 0 1111

t18 1111 1111 1 1001 1001 1 1001

t19 1111 1111 1 1111 1111 1 0000

* The bits to be replicated for larger multipliers are underlined

Any single stuck-at fault in a modified Booth encoder is
detected at it’s outputs by the application of the set of
inputs {001, 011, 100, 110, 111} to yi-1 yi yi+1.  The test
vectors t11, t12, t15, t16 and t19 ensure the application of these
patterns to all the encoders.  These vectors also guarantee
the propagation of the fault effect in an encoder to the
primary outputs.  The multiplexers require the set of
patterns {0010, 0111, 1000, 1101} for the inputs K1xiK2xi-1

to test all single stuck-at faults.  All the multiplexers in the
multiplier of Fig. 1 receive these patterns by the
application of the vectors t2, t3, t5, t17 and t18, and the effect
of a fault is propagated to the primary outputs.

3.1 Test Generation for Variable Multipliers

The number of test vectors required is always 19, only their
lengths vary with the multiplier size.  Therefore, the test
vectors for the proposed multipliers of variable operand
word lengths can be generated using a simple program.  A
C++ program has been developed for test generation for
variable multipliers.  The pseudo-code for the test
generation program is given below:

//Pseudo-code for the C-test generation program

#define T_Length  19

struct test_c {
unsigned long X, Y;      // X, Y operands
unsigned int Y_1, E;     // Y_1, test inputs E

};

void main()
{

struct test_c T[19];
int i, j, size_x, size_y;
unsigned long v;
unsigned int s;

for (i=0; i<T_Length; i++) {
T[i].X = 0;
T[i].Y = 0;
T[i].Y_1 = 0;
T[i].E = 0;

}

// Test vector for X input
for (i=0; i<T_Length; i++) {

v = 0;
switch (i) {

case 1|3:  v = 1;
v <<= (size_x-1);

break;

case 2|6|7|10|11|13|14|15|19:
for (j=0; j<size_x; j++) {

v <<= 1;
v |= 1;

}
break;

case 8|9: for (j=0; j<(size_x/2); j++) {
v <<= 2;
v |= 1;

}
break;

default: v=0; break;
}
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T[i].X = v;
}
// Test vector for Y input
// Actual index in paper is i+1
for (i=0; i<T_Length; i++) {

v = 0;
switch (i) {

case 1|2|16: for (j=0; j<size_y/2; j++) {
v <<= 2;
v |= 1;

}
break;

case 6:  for (j=0; j<size_y/2; j++) {
v <<= 2;
v |= 1;

}
v -= 2;
break;

case 4|19: for (j=0; j<size_y; j++) {    // all One
v <<= 1;
v |= 1;

}
break;

case 3|12|13: for (j=0; j<size_y/2; j++) {
v <<= 2;
v |= 1;

}
v <<= 1;
break;

case 5|9|10: for (j=0; j<(size_y/4); j++) {
v =  (v << 4)| 3;

}
break;

case 8|11: for (j=0; j<(size_y/4); j++) {
v =  (v << 4)| 3;

}
v <<= 2;
break;

case 7:  for (j=0; j<(size_y/4); j++) {
v = (v << 4) | 4;

}
break;

case 14|18: for (j=0; j<(size_y/4); j++) {
v = (v << 4) | 9;

}
break;

case 15|17: for (j=0; j<(size_y/4); j++) {
v =  (v << 4)| 3;

}
v <<= 1;
break;

default: v=0; break;
}
T[i].Y = v;

}

// Test vector Y_1
for (i=0; i<T_Length; i++) {

s = 0;
switch (i) {

case 3|5|7|8|11|12|13|14|18|19: s = 1; break;
default: s=0; break;

}
T[i].Y_1 = s;

}

//Test vector test points E
for (i=0; i<T_Length; i++) {

s = 0;
switch (i) {

case 2|3|14|17: s =  15; break;
case 4|7|11|12: s = 12; break;
case 5|6|10: s = 3; break;
case 9|18: s = 9; break;
case 8:   s =  6; break;
default: s=0; break;

}
T[i].E = s;

}
}

The above program uses the gettime library function to
calculate the test generation time.  It can measure time up
to millisecond range.  However, when this program was
used to generate test vectors for a 16 by 16-bit multiplier
on a Pentium 166 MHz PC, it reported a test generation
time of 0 seconds.  This means that the total test
generation time is less than a millisecond.  However,
another C++ program required approximately 5 minutes
to generate exhaustive tests [10] for a 16 by 16-bit
multiplier on the same PC.  Therefore, the C-test
generation scheme presented here is very economical in
terms of the CPU time required.

4.0 VHDL MODELING

A VHDL model based on the architecture presented above
has been developed for fast design and validation of
process independent variable array multipliers.  As
mentioned before, three basic cells need to be modeled
conforming to the logic functions represented by Equations
1 to 7.  Generic modeling is required to deal with any
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arbitrary operand word length in order to make the design
parameterizable.  The VHDL models of the modified
Booth encoder and multiplexer-complementer are
presented in the following sections.  Also, the model for a
row of adders of arbitrary length n in the multiplier array is
presented using the generic VHDL functions in order to
clarify the modeling process.

4.1 Modified Booth Encoder

entity Booth_encoder is
    port (y_i_1, y_i, y_i_2: in std_logic;

K1, K2, CM: out std_logic
            );
end Booth_encoder;

architecture dataflow of Booth_encoder is
begin
    K1 <= y_i_1 xor y_i;
    K2 <= (y_i_1 and y_i and (not y_i_2)) or

((not y_i_1) and (not y_i) and y_i_2);
    CM <= ((not y_i_1) and y_i_2) or

((not y_i and y_i_2);
end dataflow;

4.2 Multiplexer-Complementer

entity mc is
    port (x_i, x_i_1, K1, K2, CM : in std_logic;
             Z_i, PP_i : out std_logic
            );
end mc;

architecture rtl of mc is
begin

Z_i <= ((x_i and K1) or (x_i_1 and K2));

PP_i <= CM xor Z_i;
end rtl;

4.3 Generic N Number Of 1-bit Full Adders

entity n_adder is
    generic (N : integer := 8);
    port  (A, B, Cin: in std_logic_vector (N-1 downto 0);
              Sum, Cout: out std_logic_vector (N-1 downto 0)
             );
end n_adder;

architecture rtl of n_adder is
begin
    process (A, B, Cin)
    begin

Sum <= A xor B xor Cin;
Cout <= (A and B) or (B and Cin) or (Cin and A);

    end process;
end rtl;

The overall multiplier has been coded hierarchically in
VHDL using a number of generic modules of arbitrary size
using the basic cells.  The VHDL code has been validated
by simulation at the behavioral level for various multiplier
sizes using the test vectors generated by the C++ program
in accordance with Table 1.  Fig. 2 shows the results of one
such simulation using Synopsis tools.  The various values
of X and Y shown in this figure are in hexadecimal.  Note
that Y is always kept equal to 02H for convenience.  For X
values of 82H and 06H, the product outputs are found to be
FF04H and 000CH respectively.  These are the expected
product outputs for two’s complement multiplication.
After validation of the VHDL code at the behavioral level,
a logic circuit was also synthesized.

Fig. 2: Behavioral simulation results for an 8 by 8-bit multiplier
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Fig. 3: Block diagram of the VHDL based design flow

The synthesized circuit can be checked for functionality,
speed etc. using the same test vectors.  Industry standard
layouts (CIF or GDS-II) may be generated for the
synthesized circuit using the appropriate technology
database.  The same VHDL code may be used to generate
bit-stream to implement the design on Field Programmable
Gate Arrays (FPGA) from commercial vendors.  The block
diagram of the overall process is shown in Fig. 3.

5.0 CONCLUSIONS

A VHDL based design of parameterizable array multipliers
has been presented.  The multipliers can be tested for all
single stuck-at faults using only 19 test vectors. A C++
program generates the test vectors for the variable array
multipliers within fraction of milliseconds.  Since the
multipliers are designed using VHDL, they can be ported
from one process to another without any difficulty enabling
fast fabrication of the designs.  The VHDL code may also
be used for FPGA implementation.
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