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ABSTRACT  

Tuberculosis (TB), a grave infectious disease affecting millions globally, is often diagnosed using chest X-rays. 

For accurate diagnosis, especially for detecting early stage, medical practitioners require the assistance of 

advanced technologies. In contrast to existing models, which focus largely on TB detection in the images, the 

proposed work aims to classify the images affecting TB such that an appropriate method can be chosen for accurate 

chest TB detection in chest X-ray images. Thus, we aim to combine the powerful features of the VGG16 architecture 

with a convolutional neural network (CNN) for classification purposes. Drawing inspiration from VGG16, known 

for its effective method of capturing essential image information, we aim to modify VGG16 for feature extraction 

to identify signs of tuberculosis (TB) in images. For the classification task, we employ a CNN to categorize images 

impacted by TB. Our proposed technique is evaluated on a standard dataset, demonstrating its superiority over 

current leading methods in accuracy, recall, and precision. 
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1.0. INTRODUCTION  

As noted from recent work on topics related to health, the importance of early diagnosis and detection of 

symptoms is vital to control outbreaks and disasters caused by infectious diseases [1-2]. One such disease is 

Tuberculosis (TB), which remains a significant global health challenge, ranking among the top ten causes of death 

worldwide [3]. It is especially prevalent in low and middle-income countries, where conditions like poverty, 

overcrowding, and inadequate healthcare access amplify its effects. TB is caused by the bacterium Mycobacterium 

tuberculosis, which primarily attacks the lungs but can also affect other organs, making its diagnosis and treatment 

particularly difficult. [3] One of the cornerstones of TB diagnosis is the use of chest X-rays. These imaging studies 

provide a crucial visual assessment of the lungs, allowing radiologists to detect characteristic abnormalities 

associated with TB, including cavities, nodules, and patterns of infiltration. However, the interpretation of chest 

X-rays is far from straightforward. It demands not only specialized training and expertise but also relies heavily 

on subjective assessments, introducing a significant degree of variability into the diagnostic process. However, 

there are numerous methods developed in the past for TB detection and classification identification [4]. Most 

methods focus on detecting a vital region which indicates TB symptoms in the images for classification. Therefore, 

these methods are sensitive to clutter and background noise and hence the performance of the method is ineffective 

when the input data background TB and degrades normal images. In addition, the vital region in the TB images is 

not noticeable, and the state-of-the-art method may not perform well.  

Therefore, detecting TB accurately is complex and challenging. It is evident from sample images shown in Fig. 

1(a) and (b), where it is not so easy for eyes to identify the images in (a) are normal and images in (b) are TB 

images. It is further validated from the results of the existing methods [5, 6] which misclassify normal images as 

TB images and vice versa as shown in Fig. 1. To reduce the complexity of TB detection, it is necessary to classify 

the images affected by TB from normal images (TB free) such that one can choose the best state-of-the-art method 

for TB detection even if the vital region is not noticeable [7, 8]. This idea helps us to use available resources 

effectively rather than developing a new method. Thus, this work focuses on developing a new method for 

classification of TB images.   

Inspired by the VGG16, which is simple, efficient and extracts effective features for classification [9], we adapt 

the same for feature extraction to classify the TB images from normal images in this work. Since VGG16 extracts 

distinct features which represent TB and normal images, we propose a simple convolutional neural network for 

classification of TB images. Therefore, the key contributions to the proposed work are as follows: 
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• Adapting the VGG16 for distinct feature extraction to classify the TB images from normal images.   

• Proposing CNN for successful classification of TB images from normal images  

• Fusing two simple models in a novel way to achieve the best classification results. 

        

 
 

The structure of this paper is as follows: Section 2 reviews related work, highlighting the advancements and 

limitations of existing TB diagnostic methods. Section 3 describes the proposed model, including its architecture 

and the reasoning behind its design. Section 4 outlines the experimental setup, data processing, and results, 

showcasing the model's performance. Finally, Section 5 discusses the implications of the findings and proposes 

directions for future research. 

 

2.0. RELATED WORKS 

As mentioned in the introduction section, there are numerous methods for TB image classification, detection, 

and identification in literature [10]. To review the recent methods, we tabulate the analysis of the existing methods 

to make readers easy read. The quest to enhance Tuberculosis (TB) diagnosis through advanced technology has 

seen significant strides in recent years. This section critically analyzes seminal articles from 2021 to 2023, focusing 

on innovations in TB detection using chest X-rays, and employs a tabular format in Table 1 to list their 

methodologies, results, and limitations. 

 
Table 1: Critical analysis of existing methods on TB detection  

 

Year Study Focus Models/Techniques Used Outcome  Limitations 

2021[11] CNN application 

in TB detection 

Various CNN architectures 

(ResNet, InceptionV3) 

High accuracies (85%-

95%), effective pattern 

recognition in X-rays 

Limited datasets, 

questions on 

generalizability 

2022[12] Hybrid models 

and dataset 

diversity 

CNNs combined with 

SVMs, Random Forest 

Improved specificity and 

sensitivity, accuracies up to 

97% 

Computational 

inefficiency, overfitting 

issues 

2023[13] Efficient models 

and explainable 

AI 

Lightweight models, AI 

transparency focus 

Point-of-care diagnostics 

potential, user-friendly AI 

solutions 

Real-world applicability, 

long-term reliability 

concerns 

 

Table 1 shows that a dynamic and evolving field, marked by significant technological advancements and a 

continual push towards more accurate, efficient, and user-friendly TB diagnostic tools. Despite advancements in 

accuracy and model complexity, challenges persist in areas such as dataset diversity, model interpretability, and 

(b) Tuberculosis Images  

Fig. 1. Sample normal and Tuberculosis (TB) images. Proposed method classifies successfully 

both normal and TB images while the existing methods [5, 6] misclassifies.  

(a) Normal images 
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real-world applicability. Future research is poised to address these challenges, further cementing the role of AI in 

revolutionizing TB diagnostics.  

Similarly, Table 2 summarizes recent studies on tuberculosis (TB) detection methodologies and their 

corresponding accuracies, showcasing a range of approaches such as deep learning models, ensemble techniques, 

microscopy analysis, and optical sensors. 

 

 

 
Table 2: Summarizing the outcome of the existing TB detection methods  

 

Methods  Dataset Used Accuracy Remarks 

Tasci et al. (2021) [9] Montgomery dataset, Shenzhen 

dataset 

Montgomery: 97.500%, 

Shenzhen: 97.699% 

Ensemble CNN model for TB 

detection. 

Ayaz et al. (2021) [10] Montgomery dataset, Shenzhen 

dataset 

97% Combines features using 

Ensemble Learning for TB 

detection. 

Ibrahim, et. Al. (2021) 

[11] 

Tuberculosis microscopy 

images 

98.15% Analyzing tuberculosis using 

microscopy. 

Gelaw et al. (2021) 

[12] 

Merged various public datasets 97.72% AI and imaging for TB 

detection. 

Gröschel et. al (2021) 

[13] 

Ground truth dataset of 20,408 

isolates 

77.6% and 75.4% GenTB app for antibiotic 

resistance prediction. 

Ullah et al. (2022) 

[14] 

Tested 40 TB patients 95% Optical sensor using Raman 

spectroscopy for TB detection. 

Ramachandran, et. al  

(2022) [15] 

Data from 368 HIV-infected 

Ugandan adults 

88.9% mNGS with MLC for TBM 

diagnosis. 

Kuang, et. al (2022) 

[16] 

Dataset of 10,575 MTB isolates 93.8% In silico AMR predictions for 

MTB. 

Gite et al. (2023) [17] Not specified 98% U-Net++ for lung segmentation 

in TB detection. 

Park et. Al. (2023) 

[18] 

Chest X-ray images from 3314 

patients 

85% for MTB-LD and 

0.78% for 

Distinguishing NTM-LD and 

MTB-LD in X-rays. 

Rahman et. al (2024) 

[19] 

40,000 CXR images; 3037 

CXR images for drug-resistant 

TB 

79.59% for three-class 

classification 

Deep learning framework for TB 

classification. 

 

The recent studies in tuberculosis (TB) detection have explored various methods, leveraging different datasets 

and technologies with a focus on enhancing accuracy and efficiency. Methods range from advanced convolutional 

neural networks (CNNs) and ensemble learning models using standard datasets like Montgomery and Shenzhen 

to innovative uses of AI in microscopy and imaging [20].   

Recently, there are methods developed for focusing on improving early diagnosis. For instance, the approach 

[21] combines the DenseNet201, which is used for feature extraction and the XGBoost, which is used for 

classification. Another approach [22] employs the MobileNet transfer learning model, which is computationally 

lightweight, achieving a high accuracy. Similarly, the model [23] uses a VGG19-based transfer learning technique 

with hyperparameter tuning for classification of TB and normal images. Furthermore, an ensemble-based machine-

learning approach integrating various classifiers has been proposed for demonstrating a high accuracy for TB 

detection in the images.  

Despite these advancements, several limitations persist. Notably, the reliance on specific datasets may hinder 

the generalizability of these models across different populations [24]. The performance of these methods also 

varies widely, with some specialized approaches like the GenTB app and three-class classification for drug-

resistant TB showing lower accuracy and specificity, underscoring challenges in broader applicability and 

effectiveness. Making the issues as foundation the proposed method is keen to resolve the same [25]. Dhruti et al. 

[26] proposed a method for TB detection and severity prediction using deep learning model. The approach uses 

the combination of VGG-16, DenseNet-121, ResNet-50 and AlexNet. However, it is not clear whether this method 

is robust to noise and degraded images. Genitha et al. [27] developed a model for TB detection and classification 

based on deep learning. The approach uses preprocessing and feature extraction and finally, CNN for detection. 

The method addresses classification of normal and TB images, but the scope is limited to particular dataset and 

simple images. Liu et al. [28] focuses on exploring computer aided tuberculosis diagnosis using deep learning for 

improving diagnosis. The main aim of the work is to detect the region in the image but not classification of normal 

and TB images. Hossain et al. [29] developed a method based on convolutional neural network for identifying 

tuberculosis using images. This approach comprises DenseNet-121 and ResNet-50 for TB detection. Perez-Siguas 

et al. [30] focused on early detection of tuberculosis. The method uses traditional preprocessing steps for enhancing 

the fine details in the images followed by feature extraction and classifier for detection. It is noted from the above 

review that the primary objective of the methods is to detect TB but not classification of normal and TB images.    
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In summary, most existing methods focus on detection by extracting cues in the images and from therefore, 

these methods perform well when the images contain noticeable cues. In other words, if the image does not provide 

sufficient region which indicates TB, the methods do not work well because the features extracted from TB images 

share with the features extracted from normal images. This makes TB detection challenging and complex. This 

observation motivated us to propose a method for classification of images affected by TB from normal images, 

such that the complexity of the TB detection is reduced, and hence overall performance of TB detection improves.   

 

3.0. PROPOSED METHODOLOGY  

The methodology employed in this research is a carefully crafted combination of scientific processes and 

techniques aimed at creating an advanced, reliable, and efficient deep learning model for detecting Tuberculosis 

(TB) from chest X-ray images. This section details the complete process for classifying TB images versus normal 

images. Figure 2 illustrates the architectural diagram of the proposed model. In Fig. 2, the input begins from the 

directory and proceeds through preprocessing steps such as resizing, augmentation, normalization, and rescaling. 

Finally, the feature analysis is deployed, and then it goes to feature selection. Once the feature is selected, the 

proposed work uses a pre-trained model of VGG-16 where it goes through several convolution layers for feature 

extraction and once it is done it goes to CNN layers where the convolution blocks extract the feature and finally 

the classifier along with the softmax activation segregates it into output which is either Normal or TB.       

         

 

3.1. Adapted VGG16 for Feature Extraction   

As discussed earlier, the motivation to adapt the VGG16 architecture is due to its proven efficacy in image 

classification and recognition. Its design is characterized by its simplicity and depth, which are key to capturing 

the intricate patterns in chest X-rays for TB detection [31]. There are other well-known architectures, such as 

ResNet, Inception, and AlexNet. ResNet, known for solving vanishing gradient problems, was a strong contender. 

However, its complex residual connections make it less straightforward than VGG16. Inception models, with their 

parallel convolutional pathways, offer great performance but at the cost of increased model complexity. AlexNet, 

while historically significant, lacks the depth and sophistication of VGG16. VGG16's uniform architecture, 

consisting of repeated blocks of convolutional and max-pooling layers, simplifies the feature extraction process. 

This uniformity allows for a deep network that can learn a wide variety of features without the architectural 

complexities of other models. The VGG16 model architecture is modified to suit TB detection from chest X-rays. 

Here’s a detailed analysis of each layer type. 

The VGG16 architecture, developed by the Visual Geometry Group (VGG) at the University of Oxford, 

comprises a total of 16 layers, including 13 convolutional layers and 3 fully connected layers, as depicted in Fig. 

3. The convolutional layers feature a consistent kernel size of 3×3 with a stride of 1, enabling the network to 

capture detailed spatial hierarchies in input images. These layers are interspersed with max-pooling layers that use 

a 2×2 pooling window to reduce spatial dimensions, thus managing computational load and preventing overfitting. 

Each convolutional layer is followed by a Rectified Linear Unit (ReLU) activation function, which introduces non-

linearity and allows the model to learn complex patterns. 

In this study, VGG16 is adapted by excluding the top classification layer (using include_top=False), converting 

the model into a powerful feature extractor. This modification utilizes the pre-trained weights from the ImageNet 

dataset, which includes a diverse range of image features, thereby improving the model's generalization to chest 

X-ray images. The architecture begins with the VGG16 base, followed by a Flatten layer that converts the 3D 

feature maps into 1D feature vectors. This is succeeded by a Dense layer with a sigmoid activation function, 

tailored for binary classification tasks. The resulting model effectively distinguishes between normal and 

Fig. 2. Block diagram of the proposed work  
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tuberculosis-affected X-ray images, leveraging deep feature representations learned from the extensive ImageNet 

corpus, thus ensuring robust performance and enhanced diagnostic accuracy in medical image analysis. Figure 3 

illustrates the adapted VGG16 architecture for this problem. 

       
Convolutional Layers: These layers are the core building blocks of the model. They utilize filters to execute 

convolution operations, capturing the spatial and temporal dependencies within an image. In our model, these 

layers are designed to detect various features from simple edges to complex patterns indicative of TB as shown in 

Equation (1).  

 

Output = ReLU(Conv(Input))                                                              (1) 

 

where Conv represents the convolution operation and ReLU is the activation function. 

Pooling Layers: After the convolutional layers, pooling layers, particularly MaxPooling, are employed to 

decrease the spatial dimensions of the convolved features. This downsampling not only reduces the computational 

resources needed for data processing but also helps in controlling overfitting, as illustrated in Equation (2). 

 

Pooled Output = MaxPool(Input)                                                       (2) 

 

Fully Connected Layers: Following multiple convolutional and pooling layers, the neural network's high-

level reasoning is carried out via fully connected layers. In our model, these layers are customized to classify the 

features into TB and non-TB categories, as shown in Equation (3). 

 

Output = Activation(𝑊 ⋅ Input + 𝑏)                                                 (3) 

 

Final Layer: The final fully connected layer employs a sigmoid activation function to produce a probability 

value between 0 and 1, representing the likelihood of TB presence. In our model, we utilize the Rectified Linear 

Unit (ReLU) activation function. ReLU is favored because it introduces non-linearity, enabling the model to 

capture complex patterns. Moreover, it helps alleviate the vanishing gradient problem, thus aiding in the training 

of deep networks such as ours. 

Regularization Techniques: To prevent overfitting, dropout layers are strategically included. Dropout 

randomly turns off a fraction of neurons during training, which helps in making the model robust by preventing it 

from being overly reliant on any one feature. The model is compiled using the Adam optimizer, renowned for its 

effectiveness in managing large datasets and high-dimensional spaces. For our binary classification problem (TB 

or no TB), we employ the binary cross-entropy loss function, which is suitable. To optimize training, techniques 

such as Learning Rate Scheduling (to dynamically adjust the learning rate) and Data Shuffling (to prevent model 

bias due to data order) are implemented. The corresponding loss function is presented in Equation (4). 

 

Loss = −
1

𝑁
∑[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]                                  (4)

𝑁

𝑖=1

 

 

Training Process: The model is trained with a batch size of 32 images, balancing the need for computational 

efficiency and model performance. The number of epochs is set to 50, determined as optimal through 

experimentation. Early stopping is implemented to terminate training if the validation loss does not improve, 

preventing overfitting. 

 

Fig. 3. Adapted VGG16 for feature extraction.  
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3.2. Proposed CNN for Classification of normal and TB images  

The Convolutional Neural Network (CNN) architecture utilized in this study is fundamental for robustly analyzing 

and categorizing medical images, particularly chest X-rays. CNNs are tailored to process grid-like data, such as 

images, by employing key architectural concepts including local receptive fields, shared weights, and pooling 

operations.  

The complete architecture is shown in Fig. 4. The architecture comprises various layers: Convolutional Layers, 

pivotal for detecting local patterns and features; Activation Functions like the Rectified Linear Unit (ReLU) 

introducing non-linearity for capturing complex image representations; Pooling Layers, reducing spatial 

dimensions and computational complexity; and Fully Connected Layers, performing high-level reasoning based 

on extracted features [32]. Towards classification, a final output layer with a sigmoid activation function is 

employed, facilitating binary classification probabilities for distinguishing between normal and tuberculosis 

classes. The hierarchical design of CNNs efficiently captures and learns from visual data's hierarchical nature, 

making them ideal for tasks like medical image analysis. Leveraging CNN depth and feature extraction 

capabilities, this study aims for high accuracy in distinguishing between normal and tuberculosis-affected chest 

X-ray images. Figure 4 shows the CNN Architecture adapted for the problem.  

 
  

Fig. 4. Proposed CNN for classification of normal and TB images  
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(b) Tuberculosis Images and respective heat maps. 

Fig. 5. Heatmaps of respective normal and TB images show that the proposed features are elegant to classify normal and TB 

images. Inconsistent structure with more brightness for TB while regular structure with low brightness for normal images. 

 

The efficacy of the proposed TB and normal image classification is demonstrated in Fig. 5. The TB images 

exhibit higher opacity and brighter regions, particularly highlighting cavities, compared to the heatmaps of normal 

images. This observation suggests that the combination of VGG16 and CNN effectively extracts distinctive 

features for the classification of TB and normal images. 

 

4.0. EXPERIMENTAL RESULTS  

During the experimentation phase, a thorough assessment of the model's performance was conducted using a 

range of metrics, including accuracy, recall, and precision. To evaluate both the proposed and existing methods, 

this study utilizes a standard dataset for experimentation. 

 

4.1. Dataset and Evaluation  

Comprising 4200 chest X-ray images, it is equally divided into two subsets: 3,500 images of healthy (normal) 

lungs and 700 images exhibiting TB symptoms. The selection criteria for these images were stringent, ensuring 

high-quality and clinically relevant data [33]. Normal Images: These were carefully selected to represent a range 

of healthy lung conditions, sourced from various health institutions and public databases. The inclusion criteria 

ensured a representation of different lung conditions that appear normal but vary subtly in terms of lung size, 

shape, and other minor variations not indicative of TB. TB Images: These images were specifically chosen to 

cover a wide spectrum of TB manifestations, including both early and advanced stages of the disease. The diversity 

(a) Normal images and respective heatmaps  
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in this subset is crucial to train the model to recognize various forms and severities of TB manifestations. Fig. 6 

shows the normal and TB condition image. 

 

      
Accuracy: This is the most intuitive performance measure. It is essential to evaluate how often the model is 

correct as defined in Equation (5).  

 

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Number of Cases
                                            (5) 

 

Recall: Crucial for medical diagnostics, sensitivity measures the model's ability to correctly identify positive 

TB cases. High sensitivity reduces the risk of false negatives, which is vital in ensuring patients receive timely 

treatment. It is calculated using Equation (6). 

 

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
                                                    (6) 

 

Precision: Precision is important in medical contexts to ensure that the predicted positive cases are truly 

positive, minimizing the risk of misdiagnosis. It is calculated using Equation (7). 

 

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
                                              (7) 

 

4.2. Ablation Study 

As outlined in the Proposed Methodology section, the adaptation of VGG16 and the introduction of CNN are 

key components aimed at achieving the best results for classifying normal and TB images. To demonstrate the 

contribution and efficacy of this combined approach, we conducted a comparison of the performance between the 

proposed fused model and baseline architectures. The results, including accuracy, recall, and precision, are 

presented in Table 3. It is evident from the table that the proposed combination of VGG16 and CNN outperforms 

all baseline architectures across all metrics. Models such as Squeezenet (Resnet-based) and Densenet 121 exhibited 

lower accuracy rates. These models likely faced challenges in adequately extracting critical features or lacked the 

necessary depth to identify subtle tuberculosis indicators in the X-ray images. Conversely, more advanced 

architectures like the Vision Transformers Based Model, Modified CNN, Inception V3, and Xception demonstrated 

higher performance, indicating their enhanced capability in feature extraction and classification tasks. Notably, the 

proposed model, which integrates VGG-16 with a Custom CNN, achieved superior results compared to all the 

baseline architectures. This remarkable performance can be attributed to the robust feature extraction provided by 

the VGG-16 architecture and the additional refinement capabilities of the Custom CNN, which together facilitate 

the effective capture of complex patterns and anomalies indicative of tuberculosis. Therefore, one can infer that 

the proposed combination is better than existing baseline models for classification of normal and TB images.  

 
Table 3: Assessing the contribution of the proposed combination with the baseline models for classification of normal and TB 

images.  

 

# Technique Accuracy Precision Recall 

(i) Squeezenet (Resnet based Model) 0.72 0.88  0.52  

(ii) Vision Transformers Based Model 0.93 0.86 0.95  

(iii) Densenet 121 0.72 0.52  0.52  

(iv) Modified CNN 0.96 0.94  0.95 

(v) Inception V3 0.97 0.98  0.90  

                                   Normal image                                             TB image  

 Fig. 6. Sample normal and Tuberculosis images.  



201 

(vi) Xception 0.94  0.95  0.82  

(vii) Proposed Model (VGG-16 with Custom CNN) 0.98 0.98  0.94  

 

While several models were evaluated for tuberculosis detection in chest X-rays, such as Squeezenet, Vision 

Transformers Based Model, Densenet 121, Modified CNN, Inception V3, and Xception. The performance of these 

models is inferior to the proposed model. The reason for poor results of the existing models is that these models 

lack robustness and generalization for handling complex TB images.  

4.3. Experiments on Classification  

The quantitative results of the proposed and existing methods on the standard dataset are presented in Table 4, 

showcasing impressive performance in both normal and TB image classification compared to the performance of 

the existing models. It is observed from Table 4 that the proposed model, employing VGG-16 with CNN as an 

extractor, attains the highest accuracy for both classification of normal and TB images. The hybrid framework with 

CNN and classifiers [25] may not fully optimize performance due to potential limitations in capturing complex 

features necessary for accurate TB identification. Similarly, while transfer learning with MobileNet and 

hyperparameter tuning approaches are effective, they might not have fully exploited the rich feature representations 

required for optimal performance [31-32]. Additionally, methods combining HOG and LBP with several classifiers 

may not capture as diverse and complex features as CNN-based approaches like VGG-16 [33]. The proposed 

model's superior performance likely stems from the effectiveness of VGG-16 as a feature extractor, coupled with 

the robustness of CNN-based approaches for image classification tasks.  

 
Table 4. Performance of the proposed and existing methods on TB image classification  

 

Methods 
Normal Class TB Class 

Accuracy Precision Recall Accuracy Precision Recall 

Hybrid framework with CNN and Classifiers [21]. 0.965 0.960 0.982 0.970 0.970 0.874 

MobileNet transfer learning model [22] 0.970 0.965 0.990 0.972 0.970 0.852 

Transfer learning and hyperparameter tuning [23] 0.968 0.960 0.985 0.970 0.965 0.881 

HOG And LBP fused with several classifiers [34] 0.970 0.965 0.988 0.972 0.975 0.912 

Proposed Model (VGG-16 with CNN as Extractor) 0.982 0.984 0.992 0.983 0.98  0.94  

 

Fig. 7 illustrate an instance of misclassification of normal and TB images by the proposed model. The reason 

for misclassification is due to the presence of subtle anomalies present in the normal X-ray image, which mimicked 

characteristics typically associated with TB-related abnormalities. These anomalies, while innocuous in nature, 

posed challenges for the model in accurately discerning between TB and normal cases. Furthermore, 

misclassification highlights the inherent variability and complexity of chest X-ray images, where nuanced features 

can sometimes blur the lines between pathological and non-pathological conditions. However, despite this instance 

of misclassification, it's crucial to acknowledge the overall robustness and effectiveness of our proposed model, as 

evidenced by its high accuracy and performance metrics. This shows that there is a scope for the improvement of 

the proposed work. One possible solution to these challenges is to explore an end-to-end model by unifying 

enhanced models and language models. This will be our future work.  

Furthermore, as discussed in the methods [35, 36], sometimes, if the model works like black box, it is not so 

easy to analyze the outcome of the machine learning model and it may lead to confusion. One possible reason is 

unfair and biased training, labeling the samples and the process of machine learning. This work uses standard 

dataset and labels for evaluation. In addition, we follow the same instructions mentioned in the original work to 

calculate the classification rate. Therefore, it is necessary to verify and cross check the whole process of labeling 

and training to ensure fair and unbiased results. Henc, it is important especially for medical applications, like 

disease identification and classification. Thus, motivated by the work [35, 36], we will explore Explainable 

Artificial Intelligence (XAI) in the near future.  
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5.0. CONCLUSION AND FUTURE WORK  

In this work, we have proposed a new combination for classification of normal and TB images such that the 

performance of TB detection methods improves. Most existing methods do not consider mixed input of normal, 

and the images affected by TB for detection. Therefore, the existing model does not work well when normal images 

are supplied with a detection method. To overcome this limitation, this work focused on classification of TB and 

normal images. Inspired by the effective feature extraction by VGG16 and classification by CNN, we adapted 

VGG16 and proposed CNN for classification in this work. The experiments on ablation study, classification and 

comparative study with state-of-the-art methods show that the proposed method is outstanding. However, as 

discussed in the experimental section, the proposed method does not perform well when the normal and TB images 

share common characteristics. Therefore, this can be solved by developing a unified model with the combination 

of an enhancement model with a language model, which is our future work.  
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