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ABSTRACT 

Data analytics generally helps businesses or entities to make better and efficient decision making. But in the face 

of growing volume of data or information, it becomes challenging to achieve these goals. One of which is on 

classification of information with high accuracy. Furthermore, when the information is incomplete, definitely it is 

more challenging in order to classify the information with high accuracy. Although incomplete information is well 

discussed using rough set theory for data classification, such as based on tolerance and similarity relations, there 

are still issues on accuracy to evaluate data classification. The main objective of this paper is to introduce a new 

similarity approach with semantically justified based on possible equivalent value-set related to incomplete 

information systems. It is based on a classification of three semantics types of incomplete information i.e., “any 

value”, “maybe value” and “not applicable value” for modelling similarity. Subsequently, the similarity precision 

between objects in incomplete information systems is considered. The comparative studies and simulation results 

between the proposed approach in terms of accuracy on synthetic data, four well-known classification datasets 

and one real marine dataset are presented. The proposed approach improves the accuracy up to two orders of 

magnitude and, thus verifying its data classification accuracy. 

 
Keywords: Incomplete information. similarity relation. possible equivalent value-set. similarity precision 

 

 

1.0 INTRODUCTION 

 

The rough set theory proposed by Pawlak [1] was a successful and effective tool to deal with many real-life 

problems such as in human resource management [2], financial management [3], decision making [4,5,6] and 

etcetera. The theory has also been used in the study of intelligent systems characterized by data uncertainty or 

inconsistent data especially in rule extraction [7], data clustering [8, 9, 10], granular computing [11,12], data 

reduction [13, 14, 15, 16], pattern recognition [17, 18] and data classification [5, 6, 19]. The theory is based on 

indiscernibility relation or equivalence relation where two objects are equivalent to each other if both objects have 

the same values for attributes. Based on that relation, we can group the objects to obtain equivalence classes, which 

is the main concern. Besides, it has been proven to be an efficient mathematical tool compared with principal 

component analysis, neural networks and support vector machine methods [20, 21]. Unlike those methods, the 

rough set theory allows knowledge discovering process to be conducted automatically by the data themselves 

without any dependence on the prior knowledge [22]. 

 

However, the rough set theory can only be used to analyse information systems with exactly known information 

called a complete information system where all available objects in an information system have attribute values. 

A problem arises when some of the attribute values in information systems are unknown or missing that gives an 

imprecise answer to some queries and subsequently will result in poor decision making which sometimes happens 

in the real world. This information system is called incomplete information system. Because some attribute values 

are missing in incomplete information systems, and therefore, it is hard to process the incomplete information 

systems with the indiscernibility relation. In other words, the indiscernibility relation in a complete information 

system shows deficiency when dealing with incomplete information systems. Therefore, many researchers 

improved the indiscernibility relation in a complete information system to different kind of relations to deal with 
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incomplete information systems. There have been many efforts in studying incomplete information systems to 

modelling indiscernibility relation, including the works done by [22 – 28]. 

 

In general, there are two main approaches to handling incomplete information systems. One is the indirect 

approach, which transforms the incomplete information systems into complete information systems by some 

specific rules, i.e. probability statistical methods. However, it may change the original information on incomplete 

information systems [29]. The other is the direct approach, which extends the classical rough set theory by reducing 

the requirements of indiscernibility relation of reflexivity, symmetry and transitivity. For instance, Kryszkiewicz 

[26] introduced indiscernibility based on tolerance relation where the missing attribute value in an object can be 

replaced by any known possible values in that attribute. However, tolerance relation produced poor results in terms 

of accuracy of approximation [31]. Consequently, Stefanowski and Tsoukias [26] proposed a similarity relation to 

refining the results obtained from a tolerance relation approach. Wang [32] proved that similarity relation will lose 

some information and proposed limited tolerance relation. Nevertheless, the accuracy of the approximation is still 

outstanding and thus, needs to be improved. 

 

Therefore, in this paper, we proposed an approach based on possible world semantic represent by Lipski [33] in 

order to improve the accuracy of approximation that can help in obtain accurate results especially in decision 

making process. In recent years, there have been studies that used semantic in handling missing attribute values in 

incomplete information system. Kryszkiewicz [30] considers incomplete information systems as “do-not-care-

value” that can be replaced by any known values of an attribute. Grzymala-Busse [23] divided the incomplete 

information into two: “do-not-care-value” and “lost-value”. For “do-not-care value”, it can be replaced by any 

known values of an attribute which is similar to the concept proposed by Kryszkiewicz [30]. And for the “lost-

value”, it is inaccessible. 

  

In this paper, we categorize the incomplete information systems into two categories: 1) “with values” (WV) and 

2) “without values” (OV). The WV must exist; however, we do not know the value or we only know a range of 

certain values. The WV is slightly different compared to the Grzymala-Busse [23] approach, where a missing 

value to an attribute may be in a range of certain values. On the other hand, OV is the value that does not exist. 

For example, an attribute “salary” does not apply to housewife.  

 

From these two categories, the similarity precision is considered to determine both objects are within a certain 

level of similarity. From these categories, the accuracy of approximation with and without similarity precision are 

presented. Comparative analysis and experimental result between the proposed approach and other baseline 

approaches in terms of accuracy of approximation are presented. We found that the proposed approaches with 

similarity precision are more favourable and better in terms of accuracy of approximation up to two orders of 

magnitude. 

 

The rest of the paper is organized as follows: Section 2 discusses the theoretical background on information 

systems, tolerance relation and limited tolerance relation. In Section 3, two types of semantics of incomplete 

information systems were introduced. Experimental results by using the proposed approach are discussed in 

Section 4 and finally, Section 5 describes the conclusion of this work. 

 

 

2.0      THEORETICAL BACKGROUND 

 

This section reviews some basic concepts of information systems and thereafter the tolerance relation and limited 

tolerance relation 

 

2.1      Information Systems 

 

An information system is a 4-tuple, where 𝑆 = (𝑂, 𝐴𝑇, 𝑉, 𝑓), where 𝑂 = {𝑜1, 𝑜2, ⋯ , 𝑜|𝑂|} denotes a non-empty 

finite set of objects and 𝐴𝑇 = {𝑎1, 𝑎2, ⋯ , 𝑎|𝐴𝑇|} denotes a finite set of attributes/ dimensions, 𝑉 = ⋃ 𝑉𝑎𝑎∈𝐴𝑇 ,where 

𝑉𝑎is a value-set of attribute a,𝑓: 𝑂 × 𝐴𝑇 → 𝑉 is a function such that 𝑓(𝑜, 𝑎) ∈ 𝑉𝑎for every (𝑜, 𝑎) ∈ 𝑂 × 𝐴𝑇, called 

information function [9]. 𝑆 = (𝑂, 𝐴𝑇, 𝑉, 𝑓) is called complete information system (CIS) if O in S contains all 

objects with known values, otherwise S is called incomplete information system (IS) if at least one object has an 
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unknown or missing value. In an incomplete information system, the unknown or missing value is denoted as “*”. 

In this paper, the quadruple 𝐼𝑆∗ = (𝑂, 𝐴𝑇, 𝑉 ∪ {∗}, 𝑓)
 
to denote an incomplete information system. From the notion 

of an information system above, we recall the notion of tolerance relation and limited tolerance relation approach 

for incomplete information systems in the following sub-section.  

 

2.2      Tolerance Relation and Limited Tolerance Relation 

 

Given a complete information system 𝑆 = (𝑂, 𝐴𝑇, 𝑉, 𝑓) where 𝐴𝑇 = 𝐶 ∪ {𝑑}, C is a set of condition attributes and 

𝑑 is the decision attribute, such that 𝑓: 𝑂 × 𝐴𝑇 → 𝑉, for any 𝑎 ∈ 𝐶, where 𝑉𝑎 is called domain of an attribute a. 

For any subset 𝐵 ⊆ 𝐶, the tolerance relation T is defined as follows [32]: 

 

Definition 2.1 Let 𝐼𝑆 = (𝑂, 𝐴𝑇, 𝑉 ∪ {∗}, 𝑓) be an IS. A tolerance relation T is defined as 

 

∀𝑥,𝑦∈𝑂𝑇𝐵(𝑥, 𝑦) ⇔ ∀𝑎𝑗∈𝐵(𝑎𝑗(𝑥) = 𝑎𝑗(𝑦) ∨ 𝑎𝑗(𝑥) =∗∨ 𝑎𝑗(𝑦) =∗) 

 

where known attribute values on attributes x and y are equal, i.e., 𝑎(𝑥) = 𝑎(𝑦). Obviously, T is reflexive and 

symmetric, but not transitive. From Definition 2.1, we can describe the notion of tolerance class as follows. 

 

Definition 2.2 Let 𝐼𝑆 = (𝑂, 𝐴𝑇, 𝑉 ∪ {∗}, 𝑓)
 
be an IS. The tolerance class 𝐼𝐵

𝑇(𝑥)of an object x with reference to an 

attribute set B is defined as 𝐼𝐵
𝑇(𝑥) = {𝑦|𝑦 ∈ 𝑂 ∧ 𝑇𝐵(𝑥, 𝑦)}. 

 

From Definition 2.2, the notion of lower and upper approximations of tolerance class is defined as follows. 

 

Definition 2.3 Let 𝐼𝑆 = (𝑂, 𝐴𝑇, 𝑉 ∪ {∗}, 𝑓)
 
be an IS. The lower approximation 𝑥𝐵

𝑇and upper approximation 𝑥𝑇
𝐵of 

an object set X with reference to attribute set B, respectively can be defined as follow [32]: 

 

𝑥𝐵
𝑇 = {𝑥|𝑥 ∈ 𝑂 ∧ 𝐼𝐵

𝑇(𝑥) ⊆ 𝑋}
 
and 𝑥𝑇

𝐵 = {𝑥|𝑥 ∈ 𝑂 ∧ 𝐼𝐵
𝑇(𝑥) ∩ 𝑋 ≠ 𝜑} 

 

Definition 2.4. Let 𝐼𝑆 = (𝑂, 𝐴, 𝑉 ∪ {∗}, 𝑓)
 

be an IS, and 𝐵 ⊆ 𝐴, the lower approximation is 𝑥𝐵
𝑇 =

{𝑥|𝑥 ∈ 𝑂 ∧ 𝐼𝐵
𝐿𝑇(𝑥) ⊆ 𝑋} and the upper approximation is 𝑥𝑇

𝐵 = {𝑥|𝑥 ∈ 𝑂 ∧ 𝐼𝐵
𝐿𝑇(𝑥) ∩ 𝑋 ≠ 𝜑} of an object set X. 

The accuracy of approximation of an object set X with reference to attribute set B can be defined as:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑥𝐵
𝑇 𝑥𝑇

𝐵⁄       (1) 

 

We can illustrate the tolerance class and accuracy of approximation with an IS for tolerance relation approach 

through an example below. 

 

Example 1. (See [34]). Table 1 as follow is a description of scholarship-application attributes for a list of students, 

S={si|i=1, 2, …, 10} who apply for the scholarship. To explain the concepts, we assumed their decision is based 

on four criteria which are the ability to do analysis (C1), studying BSc in Mathematics (C2), the communication 

skills (C3) and the ability to speak in Malay language (C4). The score for C1 and C2 be given based on three different 

levels; 3=good, 2=moderate and 1=poor, while C3 and C4 are based on the other three different levels, 3= fluent, 

2= moderate and 1= not-fluent.  

  

Table 1: Description of scholarship-application attribute 

 

Attribute Name Description  Attribute Set Value 

Students Student objects  {s1, s2, … , s10} 

C1  Ability to do analysis {1,2,3} 

C2 BSc in Mathematics {1,2,3} 

C3  Communication skills {1,2,3} 

C4  Ability to speak Malay language {1,2,3} 

Decision Accept or reject the application {accept, reject} 
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Table 2: An incomplete information table 

 

Students C1 C2 C3 C4 Decision (d) 

s1 3 3 3 * accept 

s2 1 * 3 3 accept 

s3 * * 1 3 reject 

s4 3 * 3 3 accept 

s5 3 * 3 3 accept 

s6 * 3 * 3 reject 

s7 1 3 3 * accept 

s8 1 * 3 * accept 

s9 * 3 * * reject 

s10 3 3 3 3 accept 

 

Table 2 above is an incomplete information system where some attribute values that are unknown or missing are 

denoted as “*”. The decision (d) has two different classes which are accept and reject. The object that has 

decision’s class of accept = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10} and reject = {𝑠3, 𝑠6, 𝑠9}. We will obtain the results by 

analyzing Table 2 with the tolerance class from Definition 2.2 as follows. 

 

𝐼𝐶
𝑇(𝑠1) = {𝑠1, 𝑠4, 𝑠5, 𝑠6, 𝑠9, 𝑠10},𝐼𝐶

𝑇(𝑠2) = {𝑠2, 𝑠6, 𝑠7, 𝑠8, 𝑠9}, ( )  ,,, 9633 ssssI T

C = 𝐼𝐶
𝑇(𝑠4) = {𝑠1, 𝑠4, 𝑠5, 𝑠6, 𝑠9, 𝑠10}, 

( )  10965415 ,,,,, sssssssI T

C = 𝐼𝐶
𝑇(𝑠6) = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10} ,𝐼𝐶

𝑇(𝑠7) =

{𝑠2, 𝑠6, 𝑠7, 𝑠8, 𝑠9},𝐼𝐶
𝑇(𝑠8) = {𝑠2, 𝑠6, 𝑠7, 𝑠8, 𝑠9},𝐼𝐶

𝑇(𝑠9) = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10}, and 𝐼𝐶
𝑇(𝑠10) =

{𝑠1, 𝑠4, 𝑠5, 𝑠6, 𝑠9, 𝑠10} 
𝑂

𝐼𝑁𝐷(𝑑)
= {{𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, {𝑠3, 𝑠6, 𝑠9}} 

 

Thus, we have the following values 

 

𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝑇 = 𝜑, 𝑟𝑒𝑗𝑒𝑐𝑡𝐶

𝑇 = {𝑠3}, 

𝑎𝑐𝑐𝑒𝑝𝑡𝑇
𝐶 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10}, 𝑟𝑒𝑗𝑒𝑐𝑡𝑇

𝐶 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10}. 

 

From Eqn. (1), the accuracy can be computed as follow. 

 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑐𝑐𝑒𝑝𝑡 =
|𝑎𝑐𝑐𝑒𝑝𝑡𝐶

𝑇|

|𝑎𝑐𝑐𝑒𝑝𝑡𝑇
𝐶|
=
0

9
= 0 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑗𝑒𝑐𝑡 =

|𝑟𝑒𝑗𝑒𝑐𝑡𝐶
𝑇|

|𝑟𝑒𝑗𝑒𝑐𝑡𝑇
𝐶|
=

1

10
= 0.1,  

 

with the average accuracy = (0.0+0.10)/2 =0.05. 

 

From the analysis above, the accuracy is very low and some objects that can be discerned intuitively cannot be 

classified, such as 𝑠10 has complete information, but 𝑠10 is not in the lower approximation of 𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝑇 . The reason 

is that, the missing attribute values of 𝑠9 is considered similar to 𝑠10. Also, some objects are similar with respect 

to 𝑂{𝑐1,𝑐2,𝑐3,𝑐4} but they may not have the same ordinary value for any attribute. For example, from Table 2, two 

objects 𝑠2, 𝑠9 ∈ 𝑂, 

 

𝑂(𝑠2) =< 𝑐1, 1 >∧< 𝑐2,∗>∧< 𝑐3, 3 >∧< 𝑐4, 3 > 
𝑂(𝑠9) =< 𝑐1,∗>∧< 𝑐2, 3 >∧< 𝑐3,∗>∧< 𝑐4,∗> 

 

are equivalent with respect to
 
𝑂{𝑐1,𝑐2,𝑐3,𝑐4} , however they do not have the same ordinary attribute value. 

In order 

to overcome such problems, Wang [32] developed a limited tolerance relation based on the following definition.
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Definition 2.5 (See [32]). Let 𝐼𝑆 = (𝑂, 𝐴𝑇, 𝑉 ∪ {∗}, 𝑓)be an incomplete information system, a subset 𝐵 ⊆ 𝐴𝑇, 

and𝑃𝐵(𝑥) = {𝑏|𝑏 ∈ 𝐵 ∧ 𝑏(𝑥) ≠∗}. A limited tolerance relation defined on O is given as 

 

∀𝑥,𝑦∈𝑂𝑥𝑂(𝐿𝐵(𝑥, 𝑦) ⇔ ∀𝑏∈𝐵(𝑏(𝑥) = 𝑏(𝑦) =∗) ∨ ((𝑃𝐵(𝑥) ∩ 𝑃𝐵(𝑦) ≠ 𝜑) ∧ 

∀𝑏∈𝐵 ((𝑏(𝑥) ≠∗) ∧ (𝑏(𝑦) ≠∗) → (𝑏(𝑥) = 𝑏(𝑦)))) 

 

Obviously, the limited tolerance relation is symmetric and reflexive but not transitive. In Definition 2.5, the 

condition that (𝑏(𝑥) ≠∗) ∧ (𝑏(𝑦) ≠∗) → (𝑏(𝑥) = 𝑏(𝑦)) is equivalent to (𝑏(𝑥) =∗) ∨ (𝑏(𝑦) =∗) ∨ (𝑏(𝑥) =

𝑏(𝑦)). Thus, two objects that satisfy the tolerance relation but not limited tolerance relation are only those 

hold𝑃𝐵(𝑥) ∩ 𝑃𝐵(𝑦) = 𝜑. 

 

In other words, we can consider two objects are in limited tolerance relation if they fulfilled one of these two cases. 

The first case is that all attribute values for both objects are missing. The second case is there is at least one known 

attribute value of the two objects that are similar in corresponding to those attribute [31]. From Definition 2.5, the 

notion of the limited tolerance class can be expressed as follows: 

 

Definition 2.6. Let 𝐼𝑆 = (𝑂, 𝐴𝑇, 𝑉 ∪ {∗}, 𝑓)be an incomplete information system and a subset𝐵 ⊆ 𝐴𝑇. The limited 

tolerance class is defined as ( ) ( ) yxLTOyyxI B

LT

B ,| = . 

 

Table 2 illustrates the limited tolerance class from Definition 2.6 and its accuracy of approximation with an IS as 

follow: 

 

𝐼𝐶
𝐿𝑇(𝑠1) = {𝑠1, 𝑠4, 𝑠5, 𝑠6, 𝑠9, 𝑠10},𝐼𝐶

𝐿𝑇(𝑠2) = {𝑠2, 𝑠6, 𝑠7, 𝑠8, 𝑠9},𝐼𝐶
𝐿𝑇(𝑠3) = {𝑠3, 𝑠6, 𝑠9}, 𝐼𝐶

𝐿𝑇(𝑠4){𝑠1, 𝑠4, 𝑠5, 𝑠6, 𝑠9, 𝑠10}, 

𝐼𝐶
𝐿𝑇(𝑠5) = {𝑠1, 𝑠4, 𝑠5, 𝑠6, 𝑠9, 𝑠10}, 𝐼𝐶

𝐿𝑇(𝑠6) = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10},𝐼𝐶
𝐿𝑇(𝑠7) = {𝑠2, 𝑠6, 𝑠7, 𝑠8, 𝑠9}, 

𝐼𝐶
𝐿𝑇(𝑠8) = {𝑠2, 𝑠6, 𝑠7, 𝑠8, 𝑠9},𝐼𝐶

𝐿𝑇(𝑠9) = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10}, and𝐼𝐶
𝐿𝑇(𝑠10) = {𝑠1, 𝑠4, 𝑠5, 𝑠6, 𝑠9, 𝑠10}. 

 

𝑂 𝐼𝑁𝐷(𝑑)⁄ = {{𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, {𝑠3, 𝑠6, 𝑠9}}. 

 

Thus,  

 

𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝐿𝑇 = {𝑠8}, 𝑟𝑒𝑗𝑒𝑐𝑡𝐶

𝐿𝑇 = {𝑠3}, 

𝑎𝑐𝑐𝑒𝑝𝑡𝐿𝑇
𝐶 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10}, 𝑟𝑒𝑗𝑒𝑐𝑡𝐿𝑇

𝐶 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠9, 𝑠10} 

 

From Eqn. (1), the 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑐𝑐𝑒𝑝𝑡
𝐿𝑇 =

|𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝐿𝑇|

|𝑎𝑐𝑐𝑒𝑝𝑡𝐿𝑇
𝐶 |
=
1

9
= 0.1111 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑗𝑒𝑐𝑡

𝐿𝑇 =
|𝑟𝑒𝑗𝑒𝑐𝑡𝐶

𝐿𝑇|

|𝑟𝑒𝑗𝑒𝑐𝑡𝐿𝑇
𝐶 |
=
1

9
= 0.1111, 

 

with the average accuracy = (0.1111+0.1111)/2 =0.1111. 

 

The terms accuracy of the approximation and the accuracy will be used interchangeably. From the analysis above, 

the limited tolerance relation improves the accuracy compared to tolerance relation approach. However, accuracy 

is still outstanding and thus need to be improved. Some objects that can be discerned intuitively still cannot be 

classified. For example, we have complete information about 
𝑠10nevertheless 

𝑠10 is not in lower approximation of 

Accept. This is because of the missing attribute value 
𝑠6 is considered similar to 

𝑠10. 

 

In the following section, we present the proposed similarity relation based on the possible equivalent value-set and 

similarity precision between objects. 
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3.0      POSSIBLE EQUIVALENT VALUE SET AND SIMILARITY PRECISION 

 

3.1      Possible Equivalent Value-set 

 

There have been many efforts in analysing incomplete information systems [22-23, 26-27, 33-34,36-38]. Lipski 

[33] presents a possible-world semantics to replace missing attribute values with a subset of values within a 

domain. And based on that semantics, unknown values in incomplete information systems can be represented by 

possible value-sets [35, 38]. In this paper, we categorize the incomplete information systems that represented 

possible value-sets into two categories: 1) “with values” (WV) and 2) “without values” (OV). The WV must exist; 

however, we do not know the value or we only know a range of certain values. On the other hand, OV are the 

values that do not exist. For example, the attribute “salary” does not apply to housewife. Considering the WV, we 

summarize the following two semantics. 

 
(Y) “Any value” denoted by “*”: For 𝑓𝑎(𝑥) =∗, we can replace * with any value in 𝑉𝑎. For example, if  𝑉𝑎 =

{1,2,3}, then * can be interpreted as 1,2 or 3, and * can be only one of them. 

 

(M) “Maybe value” denoted by “𝜆: For 𝑓𝑎(𝑥) = 𝜆, the actual value is in a subset 𝑀𝑎(𝑥) ⊆ 𝑉𝑎, where |𝑀𝑎(𝑥)| >
1. That is the actual value of 𝜆is one of the values in 𝑀𝑎(𝑥). 
 

The semantic of the OV is as follows: 

 

(N) “Not applicable value” denoted by ∞. For 𝑓𝑎(𝑥) = ∞, we know that the value of an object 𝑥 ∈ 𝑂on an 

attribute 𝑎 ∈ 𝐴𝑇does not exist. 

 

Based on the different semantics of IS above, we define the valued set information function that replaces the IS 

with its possible values as follows: 

 

If we denote 𝑃𝑎(𝑥) as the set of possible attribute values of object x with respect to an attribute a, then 

 

• If 𝑓𝑎(𝑥) ∈ 𝑉𝑎, then 𝑃𝑎(𝑥) = {𝑓𝑎(𝑥)}, 

• For “any value”; if 𝑓𝑎(𝑥) =∗, then 𝑃𝑎(𝑥) = 𝑉𝑎,       (2)  

• For “may be value”; if 𝑓𝑎(𝑥) = 𝜆, then 𝑃𝑎(𝑥) = 𝑀𝑎 ⊆ 𝑉𝑎, 

• For “not applicable value”; 𝑓𝑎(𝑥) = ∞, then 𝑃𝑎(𝑥) = ∞. 

 

Considering the above semantics, we can replace the IS by its possible values. The possible values retain the 

original incomplete information. Based on the above semantics, we present a definition of incomplete information 

systems as follows: 

 

Definition 3.1 An incomplete information systems is a tuple IS = (O, AT, V’, F), where O is a finite nonempty set 

of objects, AT is a finite nonempty set of attributes, 𝑉′ = 𝑉 ∪ {∗} ∪ {𝜆} ∪ {∞}, where 𝑉 =∪𝑎∈𝐴𝑇 𝑉𝑎, 𝑉𝑎is the 

domain of attribute a. The *,𝜆and ∞are special symbols of any value, maybe value and not applicable value, 

respectively. 𝐹 = {𝑓𝑎|𝑎 ∈ 𝐴𝑇}, 𝑓𝑎: 𝑂 → 𝑉
′ is an information function, such that  

 

𝑓𝑎(𝑥) ∈ 𝑉𝑎
′ , 𝑥 ∈ 𝑂, 𝑉𝑎

′ = 𝑉𝑎 ∪ {∗} ∪ {𝜆} ∪ {∞}. 
 

3.2      Similarity Relation 

 

In this sub-section, we review a concept of similarity relation and similarity class in rough set which will be used 

in our work on incomplete information systems.  

 

Definition 3.2 Given an incomplete information system, IS = (O, AT, V’, F), as in Definition 3.1, and 𝐵 ⊆ 𝐴𝑇, a 

similarity relation with possible equivalent value-set, Sim, is defined as; 

 

∀𝑥, 𝑦 ∈ 𝑂, 𝑆𝑖𝑚𝐵(𝑥, 𝑦) ⇔ ∀𝑎 ∈ 𝐵, (𝑓𝑎(𝑥) = 𝑓𝑎(𝑦) ∨ 𝑃𝑎(𝑥) ∩ 𝑃𝑎(𝑦) ≠ 𝜑) 

 

and the similarity class for the above similarity relation can be defined as follows: 
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Definition 3.3. Given an incomplete information system IS = (O,AT,V’,F), and similarity relation as in definition 

3.2, the similarity class, 𝐼𝐵
𝑆𝑖𝑚(𝑥) of an object x, with reference to set B, is defines as;  

 

𝐼𝐵
𝑆𝑖𝑚(𝑥) = {𝑦|𝑆𝑖𝑚𝐵(𝑥, 𝑦) ∈ 𝑂}. 

 

The computation of the similarity class for incomplete information table with different semantics will be illustrated 

through example 2 by using information in Table 1. 

 

 
Table 3: An incomplete information table with different semantics 

 

Students C1 C2 C3 C4 Decision (d) 

s1 3 3 3 𝜆𝑐4
𝑠1 accept 

s2 1 𝜆𝑐2
𝑠2 3 3 accept 

s3 𝜆𝑐1
𝑠3 ∞ 1 3 reject 

s4 3 𝜆𝑐2
𝑠4 3 3 accept 

s5 3 𝜆𝑐2
𝑠5 3 3 accept 

s6 𝜆𝑐1
𝑠6 3 * 3 reject 

s7 1 3 3 𝜆𝑐4
𝑠7 accept 

s8 1 𝜆𝑐2
𝑠8 3 𝜆𝑐4

𝑠8 accept 

s9 ∞ 3 * 𝜆𝑐4
𝑠9 reject 

s10 3 3 3 3 accept 

  

Example 2. Table 3 illustrates the computation of the similarity class for incomplete information table with 

different semantics which the domain of each attribute, 𝑉𝑐𝑖 = {1,2,3},for i=1,2,3,4. Based on our discussion in 

Section 3.1, Table 3 can be equivalently interpreted by a value-set table as shown in Table 4 where we simply use 

a value to represent a singleton set for a known value. The possible value of 𝑓𝑎(𝑥) =∗ is {1,2,3}, and let the 

possible values for𝜆𝑐4
𝑠1 = 𝜆𝑐2

𝑠2 = 𝜆𝑐1
𝑠3 = 𝜆𝑐2

𝑠4 = 𝜆𝑐4
𝑠7 = 𝜆𝑐4

𝑠9 = {1,2}, and 𝜆𝑐2
𝑠5 = 𝜆𝑐1

𝑠6 = 𝜆𝑐2
𝑠8 = 𝜆𝑐4

𝑠8 = {2,3}, respectively.  

 

Table 4: Equivalent value-set table from Table 3 

 

Students C1 C2 C3 C4 Decision (d) 

s1 3 3 3 1,2 accept 

s2 1 1,2 3 3 accept 

s3 1,2 ∞ 1 3 reject 

s4 3 1,2 3 3 accept 

s5 3 2,3 3 3 accept 

s6 2,3 3 1,2,3 3 reject 

s7 1 3 3 1,2 accept 

s8 1 2,3 3 2,3 accept 

s9 ∞ 3 1,2,3 1,2 reject 

s10 3 3 3 3 accept 

 

The similarity class based on Definition 3.3 be given as; 

 

𝐼𝐶
𝑆(𝑠1) = {𝑠1},𝐼𝐶

𝑆(𝑠2) = {𝑠2, 𝑠8},𝐼𝐶
𝑆(𝑠3) = {𝑠3},𝐼𝐶

𝑆𝑖𝑚(𝑠4) = {𝑠4, 𝑠5},𝐼𝐶
𝑆𝑖𝑚(𝑠5) = {𝑠4, 𝑠5, 𝑠10},𝐼𝐶

𝑆𝑖𝑚(𝑠6) =
{𝑠5, 𝑠6, 𝑠10},𝐼𝐶

𝑆𝑖𝑚(𝑠7) = {𝑠7, 𝑠8},𝐼𝐶
𝑆𝑖𝑚(𝑠8) = {𝑠2, 𝑠7, 𝑠8},𝐼𝐶

𝑆𝑖𝑚(𝑠9) = {𝑠9},𝐼𝐶
𝑆𝑖𝑚(𝑠10) = {𝑠5, 𝑠6, 𝑠10}, and 

𝑂

𝐼𝑁𝐷(𝑑)
= {{𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, {𝑠3, 𝑠6, 𝑠9}}. 

 

Thus, we have the following values 

 

𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝑆𝑖𝑚 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8}, 𝑟𝑒𝑗𝑒𝑐𝑡𝐶

𝑆𝑖𝑚 = {𝑠3, 𝑠9}, 
 𝑎𝑐𝑐𝑒𝑝𝑡𝑆𝑖𝑚

𝐶 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠10}, 𝑟𝑒𝑗𝑒𝑐𝑡𝑆𝑖𝑚
𝐶 = {𝑠3, 𝑠6, 𝑠9, 𝑠10}. 

 

The accuracy is computed as follow. 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑐𝑐𝑒𝑝𝑡 =
|𝑎𝑐𝑐𝑒𝑝𝑡𝐶

𝑆𝑖𝑚|

|𝑎𝑐𝑐𝑒𝑝𝑡𝑆𝑖𝑚
𝐶 |

=
6

8
= 0.75 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑗𝑒𝑐𝑡 =

|𝑟𝑒𝑗𝑒𝑐𝑡𝐶
𝑆𝑖𝑚|

|𝑟𝑒𝑗𝑒𝑐𝑡𝑆𝑖𝑚
𝐶 |

=
2

4
= 0.5, 

with the average accuracy = (0.75+0.50)/2 =0.6250. 

 

From the above analysis, we found that the similarity relation with possible equivalent value-set improves the 

accuracy compared to the limited tolerance relation approach. However, accuracy needs to be improved. 

 

In the following sub-section, we propose a similarity precision that will be used thereafter for the similarity relation 

between objects 𝑥 and 𝑦on incomplete information systems with possible equivalent value-set of different 

semantics to improve the accuracy.  

 
3.3      Similarity Precision 

 

Given an incomplete information system IS = (O,AT,V’,F), and similarity relation as in Definition 3.2, the 

similarity precision for each attribute between objects x and y with reference to set 𝐵 ⊆ 𝐴𝑇, is defines as follows:  

 
Definition 3.4 Let 𝑃𝐵(𝑥) = {𝑏|𝑏 ∈ 𝐵 ∧ 𝑏(𝑥) ≠ ∞}, the similarity precision,𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) between objects x and 

y on attribute b is defined as: 

  

𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 (𝑥, 𝑦) = {

|𝑃𝑏(𝑥)∩𝑃𝑏(𝑦)|

|𝑃𝑏(𝑥)×𝑃𝑏(𝑦)|
, ⬚ 𝑃𝑏(𝑥) ∩ 𝑃𝑏(𝑦) ≠ 𝜑

0,⬚ ⬚ ⬚ ⬚ 𝑃𝑏(𝑥) ≠ 𝑃𝑏(𝑦)
     (3) 

 

where |∙| represent the cardinality of the set and × denotes the Cartesian product. 

 

Definition 3.5 Given an incomplete information system IS = (O, AT, V’, F) and 𝐵 ⊆ 𝐴𝑇,the similarity precision 

of objects on attributes𝑏 ∈ 𝐵is given by a mapping  

 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 : 𝑂𝑥𝑂 → [0,1]. 

 

This can be illustrated through example below. 

 

Example 3. Two objects s7 and s8 from Table 4 are considered. The similarity precision between objects s7 and s8 

for attributes C2 and C4 are: 

 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝐶2 (𝑠7, 𝑠8) =

|𝑃𝐶2(𝑠7)∩𝑃𝐶2(𝑠8)|

|𝑃𝐶2(𝑠7)𝑥𝑃𝐶2(𝑠8)|
=
|{3}∩{2,3}|

|{3}𝑥{2,3}|
=

|{3}|

|{3,2},{3,3}|
=
1

2
= 0.5 and 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝐶4 (𝑠7, 𝑠8) =

|𝑃𝐶4(𝑠7) ∩ 𝑃𝐶4(𝑠8)|

|𝑃𝐶4(𝑠7)𝑥𝑃𝐶4(𝑠8)|
=
|{1,2} ∩ {2,3}|

|{1,2}𝑥{2,3}|
=

|{2}|

|{1,2}, {1,3}, {2,2}, {2,3}|
=
1

4
= 0.25. 

 

From Definition 3.4, Eq. (3) measures the similarity precision of two objects with respect to a single attribute. 

Therefore, the similarity precision between objects 𝑥 and 𝑦 for a set of attributes is defined as: 

 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) =
∑ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐

𝑏 (𝑥,𝑦)𝑏∈𝐵

|𝐵|
, 𝐵 ⊆ 𝐴𝑇.     (4) 

 

Thus, from the above example, the similarity precision between objects 𝑠7 and 𝑠8 is; 

 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑠7, 𝑠8) =
∑ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐

𝑏 (𝑠7, 𝑠8)𝑏∈𝐵

|𝐵|
=
1 + 0.5 + 1 + 0.25

4
= 0.69 

 

From Eqn. (4), it is clear that the 0 ≤ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≤ 1. This can be explained by the following proposition. 

 

Proposition 1. The similarity precision has the following properties: 

 

(i) 0 ≤ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≤ 1; 

(ii) 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) = 1 when 𝑃𝑏(𝑥), 𝑃𝑏(𝑦) ∈ 𝑉𝑏, 𝑃𝑏(𝑥) = 𝑃𝑏(𝑦) from Eqn. (3), 

(iii) 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) = 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑦, 𝑥). 
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These properties satisfy the Definition 3.5 and Definition of similarity measures as in [17, 18]. 

 

From Definition 3.2, we proposed a new similarity relation with possible equivalent value-set and similarity 

precision as follows; 

 

Definition 3.6. Given an incomplete information system, IS = (O, AT, V’, F), as in Definition 3.1, and 𝐵 ⊆ 𝐴𝑇, a 

similarity relation with possible value-set and similarity precision, LSim, is defined as; 

 

∀𝑥, 𝑦 ∈ 𝑂, (𝑥, 𝑦) ∈ 𝐿𝑆𝑖𝑚𝐵 ⇔ ∀𝑎 ∈ 𝐵, 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥ 𝛿 

 

where 𝛿 ∈ (0,1] is a threshold value. 

 

Since 𝛿 ∈ (0,1], and 0 ≤ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≤ 1which implies that 𝑃𝑎(𝑥) ∩ 𝑃𝑎(𝑦) ∉ 𝜑 hold. To clearly depict the 

similarity relation with possible equivalent value-set and similarity precision as defined above, we illustrate 

through example as follows; 

 

Example 4. From Table 4, two objects 𝑠7 and 𝑠8 are similar with 𝛿 ≥ 0.65. However, both objects are not similar 

if we set 𝛿 ≥ 0.75, i.e.(𝑠7, 𝑠8) ∉ 𝐿𝑆𝑖𝑚(𝑠7, 𝑠8). That is, the two objects are not similar if the value of similarity 

precision does not hold the threshold value, 𝛿. 

 

In the following sub-section, two propositions for similarity relations with possible equivalent value-set and 

similarity precision are presented. 

 

Proposition 2. For 𝑥, 𝑦 ∈ 𝑂,𝐿𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) is reflexive, symmetric, but not transitive. 

 

Proof: 

• From Eq. (3), we can get 𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 (𝑥, 𝑥) = 1, ∀𝑏 ∈ 𝐵 ⊆ 𝐴𝑇. Therefore the relation is reflexive. 

 

• For 𝑥, 𝑦 ∈ 𝑂,(𝑥, 𝑦) ∈ 𝐿𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦), we can obtain 𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 (𝑥, 𝑦) ≥ 𝛿,∀𝑏 ∈ 𝐵 ⊆ 𝐴𝑇. We have 

 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 (𝑥, 𝑦) =

|𝑃𝑏(𝑥)∩𝑃𝑏(𝑦)|

|𝑃𝑏(𝑥)×𝑃𝑏(𝑦)|
=
|𝑃𝑏(𝑦)∩𝑃𝑏(𝑥)|

|𝑃𝑏(𝑦)×𝑃𝑏(𝑥)|
= 𝑆𝑖𝑚𝑝𝑟𝑒𝑐

𝑏 (𝑦, 𝑥) ≥ 𝛿  

 

Thus, the relation is symmetric.  

 

• Suppose that 𝛿 ≥ 0.55, based on Table 4, we can compute 𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 (𝑠4, 𝑠5) ≥ 0.81 and 𝑆𝑖𝑚𝑝𝑟𝑒𝑐

𝑏 (𝑠5, 𝑠6) ≥

0.58. Hence, (𝑠4, 𝑠5), (𝑠5, 𝑠6) ∈ 𝐿𝑆𝑖𝑚𝑝𝑟𝑒𝑐=.55(𝑥, 𝑦). However, 𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 (𝑠4, 𝑠6) = 0 ∉ 𝐿𝑆𝑖𝑚𝑝𝑟𝑒𝑐=.55(𝑥, 𝑦).  

Therefore, the relation is not transitive. 

 

Definition 3.7. Given an incomplete information system, IS = (O, AT, V’, F) as in Definition 3.6. The similarity 

class is defined as; 

 

𝐼𝐵
𝐿𝑆𝑖𝑚(𝑥) = {𝑦|𝑦 ∈ 𝑂 ∧ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦)} 

 
To clearly depict the similarity class as defined above, we illustrate through an example below based on equivalent 

value-set table from Table 4. 

 

Example 5. From Table 4, let 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) > 0.75, we have the similarity class as follows. 

 

𝐼𝐶
𝐿𝑆𝑖𝑚.75(𝑠1) = {𝑠1},𝐼𝐶

𝐿𝑆𝑖𝑚.75(𝑠2) = {𝑠2},𝐼𝐶
𝐿𝑆𝑖𝑚.75(𝑠3) = {𝑠3},𝐼𝐶

𝐿𝑆𝑖𝑚.75(𝑠4) = {𝑠4, 𝑠5},𝐼𝐶
𝐿𝑆𝑖𝑚.75(𝑠5) =

{𝑠4, 𝑠5, 𝑠10},𝐼𝐶
𝐿𝑆𝑖𝑚.75(𝑠6) = {𝑠6},𝐼𝐶

𝐿𝑆𝑖𝑚.75(𝑠7) = {𝑠7},𝐼𝐶
𝐿𝑆𝑖𝑚.75(𝑠8) = {𝑠8},𝐼𝐶

𝐿𝑆𝑖𝑚.75(𝑠9) = {𝑠9},𝐼𝐶
𝐿𝑆𝑖𝑚.75(𝑠10) =

{𝑠5, 𝑠10}, and 

 
𝑂

𝐼𝑁𝐷(𝑑)
= {{𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, {𝑠3, 𝑠6, 𝑠9}}. 

 

Thus, we have the following values 
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𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝐿𝑆𝑖𝑚.75 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, 𝑟𝑒𝑗𝑒𝑐𝑡𝐶

𝐿𝑆𝑖𝑚.75 = {𝑠3, 𝑠6, 𝑠9}, 

𝑎𝑐𝑐𝑒𝑝𝑡𝐿𝑆𝑖𝑚.75
𝐶 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, 𝑟𝑒𝑗𝑒𝑐𝑡𝐿𝑆𝑖𝑚.75

𝐶 = {𝑠3, 𝑠6, 𝑠9}. 

 

Therefore, the accuracy can be computed as follow. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑐𝑐𝑒𝑝𝑡
𝐿𝑆𝑖𝑚.75 =

|𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝐿𝑆𝑖𝑚.75|

|𝑎𝑐𝑐𝑒𝑝𝑡𝐿𝑆𝑖𝑚.75
𝐶 |

=
7

7
= 1.0 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑗𝑒𝑐𝑡

𝐿𝑆𝑖𝑚.75 =
|𝑟𝑒𝑗𝑒𝑐𝑡𝐶

𝐿𝑆𝑖𝑚.75|

|𝑟𝑒𝑗𝑒𝑐𝑡𝐿𝑆𝑖𝑚.75
𝐶 |

=
3

3
= 1.0, 

 

with the average accuracy = 1.0. 

 

From the above analysis, the result of the proposed approach is more precise and flexible compared to the previous 

approaches, where objects that can be discerned intuitively can be divided into different classes. 

 

The similarity precision for similarity relation with possible equivalent value-set can be presented using similarity 

precision matrix to easily compute the accuracy of approximation.  

 

Definition 3.8 Given an incomplete information system, IS = (O, AT, V’, F) and 𝐵 ⊆ 𝐴𝑇. Suppose that 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛}and the similarity precision matrix is defined by 

 

𝑀𝑆𝑀𝑛𝑥𝑚
𝐵 =

(

 
 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥1, 𝑦1) 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥1, 𝑦2) … 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥1, 𝑦𝑚)

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥2, 𝑦1) 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥2, 𝑦2) … 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥2, 𝑦𝑚)

⋮ ⬚ ⬚ ⬚ ⋮ ⬚ ⬚ ⬚ ⋱ ⬚ ⬚ ⬚ ⋮
𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥𝑛, 𝑦1) 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥𝑛, 𝑦2) … 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥𝑛, 𝑦𝑚))

 
 

 

 

From the Table 1, we have 

 

𝑀𝑆𝑀10𝑥10
𝐵 =

⬚
𝑠1
𝑠2
𝑠3
𝑠4
𝑠5
𝑠6
𝑠7
𝑠8
𝑠9
𝑠10(

 
 
 
 
 
 
 
 

𝑠1
1
0
0
0
0
0
0
0
0
0

𝑠2
0
1
0
0
0
0
0
. 71
0
0

𝑠3
0
0
1
0
0
0
0
0
0
0

𝑠4
0
0
0
1
. 81
0
0
0
0
0

𝑠5
0
0
0
. 81
1
. 58
0
0
0
. 88

𝑠6
0
0
0
0
. 58
1
0
0
0
. 71

𝑠7
0
0
0
0
0
0
1
. 71
0
0

𝑠8
0
. 71
0
0
0
0
. 71
1
0
0

𝑠9
0
0
0
0
0
0
0
0
1
0

𝑠10
0
0
0
0
. 88
. 71
0
0
0
1 )

 
 
 
 
 
 
 
 

 

 

 
For example, from the above similarity precision matrix, the 

 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑠4, 𝑠5) =
∑ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐

𝑏 (𝑠4,𝑠5)𝑏∈𝐵

|𝐵|
=
1+0.25+1+1

4
= 0.81, 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑠5, 𝑠6) =
∑ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐

𝑏 (𝑠5, 𝑠6)𝑏∈𝐵

|𝐵|
=
0.5 + 0.5 + 0.333 + 1

4
= 0.58. 

 

From the above similarity precision matrix, we can easily obtain similarity classes for different similarity precision. 

For example, the 

 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥ 0.55: 𝐼𝐶
𝐿𝑆𝑖𝑚(𝑠2) = {𝑠2, 𝑠8},𝐼𝐶

𝐿𝑆𝑖𝑚(𝑠5) = {𝑠4, 𝑠5, 𝑠6, 𝑠10},𝐼𝐶
𝐿𝑆𝑖𝑚(𝑠10) = {𝑠5, 𝑠6, 𝑠10}, 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥ 0.65: 𝐼𝐶
𝐿𝑆𝑖𝑚(𝑠2) = {𝑠2, 𝑠8},𝐼𝐶

𝐿𝑆𝑖𝑚(𝑠5) = {𝑠4, 𝑠5, 𝑠10},𝐼𝐶
𝐿𝑆𝑖𝑚(𝑠10) = {𝑠5, 𝑠6, 𝑠10}, 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥ 0.75: 𝐼𝐶
𝐿𝑆𝑖𝑚(𝑠2) = {𝑠2},𝐼𝐶

𝐿𝑆𝑖𝑚(𝑠5) = {𝑠4, 𝑠5, 𝑠10},𝐼𝐶
𝐿𝑆𝑖𝑚(𝑠10) = {𝑠5, 𝑠10}, 

 

that will give different values of accuracy. This can be illustrated by the following example when 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥

0.65. From the above matrix, we obtain, 
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𝐼𝐶
𝐿𝑆𝑖𝑚.65(𝑠1) = {𝑠1},𝐼𝐶

𝐿𝑆𝑖𝑚.65(𝑠2) = {𝑠2, 𝑠8},𝐼𝐶
𝐿𝑆𝑖𝑚.65(𝑠3) = {𝑠3},𝐼𝐶

𝐿𝑆𝑖𝑚.65(𝑠4) = {𝑠4, 𝑠5},𝐼𝐶
𝐿𝑆𝑖𝑚.65(𝑠5) =

{𝑠4, 𝑠5, 𝑠10},𝐼𝐶
𝐿𝑆𝑖𝑚.65(𝑠6) = {𝑠6, 𝑠10},𝐼𝐶

𝐿𝑆𝑖𝑚.65(𝑠7) = {𝑠7, 𝑠8},𝐼𝐶
𝐿𝑆𝑖𝑚.65(𝑠8) = {𝑠2, 𝑠7, 𝑠8},𝐼𝐶

𝐿𝑆𝑖𝑚.65(𝑠9) =

{𝑠9},𝐼𝐶
𝐿𝑆𝑖𝑚.65(𝑠10) = {𝑠5, 𝑠6, 𝑠10}, and 

 
𝑂

𝐼𝑁𝐷(𝑑)
= {{𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, {𝑠3, 𝑠6, 𝑠9}}. 

 

Thus, 

 

𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝐿𝑆𝑖𝑚.65 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠10}, 

𝑟𝑒𝑗𝑒𝑐𝑡𝐶
𝐿𝑆𝑖𝑚.65 = {𝑠3, 𝑠9}, 

𝑎𝑐𝑐𝑒𝑝𝑡𝐿𝑆𝑖𝑚.65
𝐶 = {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠10}, 

𝑟𝑒𝑗𝑒𝑐𝑡𝐿𝑆𝑖𝑚.65
𝐶 = {𝑠3, 𝑠6, 𝑠9, 𝑠10}. 

 

The 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑐𝑐𝑒𝑝𝑡
𝐿𝑆𝑖𝑚.65 =

|𝑎𝑐𝑐𝑒𝑝𝑡𝐶
𝐿𝑆𝑖𝑚.65|

|𝑎𝑐𝑐𝑒𝑝𝑡𝐿𝑆𝑖𝑚.65
𝐶 |

=
7

8
= 0.875 and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑗𝑒𝑐𝑡
𝐿𝑆𝑖𝑚.65 =

|𝑟𝑒𝑗𝑒𝑐𝑡𝐶
𝐿𝑆𝑖𝑚.65|

|𝑟𝑒𝑗𝑒𝑐𝑡𝐿𝑆𝑖𝑚.65
𝐶 |

=
2

4
= 0.5, 

with the average accuracy = (0.875+0.5)/2 = 0.6875. 

 

From Definition 3.6, the following proposition can be described. 

 

Proposition 3. Given an incomplete information system, IS = (O,AT,V’,F), 𝐵 ⊆ 𝐴𝑇 and 𝑥, 𝑦 ∈ 𝑂.  

If 0 ≤ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(1)(𝑥, 𝑦) < 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(2)(𝑥, 𝑦) ≤ 1, then 𝐼𝐶
𝐿𝑆𝑖𝑚(2) ⊆ 𝐼𝐶

𝐿𝑆𝑖𝑚(1)
. 

 

Proof.  

For ∀𝑐 ∈ 𝐼𝐵
𝐿𝑆2(𝑥),we have 𝛿𝐵(𝑥, 𝑦) ≥ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(2)(𝑥, 𝑦). Since 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(2)(𝑥, 𝑦) > 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(1)(𝑥, 𝑦), then 

𝛿𝐵(𝑥, 𝑦) ≥ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(1)(𝑥, 𝑦), that is ∀𝑐 ∈ 𝐼𝐵
𝐿𝑆1(𝑥) which implies𝑆𝑖𝑚𝑝𝑟𝑒𝑐(1)(𝑥, 𝑦) = 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(2)(𝑥, 𝑦). On the other 

hand, if 𝛿𝐵(𝑥, 𝑦) ≥ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(1)(𝑥, 𝑦), then it does not necessarily 𝛿𝐵(𝑥, 𝑦) ≥ 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(2)(𝑥, 𝑦). Hence 𝐼𝐶
𝐿𝑆𝑖𝑚(2)⬚ ⊆

𝐼𝐶
𝐿𝑆𝑖𝑚(1)⬚. 

 

The following example will illustrate the proposition 3 based on Table 4. 

 

Example 6. From Table 4, we have 𝐼𝐶
𝐿𝑆𝑖𝑚(1)(𝑠2) = {𝑠2, 𝑠8}for 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑠2, 𝑠8) > 0.65. However, for 

𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑠2, 𝑠8) > 0.75, we have 𝐼𝐶
𝐿𝑆𝑖𝑚(2)⬚(𝑠2) = {𝑠2} and thus,𝐼𝐶

𝐿𝑆𝑖𝑚(2)(𝑠2) ⊆ 𝐼𝐶
𝐿𝑆𝑖𝑚(1)(𝑠2). 

 

 

4.0      SIMULATION RESULTS 

 

In this section, the experimental results illustrate the improvement of the accuracy of the proposed 

approach. In this study, we will compare the proposed method with limited tolerance relation approach 

(since limited tolerance relation approach is better compared to tolerance relation). Four different 

datasets were obtained from UCI Machine Learning Repository [36] and a real marine dataset from [37] 

are considered for simulations. The accuracy of the approximation is calculated from the similarity class 

matrix by using the algorithm as shown below.  
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4.1     Algorithms 

 

Algorithm: The accuracy from incomplete information tables with possible equivalent value-set and 

similarity precision  

 

Input: An incomplete information table IS=(O,AT U{d},V ,f), d is decision attribute; 

 
 For i=1 to |O|; O number of objects; 

 For j=1 to |B| number of attributes; 

 For k=1 to |Bj|, Bj value-domain in attribute j; 

 Insert 𝑔(𝑖, 𝑗, 𝑘): g is attribute-value 

 If 𝑔(𝑖, 𝑗, 𝑘) ≠ ∞ and 𝑔(𝑖, 𝑗, 𝑘) ≠ 0then  

 𝑓(𝑖, 𝑗) =∪ {𝑔(𝑖, 𝑗, 𝑘}  
 Insert equivalent class induced by decision attribute (d): 𝑂 𝐼𝑁𝐷(𝑑)⁄  

 Insert similarity precision threshold value 0 < 𝛿 ≤ 1; 
 Output: Accuracy of approximation 

 Begin 

 For i=1 to |O|; //O number of objects; 

 For j=1 to |B|;// number of attributes; 

 Get 𝑆𝑖𝑚𝑝𝑟𝑒𝑐
𝑏 (𝑥𝑖 , 𝑥𝑗) =

|𝑃𝑏(𝑥𝑖)∩𝑃𝑏(𝑥𝑗)|

|𝑃𝑏(𝑥𝑖)×𝑃𝑏(𝑥𝑗)|
; //where 𝑃𝑏(𝑥𝑖) = 𝑓(𝑖, 𝑏), 

 // similarity precision between objects 𝑥𝑖 , 𝑥𝑗 ∈ 𝑂 for attribute 𝑏 ∈ 𝐵 

 Get 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥𝑖 , 𝑥𝑗) =
𝑆𝑖𝑚𝑝𝑟𝑒𝑐

𝑏 (𝑥𝑖,𝑥𝑗)

|𝐵|
 

 Get similarity class matrix 𝑀𝑆𝑀𝑂𝑥𝑂
𝐵  as in Definition 3.8 

 From similarity class matrix, get similarity classes based on similarity precision  

 Get equivalent class of lower approximation and upper approximation for each 

IND(d)  

 Get the accuracy and, subsequently, get the average accuracy for each IND(d) 

 end 

 

The following are several datasets for our simulations based on the above algorithm. 

 
4.2     Four UCI Dataset 

 

The description of the datasets is presented in Table 5. The Soybean and Mammographic dataset is incomplete 

dataset while the Monk, Tic-tac-toe and Car are complete datasets. About 10% of the known attribute value was 

randomly removed from the complete datasets to create incomplete datasets. Then, the missing attribute value of 

the dataset will be replaced by possible equivalent value-set. Examples of the incomplete datasets for Soybean is 

as in Table 6. The same procedure is also applied to the other incomplete datasets. Originally, the five datasets 

contain many objects. However, only several objects were considered as shown in Table 5 for simulation purposes.  

 

 

Table 5: Descriptions of datasets 

 

Dataset  Number of attributes Number of objects Number of classes 

Soybean 7 20 2 

Monk 6 25 2 

Tic-tac-toe 5 30 2 

Car 

Mammographic 

6 

5 

40 

40 

4 

2 

 

 
 4.3     Implementation of technique on soybean dataset 
 

Table 6 is consists of incomplete table of 20 different soybeans. Let soybean = {1,2,…,20} be the objects, a set of 

attributes, C={stem,seed-size,shriveling, roots,mycelium}, with stem={abnorm, norm}, seed-size={norm, it-

norm}, shriveling={present, absent}, roots={normal,galls-cysts,rotted}, mycelium={present,absent}, and the 

decision(d) ={present,absent}. 
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Table 6: Incomplete table of 20 different soybeans 

 
Soybean Stem Seed-size Shrivelling Roots Mycelium Decision 

1 Abnorm Norm Absent Normal Absent Present 

2 Norm Norm Absent Normal Absent Present 

3 Abnorm Norm * Normal Absent Present 

4 Abnorm Norm Absent Galls-cysts Present Present 

5 * It-Norm Absent Normal Absent Present 

6 Norm Norm * Normal * Present 

7 Abnorm Norm Absent Normal Absent Present 

8 Abnorm * Absent Galls-cysts Absent Present 

9 * Norm Absent Normal Absent Present 

10 Abnorm Norm Absent Normal Absent Present 

11 Abnorm It-Norm * Galls-cysts * Present 

12 Norm Norm * Galls-cysts * Present 

13 Norm It-Norm * Normal Absent Present 

14 Norm It-Norm * Galls-cysts * Absent 

15 Abnorm It-Norm * Galls-cysts * Absent 

16 Norm It-Norm * Galls-cysts  Present Absent 

17 Norm * * *  * Absent 

18 * * * Rotted  * Present 

19 Abnorm Norm * Rotted Present Absent 

20 Abnorm * * Rotted * Present 

 

 
From the table, the limited tolerance class is obtained as: 

 

 

𝐼𝐶
𝐿𝑇(1) = {1,3,7,9,10},𝐼𝐶

𝐿𝑇(2) = {2,6,9,17},𝐼𝐶
𝐿𝑇(3) = {1,3}, 𝐼𝐶

𝐿𝑇(4) = {4},𝐼𝐶
𝐿𝑇(5) = {5,13},𝐼𝐶

𝐿𝑇(6) =

{2,6,9,17},𝐼𝐶
𝐿𝑇(7) = {1,7,9,10},𝐼𝐶

𝐿𝑇(8) = {8,11},𝐼𝐶
𝐿𝑇(9) = {1,2,6,7,9,10},𝐼𝐶

𝐿𝑇(10) = {1,7,9,10},𝐼𝐶
𝐿𝑇(11) =

{11,15},𝐼𝐶
𝐿𝑇(12) = {12,17},𝐼𝐶

𝐿𝑇(13) = {5,13,17}, 𝐼𝐶
𝐿𝑇(14) = {14,16,17},𝐼𝐶

𝐿𝑇(15) = {11,15},𝐼𝐶
𝐿𝑇(16) =

{14,16,17}, 𝐼𝐶
𝐿𝑇(17) = {2,6,12,13,14,16,17},𝐼𝐶

𝐿𝑇(18) = {18,19,20},𝐼𝐶
𝐿𝑇(19) = {18,19,20}and 𝐼𝐶

𝐿𝑇(20) =

{18,19,20} 

 

 𝑂 𝐼𝑁𝐷(𝑑)⁄ = {{1,2,3,4,5,6,7,8,9,10,11,12,13,18,20}, {14,15,16,17,19}} 

 

Thus, 

 

𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐶
𝐿𝑇 = {1,3,4,5,7,8,9,10}, 

𝑎𝑏𝑠𝑒𝑛𝑡𝐶
𝐿𝑇 = {14,16}, 

𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐿𝑇
𝐶 = {1,2,3,4,5,6,7,8,9,10,11,12,13,15,17,18,19,20}, 

𝑎𝑏𝑠𝑒𝑛𝑡𝐿𝑇
𝐶 = {11,12,13,14,15,16,17,18,19,20}. 

 

Therefore, the 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑟𝑒𝑠𝑒𝑛𝑡 =
|𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐶

𝐿𝑇|

|𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐿𝑇
𝐶 |
=

8

18
= 0.4444 , and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑏𝑠𝑒𝑛𝑡 =
|𝑎𝑏𝑠𝑒𝑛𝑡𝐶

𝐿𝑇|

|𝑎𝑏𝑠𝑒𝑛𝑡𝐿𝑇
𝐶 |
=

2

10
= 0.20, 

 

with the average accuracy = (0.4444+0.20)/2 =0.3131. 

 

The incomplete information system from Table 6 can be replaced with equivalent value-set as given in Table 7 
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Table 7: Equivalent value set replacement 

 

Soybean Stem Seed-size Shriveling Roots Mycelium Decision 

1 Abnorm Norm Absent Normal Absent Present 

2 Norm Norm Absent Normal Absent Present 

3 Abnorm Norm Absent,Present Normal Absent Present 

4 Abnorm Norm Absent Galls-cysts Present Present 

5 
Abnorm, 

Norm 
It-Norm Absent Normal Absent Present 

6 Norm Norm Absent,Present Normal Absent,Present Present 

7 Abnorm Norm Absent Normal Absent Present 

8 Abnorm Norm, It-Norm Absent Galls-cysts Absent Present 

9 
Abnorm, 

Norm 
Norm Absent Normal Absent Present 

10 Abnorm Norm Absent Normal Absent Present 

11 Abnorm It-Norm Absent,Present Galls-cysts Absent,Present Present 

12 Norm Norm Absent,Present Galls-cysts Absent,Present Present 

13 Norm It-Norm Absent,Present Normal Absent Present 

14 Norm It-Norm Absent,Present Galls-cysts Absent,Present Absent 

15 Abnorm It-Norm Absent,Present Galls-cysts Absent,Present Absent 

16 Norm It-Norm Absent,Present Galls-cysts Present Absent 

17 Norm 
 ∞ 

Absent,Present 
Normal, 

Galls-cysts 
Absent,Present Absent 

18 
Abnorm, 

Norm 
Norm, It-Norm Absent,Present Rotted Absent,Present Present 

19 Abnorm Norm Absent,Present Rotted Present Absent 

20 Abnorm Norm, It-Norm Absent,Present Rotted Absent,Present Present 

 

 

The similarity class from Table 7 is obtained as follows: 

 

 

𝐼𝐶
𝑆𝑖𝑚(1) = {1,3,7,9,10},𝐼𝐶

𝑆𝑖𝑚(2) = {2,6,9},𝐼𝐶
𝑆𝑖𝑚(3) = {1,3,7,9,10}, 𝐼𝐶

𝑆𝑖𝑚(4) = {4}, ( )  13,55 =Sim

CI 𝐼𝐶
𝑆𝑖𝑚(6) =

{2,6,9},𝐼𝐶
𝑆𝐼𝑀(7) = {1,3,7,9,10},𝐼𝐶

𝑆𝑖𝑚(8) = {8,11,15},𝐼𝐶
𝑆𝑖𝑚(9) = {1,2,3,6,7,9,10},𝐼𝐶

𝑆𝑖𝑚(10) =
{1,3,7,9,10},𝐼𝐶

𝑆𝑖𝑚(11) = {8,11,15},𝐼𝐶
𝑆𝑖𝑚(12) = {12},𝐼𝐶

𝑆𝑖𝑚(13) = {5,13}, 𝐼𝐶
𝑆𝑖𝑚(14) = {14,16}, 𝐼𝐶

𝑆𝑖𝑚(15) =
{8,11,15},𝐼𝐶

𝑆𝑖𝑚(16) = {14,16}, 𝐼𝐶
𝑆𝑖𝑚(17) = {17},𝐼𝐶

𝑆𝑖𝑚(18) = {18,19,20},𝐼𝐶
𝑆𝑖𝑚(19) = {18,19,20}and 

𝐼𝐶
𝑆𝑖𝑚(20) = {18,19,20} 

 

 

 𝑂 𝐼𝑁𝐷(𝑑)⁄ = {{1,2,3,4,5,6,7,8,9,10,11,12,13,18,20}, {14,15,16,17,19}} 
 

Thus, 

 

𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐶
𝑆𝑖𝑚 = {1,2,3,4,5,6,7,8,9,10,12,13}, 
𝑎𝑏𝑠𝑒𝑛𝑡𝐶

𝑆𝑖𝑚 = {14,16,17}, 
𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑆𝑖𝑚

𝐶 = {1,2,3,4,5,6,7,8,9,10,11,12,13,15,18,19,20}, 

𝑎𝑏𝑠𝑒𝑛𝑡𝑆𝑖𝑚
𝐶 = {11,14,15,16,17,18,19,20}. 

Therefore, the 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑟𝑒𝑠𝑒𝑛𝑡 =
|𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐶

𝑆𝑖𝑚|

|𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑆𝑖𝑚
𝐶 |

=
14

17
= 0.823, and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑏𝑠𝑒𝑛𝑡 =
|𝑎𝑏𝑠𝑒𝑛𝑡𝐶

𝑆𝑖𝑚|

|𝑎𝑏𝑠𝑒𝑛𝑡𝑆𝑖𝑚
𝐶 |

=
3

8
= 0.375, 

 

with the average accuracy=(0.823+0.375)/2=0.599 

 

Let s1, s2,…., s20, be the Soybean objects from the above Soybean data set. The similarity precision 

matrix from Table 7 can be presented as: 
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 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 

s1 1 0 .9 0 0 0 1 0 .9 1 0 0 0 0 0 0 0 0 0 0 

s2 0 1 0 0 0 .8 0 0 .9 0 0 0 0 0 0 0 0 0 0 0 

s3 .9 0 1 0 0 0 .9 0 .8 .9 0 0 0 0 0 0 0 0 0 0 

s4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s5 0 0 0 0 1 0 0 0 0 0 0 0 .8 0 0 0 0 0 0 0 

s6 0 .8 0 0 0 1 0 0 .7 0 0 0 0 0 0 0 0 0 0 0 

s7 1 0 .9 0 0 0 1 0 .9 1 0 0 0 0 0 0 0 0 0 0 

s8 0 0 0 0 0 0 0 1 0 0 .7 0 0 0 .7 0 0 0 0 0 

s9 .9 .9 .8 0 0 .7 .9 0 1 .9 1 0 0 0 0 0 0 0 0 0 

s10 1 0 .9 0 0 0 1 0 .9 1 0 0 0 0 0 0 0 0 0 0 

s11 0 0 0 0 0 0 0 .7 0 0 1 0 0 0 .8 0 0 0 0 0 

s12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

s13 0 0 0 0 .8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

s14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 .8 0 0 0 0 

s15 0 0 0 0 0 0 0 .7 0 0 .8 0 0 0 1 0 0 0 0 0 

s16 0 0 0 0 0 0 0 0 0 0 0 0 0 .8 0 1 0 0 0 0 

s17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

s18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .6 .6 

s19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .6 1 .7 

 
 

By considering the similarity precision, say 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥ 0.75, the similarity class for the above similarity 

precision matrix is given as; 

 

𝐼𝐶
𝐿𝑆𝑖𝑚(1) = {1,3,7,9,10},𝐼𝐶

𝐿𝑆𝑖𝑚(2) = {2,6,9},𝐼𝐶
𝐿𝑆𝑖𝑚(3) = {1,3,7,9,10}, 𝐼𝐶

𝑆𝑖𝑚(4) = {4},𝐼𝐶
𝑆𝑖𝑚(5) = {5,13}, 

𝐼𝐶
𝐿𝑆𝑖𝑚(6) = {2,6},𝐼𝐶

𝐿𝑆𝑖𝑚(7) = {1,3,7,9,10},𝐼𝐶
𝐿𝑆𝑖𝑚(8) = {8},𝐼𝐶

𝐿𝑆𝑖𝑚(9) = {1,2,3,7,9,10},𝐼𝐶
𝐿𝑆𝑖𝑚(10) = {1,3,7,9,10}, 

𝐼𝐶
𝐿𝑆𝑖𝑚(11) = {11,15},𝐼𝐶

𝐿𝑆𝑖𝑚(12) = {12},𝐼𝐶
𝐿𝑆𝑖𝑚(13) = {5,13}, ( )  16,1414 =LSim

CI 𝐼𝐶
𝐿𝑆𝑖𝑚(15) = {11,15}, 

𝐼𝐶
𝐿𝑆𝑖𝑚(16) = {14,16},𝐼𝐶

𝐿𝑆𝑖𝑚(17) = {17},𝐼𝐶
𝐿𝑆𝑖𝑚(18) = {18},𝐼𝐶

𝐿𝑆𝑖𝑚(19) = {19}and 𝐼𝐶
𝐿𝑆𝑖𝑚(20) = {20} 

 

𝑂 𝐼𝑁𝐷(𝑑)⁄ = {{1,2,3,4,5,6,7,8,9,10,11,12,13,18,20}, {14,15,16,17,19}} 
 

Thus, 

 

 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐶
𝐿𝑆𝑖𝑚 = {1,2,3,4,5,6,7,8,9,10,12,13,18,20}, 𝑎𝑏𝑠𝑒𝑛𝑡𝐶

𝐿𝑆𝑖𝑚 = {14,16,17,19},  
𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐿𝑆𝑖𝑚

𝐶 = {1,2,3,4,5,6,7,8,9,10,11,12,13,15,18,20}, 𝑎𝑏𝑠𝑒𝑛𝑡𝐿𝑆𝑖𝑚
𝐶 = {11,14,15,16,17,19}. 

 

Therefore, the 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑟𝑒𝑠𝑒𝑛𝑡 =
|𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐶

𝐿𝑆𝑖𝑚|

|𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝐿𝑆𝑖𝑚
𝐶 |

=
14

16
= 0.875, and  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑏𝑠𝑒𝑛𝑡 =
|𝑎𝑏𝑠𝑒𝑛𝑡𝐶

𝐿𝑆𝑖𝑚|

|𝑎𝑏𝑠𝑒𝑛𝑡𝐿𝑆𝑖𝑚
𝐶 |

=
4

6
= 0.667, 

 

with the average accuracy = (0.875+0.667)/2 =0.771. 

 

 

4.4     Comparative Analysis from Four Datasets 

 

In this section, we compare the proposed similarity relation with possible equivalent value-set with limited 

tolerance relation approach based on accuracy. The accuracy of each approach is calculated based on roughness 

accuracy as in Definition 2.4, i.e. lower approximation over upper approximation. Hence, it is adopted from the 

standard rough set accuracy of the approximation. The results of the comparison between the two approaches are 

presented in Table 8. 
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Table 8: The accuracy of each approach

 

Dataset Limited tolerance relation 

(LTR) 

Similarity relation with 

possible equivalent value-set 

(SR-PEVS) 

Improvement 

Soybean 0.3131 0.5993 91.41% 

Monk 0.5458 0.8607 57.70% 

Tic-tac-toe 0.4885 0.7122 45.79% 

Car 

Mammographic 

0.3657 

0.1576 

0.5570 

0.2368 

 

52.17% 

50.25% 

 

 

 
 

Fig. 1: Comparison of accuracy of approximation between limited tolerance relation and similarity relation with 

possible equivalent value-set. 

 
We further compare similarity relation with possible equivalent value-set with and without similarity precision. 

The results as shown in Table 9.  

 
Table 9: The accuracy of each approach 

 

Dataset Similarity relation with 

possible equivalent 

value-set 

(SR-PEVS) 

Similarity relation with 

possible equivalent 

value-set and with 

similarity precision 

(≥75%) (SR-PEVS-SP) 

Improvement 

Soybean 0.5993 0.7709 28.63% 

Monk 0.8607 1.0000 16.18% 

Tic-tac-toe 0.7122 0.9354 31.34% 

Car 

Mammographic 

0.5570 

0.2368 

0.7325 

0.2762 

31.51% 

16.64% 
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Fig. 2: Comparison of accuracy of approximation between similarity relation with possible equivalent value-set 

with and without similarity precision 

 
From Table 8 and Fig.1, the results show that the proposed approach achieved better accuracy as compared to the 

limited tolerance relation approach. Consequently, the proposed approach with similarity precision (≥75%) 

significantly improves the accuracy of approximation as shown in Table 7 and Fig. 2. For example, the accuracy 

for Soybean dataset using limited tolerance relation is 0.3131 while by using similarity relation with possible 

equivalent value-set is 0.5990 which improves more than 91%. Subsequently, the accuracy for Soybean dataset 

using similarity relation with possible equivalent value-set and similarity precision (≥75%) is 0.7709 which 

improves more than 146% as compared to the limited tolerance relation approach. The accuracy for Monk dataset 

using limited tolerance relation is 0.5458 while by using similarity relation with possible equivalent value-set is 

0.8607 which improves more than 57%. Subsequently, the accuracy for Monk dataset using similarity relation 

with possible equivalent value-set and similarity precision (≥75%) is 1.000 which improves more than 83.22% as 

compared to the limited tolerance relation approach.  

 

 
4.5     Real Marine Dataset 

 

The Marine dataset was obtained from [37]. It contained 544 objects and 7 attributes. The attributes are Region 

ID, Number of Sea Fish (SF), Number of Sea Aquaculture (SA), Number of Coral Reefs (CR), Mangrove Area 

(MA), Coastal Forest Area (CF), Plankton Abundance (PA) and Potential Fish Yield (PF). A sample of 30 objects 

from 544 objects will be considered in this study as shown in Table 9. Table 8 below shows the description of each 

attribute in the dataset. 

 
                                               Table 9: Description of Marine dataset 

 

Attribute name Description Attribute set 

value 

ID Region ID {1,2,3,…,544} 

SF Number of Sea Fish (tons) {1,2,3,4,5} 

SA Number of Sea Aquaculture (tons) {1,2,3,4,5} 

CR Number of Coral Reefs (km2) {1,2,3,4,5} 

MA Mangrove Area (km2) {1,2,3,4,5} 

CF Coastal Forest Area (km2) {1,2,3,4,5} 

PA Plankton Abundance (cell/L) {1,2,3,4,5} 

PF Potential Fish Yield  {1,2,3} 
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Table 10 30 objects of Marine dataset with 7 attributes 

 

ID SF SA CR MA CF PA PF 

(Dec) 

 ID SF SA CR MA CF PA PF 

(Dec) 

1 2 1 1 2 2 1 1  16 2 3 1 2 1 3 2 

2 * * 1 3 1 * 1  17 3 1 1 1 2 2 2 

3 2 1 2 1 1 1 1  18 2 1 2 1 3 1 2 

4 1 1 2 3 1 1 1  19 3 1 1 2 2 1 2 

5 1 1 2 1 1 1 1  20 1 3 2 1 1 2 2 

6 1 1 3 1 1 1 1  21 2 2 * 1 2 1 2 

7 1 1 1 1 1 1 1  22 3 1 2 4 1 * 2 

8 1 1 1 3 1 1 1  23 2 1 1 4 1 1 2 

9 1 1 2 1 1 1 1  24 4 * 3 * * 1 2 

10 2 1 2 1 1 * 1  25 4 1 3 1 1 1 2 

11 1 1 2 * 1 1 1  26 3 1 1 1 2 2 2 

12 * * 1 1 2 * 1  27 3 1 1 2 4 1 3 

13 1 1 3 1 1 1 1  28 3 1 1 2 4 1 3 

14 2 * 1 2 1 3 1  29 4 2 3 3 4 1 3 

15 2 2 * 1 * * 1  30 4 2 3 3 4 1 3 

 

 

4.5.1  Comparative analysis from Marine dataset 

 

The Marine dataset was obtained from Saedudin et al. (2018). It contained 544 objects and 7 attributes. 

The attributes are Region ID, Number of Sea Fish (SF), Number of Sea Aquaculture (SA), Number of 

Coral Reefs (CR), Mangrove Area (MA), Coastal Forest Area (CF), Plankton Abundance (PA) and 

Potential Fish Yield (PF). A sample of 30 objects from 544 objects will be considered in this study as 

shown in Table 9. Table 8 below shows the description of each attribute in the dataset. 

 
                                                        Table 9: Description of Marine dataset 

 

Attribute name Description Attribute set 

value 

ID Region ID {1,2,3,…,544} 

SF Number of Sea Fish (tons) {1,2,3,4,5} 

SA Number of Sea Aquaculture (tons) {1,2,3,4,5} 

CR Number of Coral Reefs (km2) {1,2,3,4,5} 

MA Mangrove Area (km2) {1,2,3,4,5} 

CF Coastal Forest Area (km2) {1,2,3,4,5} 

PA Plankton Abundance (cell/L) {1,2,3,4,5} 

PF Potential Fish Yield  {1,2,3} 

 

 

Table 10: 30 objects of Marine dataset with 7 attributes 

 

ID SF SA CR MA CF PA PF 

(Dec) 

 ID SF SA CR MA CF PA PF 

(Dec) 

1 2 1 1 2 2 1 1  16 2 3 1 2 1 3 2 

2 * * 1 3 1 * 1  17 3 1 1 1 2 2 2 

3 2 1 2 1 1 1 1  18 2 1 2 1 3 1 2 

4 1 1 2 3 1 1 1  19 3 1 1 2 2 1 2 

5 1 1 2 1 1 1 1  20 1 3 2 1 1 2 2 

6 1 1 3 1 1 1 1  21 2 2 * 1 2 1 2 

7 1 1 1 1 1 1 1  22 3 1 2 4 1 * 2 

8 1 1 1 3 1 1 1  23 2 1 1 4 1 1 2 

9 1 1 2 1 1 1 1  24 4 * 3 * * 1 2 

10 2 1 2 1 1 * 1  25 4 1 3 1 1 1 2 

11 1 1 2 * 1 1 1  26 3 1 1 1 2 2 2 

12 * * 1 1 2 * 1  27 3 1 1 2 4 1 3 

13 1 1 3 1 1 1 1  28 3 1 1 2 4 1 3 
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14 2 * 1 2 1 3 1  29 4 2 3 3 4 1 3 

15 2 2 * 1 * * 1  30 4 2 3 3 4 1 3 

 

 

Let Table 10 be transformed into its equivalent value-set as shown in Table 11. We will obtain the similarity class 

with possible equivalent value-set and its accuracy as 

 

𝐼𝐶
𝑠𝑖𝑚(1) = {1},𝐼𝐶

𝑠𝑖𝑚(2) = {2,8},𝐼𝐶
𝑠𝑖𝑚(3) = {3,10}, 𝐼𝐶

𝑠𝑖𝑚(4) = {4,11}, 𝐼𝐶
𝑠𝑖𝑚(5) = {5,9},𝐼𝐶

𝑠𝑖𝑚(6) =
{6,13},𝐼𝐶

𝑠𝑖𝑚(7) = {7}, 𝐼𝐶
𝑠𝑖𝑚(8) = {2,8},𝐼𝐶

𝑠𝑖𝑚(9) = {5,9},𝐼𝐶
𝑠𝑖𝑚(10) = {3,10}, 𝐼𝐶

𝑠𝑖𝑚(11) = {4,11},𝐼𝐶
𝑠𝑖𝑚(12) =

{12,15},𝐼𝐶
𝑠𝑖𝑚(13) = {6,13},𝐼𝐶

𝑠𝑖𝑚(14) = {14},𝐼𝐶
𝑠𝑖𝑚(15) = {12,15,21},𝐼𝐶

𝑠𝑖𝑚(16) = {16},𝐼𝐶
𝑠𝑖𝑚(17) =

{17,26},𝐼𝐶
𝑠𝑖𝑚(18) = {18},𝐼𝐶

𝑠𝑖𝑚(19) = {19},𝐼𝐶
𝑠𝑖𝑚(20) = {20},𝐼𝐶

𝑠𝑖𝑚(21) = {15,21}, 𝐼𝐶
𝑠𝑖𝑚(22) = {22},𝐼𝐶

𝑠𝑖𝑚(23) =
{23}, 𝐼𝐶

𝑠𝑖𝑚(24) = {24,29,30},𝐼𝐶
𝑠𝑖𝑚(25) = {25},𝐼𝐶

𝑠𝑖𝑚(26) = {17,26}, 𝐼𝐶
𝑠𝑖𝑚(27) = {27,28}, 𝐼𝐶

𝑠𝑖𝑚(28) =
{27,28},𝐼𝐶

𝑠𝑖𝑚(29) = {24,29,30}and 𝐼𝐶
𝑠𝑖𝑚(30) = {24,29,30}

 
𝑂 𝐼𝑁𝐷(𝐷𝑒𝑐)⁄ = {{1,2,3, … ,15}, {16,17,18,… ,26}, {27,28,29,30}} 

 

where 

 

𝐷𝑒𝑐1𝐶
𝑠𝑖𝑚 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 

 𝐷𝑒𝑐1𝑠𝑖𝑚
𝐶 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,21}, 

𝐷𝑒𝑐2𝐶
𝑠𝑖𝑚 = {16,17,18,19,20,22,23,25,26}, 

 𝐷𝑒𝑐2𝑠𝑖𝑚
𝐶 = {15,16,17,18,19,20,21,22,23,24,25,26,29,30}, 

𝐷𝑒𝑐3𝐶
𝑠𝑖𝑚 = {27,28}, and 

 𝐷𝑒𝑐3𝑠𝑖𝑚
𝐶 = {24,27,28,29,30} 

 

From Definition 2.6, the, 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐1 =
|𝐷𝑒𝑐1𝐶

𝑠𝑖𝑚|

|𝐷𝑒𝑐1𝑠𝑖𝑚
𝐶 |

=
14

16
= 0.8750, 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐2 =
|𝐷𝑒𝑐2𝐶

𝑠𝑖𝑚|

|𝐷𝑒𝑐2𝑠𝑖𝑚
𝐶 |

=
9

14
= 0.6429, and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐3 =
|𝐷𝑒𝑐3𝐶

𝑠𝑖𝑚|

|𝐷𝑒𝑐3𝑠𝑖𝑚
𝐶 |

=
2

5
= 0.4000

 , 

 

 with the average accuracy = (0.8750+0.6429+0.4000)/3 =0.6393. 

 

The similarity precision matrix for marine data set cannot be presented in this paper due to large number of objects 

that is difficult to portray in the paper. However, the similarity classes for different similarity precision are given 

as follows; 

 

By considering the similarity precision, say 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥ 0.65, the similarity class with similarity precision 

for Table 10 is calculated as; 

 

𝐼𝐶
𝐿𝑆𝑖𝑚.65(1) = {1},𝐼𝐶

𝐿𝑆𝑖𝑚65(2) = {2,8},𝐼𝐶
𝐿𝑆𝑖𝑚65(3) = {3,10}, 𝐼𝐶

𝐿𝑆𝑖𝑚65(4) = {4,11}, 𝐼𝐶
𝐿𝑆𝑖𝑚65(5) = {5,9}, 

𝐼𝐶
𝐿𝑆𝑖𝑚65(6) = {6,13}, 𝐼𝐶

𝐿𝑆𝑖𝑚65(7) = {7}, 𝐼𝐶
𝐿𝑆𝑖𝑚65(8) = {2,8},𝐼𝐶

𝐿𝑆𝑖𝑚65(9) = {5,9},𝐼𝐶
𝐿𝑆𝑖𝑚65(10) = {3,10}, 

𝐼𝐶
𝐿𝑆𝑖𝑚65(11) = {4,11}, 𝐼𝐶

𝐿𝑆𝑖𝑚65(12) = {12},𝐼𝐶
𝐿𝑆𝑖𝑚65(13) = {6,13},𝐼𝐶

𝐿𝑆𝑖𝑚65(14) = {14}, 𝐼𝐶
𝐿𝑆𝑖𝑚65(15) =

{15,21},𝐼𝐶
𝐿𝑆𝑖𝑚65(16) = {16},𝐼𝐶

𝐿𝑆𝑖𝑚65(17) = {17,26},𝐼𝐶
𝐿𝑆𝑖𝑚65(18) = {18},𝐼𝐶

𝐿𝑆𝑖𝑚65(19) = {19},𝐼𝐶
𝐿𝑆𝑖𝑚65(20) =

{20}, 𝐼𝐶
𝐿𝑆𝑖𝑚65(21) = {15,21}, 𝐼𝐶

𝐿𝑆𝑖𝑚65(22) = {22},𝐼𝐶
𝐿𝑆𝑖𝑚65(23) = {23}, 𝐼𝐶

𝐿𝑆𝑖𝑚65(24) =

{24,29,30},𝐼𝐶
𝐿𝑆𝑖𝑚65(25) = {25},𝐼𝐶

𝐿𝑆𝑖𝑚65(26) = {17,26}, 

 

 

𝐼𝐶
𝐿𝑆𝑖𝑚65(27) = {27,28}, 𝐼𝐶

𝐿𝑆𝑖𝑚65(28) = {27,28},𝐼𝐶
𝐿𝑆𝑖𝑚65(29) = {24,29,30}and 𝐼𝐶

𝐿𝑆𝑖𝑚65(30) = {24,29,30} 
𝑂

𝐼𝑁𝐷(𝐷𝑒𝑐)
= {{1,2,3,… ,15}, {16,17,18,… ,26}, {27,28,29,30}} 

Thus, 

 

𝐷𝑒𝑐1𝐶
𝐿𝑆𝑖𝑚65 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 

𝐷𝑒𝑐1𝐿𝑆𝑖𝑚65
𝐶 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,21}, 
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𝐷𝑒𝑐2𝐶
𝐿𝑆𝑖𝑚65 = {16,17,18,19,20,21,22,23,24,25,26}, 

𝐷𝑒𝑐2𝐿𝑠𝑖𝑚65
𝐶 = {15,16,17,18,19,20,21,22,23,24,25,26,29,30}, 

𝐷𝑒𝑐3𝐶
𝐿𝑆𝑖𝑚65 = {27,28}, and 

𝐷𝑒𝑐3𝐿𝑆𝑖𝑚65
𝐶 = {27,28,29,30}. 

 

From Definition 2.6, the 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐165 =
|𝐷𝑒𝑐1𝐶

𝐿𝑆𝑖𝑚65|

|𝐷𝑒𝑐1𝐿𝑆𝑖𝑚65
𝐶 |

=
14

16
= 0.8750, 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐265 =
|𝐷𝑒𝑐2𝐶

𝐿𝑆𝑖𝑚65|

|𝐷𝑒𝑐2𝐿𝑆𝑖𝑚65
𝐶 |

=
8

13
= 0.6429, and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐365 =
|𝐷𝑒𝑐3𝐶

𝐿𝑆𝑖𝑚65|

|𝐷𝑒𝑐3𝐿𝑆𝑖𝑚65
𝐶 |

=
2

4
= 0.5,

 

 

 with the average accuracy = (0.8750+0.6429+0.5)/3 =0. 6726. 

 

For 𝑆𝑖𝑚𝑝𝑟𝑒𝑐(𝑥, 𝑦) ≥ 0.75, from Table 10, we will obtain the similarity class with similarity precision as; 

 

𝐼𝐶
𝐿𝑆𝑖𝑚.75(1) = {1},𝐼𝐶

𝐿𝑆𝑖𝑚.75(2) = {2},𝐼𝐶
𝐿𝑆𝑖𝑚(3) = {3,10}, 𝐼𝐶

𝐿𝑆𝑖𝑚(4) = {4,11}, 𝐼𝐶
𝐿𝑆𝑖𝑚(5) = {5,9},𝐼𝐶

𝐿𝑆𝑖𝑚(6) = {6,13}, 

𝐼𝐶
𝐿𝑆𝑖𝑚(7) = {7}, 𝐼𝐶

𝐿𝑆𝑖𝑚(8) = {8},𝐼𝐶
𝐿𝑆𝑖𝑚(9) = {5,9},𝐼𝐶

𝐿𝑆𝑖𝑚(10) = {3,10}, 𝐼𝐶
𝐿𝑆𝑖𝑚(11) = {4,11}, 𝐼𝐶

𝐿𝑆𝑖𝑚(12) =
{12},𝐼𝐶

𝐿𝑆𝑖𝑚(13) = {6,13},𝐼𝐶
𝐿𝑆𝑖𝑚(14) = {14},𝐼𝐶

𝐿𝑆𝑖𝑚(15) = {15},𝐼𝐶
𝐿𝑆𝑖𝑚(16) = {16},𝐼𝐶

𝐿𝑆𝑖𝑚(17) =
{17,26},𝐼𝐶

𝐿𝑠𝑖𝑚(18) = {18},𝐼𝐶
𝐿𝑆𝑖𝑚(19) = {19},𝐼𝐶

𝐿𝑆𝑖𝑚(20) = {20}, 𝐼𝐶
𝐿𝑆𝑖𝑚(21) = {21}, 𝐼𝐶

𝐿𝑆𝑖𝑚(22) =
{22},𝐼𝐶

𝐿𝑆𝑖𝑚(23) = {23}, 𝐼𝐶
𝐿𝑆𝑖𝑚(24) = {24},𝐼𝐶

𝐿𝑆𝑖𝑚(25) = {25},𝐼𝐶
𝐿𝑆𝑖𝑚(26) = {17,26}, 𝐼𝐶

𝐿𝑆𝑖𝑚(27) = {27,28}, 
𝐼𝐶
𝐿𝑆𝑖𝑚(28) = {27,28},𝐼𝐶

𝐿𝑆𝑖𝑚(29) = {29,30}and 𝐼𝐶
𝐿𝑆𝑖𝑚(30) = {29,30} 

 

where 

 
𝑂

𝐼𝑁𝐷(𝐷𝑒𝑐)
= {{1,2,3,… ,15}, {16,17,18,… ,26}, {27,28,29,30}} 

 

Thus, 

 

𝐷𝑒𝑐1𝐶
𝑠𝑖𝑚 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, 

𝐷𝑒𝑐1𝑠𝑖𝑚
𝐶 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, 

𝐷𝑒𝑐2𝐶
𝑠𝑖𝑚 = {16,17,18,19,20,21,22,23,24,25,26}, 

𝐷𝑒𝑐2𝑠𝑖𝑚
𝐶 = {16,17,18,19,20,21,22,23,24,25,26}, 

𝐷𝑒𝑐3𝐶
𝑠𝑖𝑚 = {27,28,29,30}, 𝐷𝑒𝑐3𝑠𝑖𝑚

𝐶 = {27,28,29,30} . 
 

From Definition 2.6, the 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐1 =
|𝐷𝑒𝑐1𝐶

𝑠𝑖𝑚|

|𝐷𝑒𝑐1𝑠𝑖𝑚
𝐶 |

=
15

15
= 1.0000, 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐2 =
|𝐷𝑒𝑐2𝐶

𝑠𝑖𝑚|

|𝐷𝑒𝑐2𝑠𝑖𝑚
𝐶 |

=
11

11
= 1.0000, and 

 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑒𝑐3 =
|𝐷𝑒𝑐3𝐶

𝑠𝑖𝑚|

|𝐷𝑒𝑐3𝑠𝑖𝑚
𝐶 |

=
4

4
= 1.0000 , 

 

with the average accuracy = (1.0000+1.0000+1.0000)/3 = 1.0000. 
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Table 12: The accuracy of each approach 

 

Dataset Limited tolerance 

relation (LTR) 

Similarity relation with 

possible equivalent 

value-set and (SR-

PEVS) 

Improvement 

Marine 0.5230 0.6393 22.24% 

 

 

 

 
 

Fig. 3: Comparison of accuracy using different approaches for Marine dataset 

 
 

Next, we compare similarity relation with possible equivalent value-set with different values of similarity 

precision. The results are shown in Table 12. 

 
Table 13: The accuracy of the proposed approach with different values of similarity precision 

 

Dataset Similarity relation with 

possible equivalent 

value-set 

and with similarity 

precision (≥65%) (SR-

PEVS-SP) 

Similarity relation with 

possible equivalent 

value-set and with 

similarity precision 

(≥75%) (SR-PEVS-SP) 

Improvement 

Marine 0.6726 1.0000 48.68% 

    

 

 

   

 

 

 
 

Fig. 4:  Comparison of accuracy using different values of similarity precision for Marine dataset
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Results from Table 12 and Fig. 3 show that the similarity precision with possible equivalent value-set achieved 

better accuracy as compared to the limited tolerance relation approach to 22.24%. Results in Table 13 and Fig. 4 

show that by using the proposed approach with similarity precision (≥75%) achieved higher accuracy as compared 

to proposed approach with similarity precision (≥65%) up to 48%. It means similarity precision plays a big role in 

achieving higher classification accuracy.  

5.0     CONCLUSION 

Classical rough set theory such as tolerance relation and limited tolerance relation can be used to handle incomplete 

information systems. However, these approaches unable to produce promising results in terms of accuracy of 

approximation. Thus, to overcome the limitation, we proposed a new approach based on similarity relation with 

semantically justified using possible equivalent value-set. It is based on a classification of three semantics types 

of incomplete information (i.e., “any value”, “may be value” and “not applicable value”) for modelling similarity. 

The advantage of using the presented approach is there are more similar objects within the same indiscernibility 

classes that leads to greater value of lower approximation. Consequently, the similarity precision is considered to 

improve the accuracy of similarity relation with possible equivalent value-set. From the simulation results by using 

different and real dataset respectively, we are able to obtain better value for accuracy of approximation as compared 

to limited tolerance relation up to two orders of magnitude. Thus, the new approach is more flexible and precise 

as compared to the limited tolerance relation. This paper also discusses the mathematical properties of the proposed 

new approach. 
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