
An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

79
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

AN UNSUPERVISED MALWARE DETECTION SYSTEM FOR WINDOWS BASED

SYSTEM CALL SEQUENCES

Ragaventhiran J
1
, Vigneshwaran P

2*
, Mallikarjun M Kodabagi

3
, Syed Thouheed Ahmed

4
, Prabu Ramadoss

5
,

Prisma Megantoro
6

1
School of Engineering, Presidency University, Bengaluru, Karnataka, India

2
Department of Networking and Communications, SRM Institute of Science and Technology,

Kattankulathur, Chennai, India

3,4

School of Computation and Information Technology, REVA University, Bengaluru, Karnataka, India

5
Senior Solution Architect, Dassault Systemes Austrila Pty Ltd, West Perth, WA, Austrila

6
Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Indonesia

Email: vigneshwaranpandi1981@gmail.com
2*

(corresponding author)

DOI: https://doi.org/10.22452/mjcs.sp2022no2.7

ABSTRACT

Malware attacks have grown in prominence in recent years, posing severe security risks and resulting in

significant financial losses. The ability to rapidly and reliably classify malware is vital to cybersecurity due to

the exponential growth of malware variants. The role of artificial intelligence plays a significant role in

cybersecurity industry. Recently, in the field of malware detection deep learning technique seeks more attention

than the machine learning techniques due to the complexity of its behavior. Because the deep learning

technique performs well than the machine learning techniques in terms of accuracy and it is well suited for

large amount of data. The input attribute for the proposed model is windows-based system call sequence which

is collected from NT mal detect project. In this work, the unsupervised deep learning technique used for text

classification namely LSTM autoencoder and the performance of proposed model compares with existing DL

methods such as CNN, RNN and LSTM with the performance parameters of accuracy, precision, recall and F1-

measure.

Keywords: LSTM Autoencoder, LSTM, RNN, CNN, Malware Detection, PE files.

1.0 INTRODUCTION

In the era of digital world, storing and manipulating all the records are converting in the form of digitized

documents. The rise of digitized document facilitates the backup process and it reduces the workload of humans.

The advantage of digitized document has equivalent form of disadvantages too in form of malicious attack

established for the system. The establishment of malicious attack can be done for many reasons which includes

information theft, identity theft, demanding money, to take control of remote system etc., This scenario shows

that always a system getting expose to influence its information which is reside on it. This phenomenon shows

that there is a high alert security system has to be provided. The term malware can be defined as any malicious

piece of code or software which causes harm to the system. There are numerous techniques has been in industry

to protecting the malware and it can also broadly classify into two categories they are static and dynamic

malware analysis [1] [2]. Both of the detecting techniques relies on the process of significant feature from the

malware sample which has the capability to expose the behavior of malware. In static malware detection

approach, the features were taken without executing the malware sample for example string pattern, opcodes

and bytes sequences [3]. Dynamic malware detection, in contrast to static malware detection, extracts features

by executing malware samples in a virtual environment, such as registry changes, system calls, API calls,

network traffic, and so on. [4]. While comparing these two detection techniques, it shows that static method fails

to detect new variants of malwares [5] [6] so it can conclude that dynamic based approaches show better

performance in form of detection rate than the static based approach. They used machine learning approach such

as SVM, Nave Bayes, Decision Tree, and K-nearest neighbour to learn and classify the retrieved features of

both normal and malicious files for the above-mentioned two approaches [7] [8] [9]. But in some cases, in it is

proven that machine learning algorithms have been shown to be capable of producing higher accuracy and

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

80
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

larger amounts of data since it does not extract required meaningful pattern from the extracted features to learn

the behavior of the malicious file [10]. In this regard, the malware detection technique was replaced by deep

learning technique in place of machine learning techniques to improve high detection rate for enormous amount

of data.

As a result, the windows-malware detection framework used in this study is based on deep learning. The system

calls were obtained as an input parameter from both benign and malware files, and these calls were fed into the

deep learning model to improve the efficiency of the created model. This scenario helps to detect even unknown

pattern of new incoming malware files.

The summary of the contribution in this work has been enumerated below:

 The data preprocessing has been carried out using TFID (Term Frequency Inverse Document)

vectorizer to extract significant features from the system call sequence

 Visualization of windows-based system calls for both benign and malicious samples was done in form

of word cloud representation

 The process of classification was done by implementing the deep learning algorithm using LSTM

Autoencoder

 Finally, the proposed deep learning solution were compared and analyzed against well known deep

technique used malware detection system such as CNN, RNN and LSTM-RNN

2.0 RELATED WORKS

Amer et al. [11] suggested a malware detector that extracts API programs simultaneously sequences from

Windows PE files. Author has utilized Markov chain model to predict and classify the benign and malicious call

sequences. Xie et al. [12] suggested a malware detection algorithm for cell phone based malicious files. Here

hidden Markov model is deployed to discriminate benign system calls from malicious calls. Ravi et al. [13]

presented a model which uses windows API call sequences as an input attributes in order to distinguish between

malicious samples from the normal files. To study the behavior pattern and to do prediction of system call

sequences of malicious files association-based rule mining has been used here. This approach makes to detect

the malware during run time also. Ki et al. [14] presented a model to detect the malicious API call sequence

using DNA sequence alignment algorithms. This algorithm capable of detecting new unknown windows based

malicious samples. By collecting API call sequences, Tang et al. [15] established a malware detection tool for

Windows systems. Then these sequences were transformed into color feature map and it is turned to be color

images. Furthermore, these images are then classified into benign and malicious using Convolutional neural

network. Xiaofeng et al. [16] anticipated a combined model for malware detection framework which is built

upon a machine learning as well as deep learning technique. The first component of the model captures the

association between a large number of extracted system calls, while the second half performs the categorization.

Wang et al. [17] suggested a malware detection method based on API calls, with RNN autoencoder used to

identify these extracted API calls. These autoencoders can also be constructed to detect various variations of

malicious samples by combining multiple decoders.

By using windows-based API call sequences, Asha et al. [18] established a paradigm for multiclassifying

malware families. Here author has utilized Rete algorithm to generate rule-based pattern matching process.

Apart from this, multidimensional random forest has been used for the process of classification. At the edge of

discussion part of the existing solution, it given a decision that only few of the work are relies on deep learning

technique and none of the work are depends on unsupervised technique. Since the non-availability of labelled

malwares in the formation of malware dataset, here unsupervised technique plays a huge role to tackle this

situation. Here System calls were considered as input instead of API calls, and to study its behavior pattern

LSTM autoencoder has been incorporated in an unsupervised way. In recent days LSTM autoencoder seeks

more attention towards for text classification. System calls sequence is in the textual form, hence LSTM

autoencoder has chosen here for malware detection process. Majchrzycka et al. [19] developed a Secure

Development Strategy model to overcome problems such as data leaks and to safe guard from outsider attacks in

mobile devices. Also, they propose an iSec security tool which was designed to implement security in mobile

devices. The Table 1 shows the comparison of existing systems with the methodologies used and accuracy.

Anshumaan et al. [22] proposed a Email spam classification method using LSTM and Bi-LSTM model. The Bi-

LSTM model achieved a higher performance. Islabudeen et al. [23] proposed a smart approach for intrusion

detection and prevention system to ease attacks using machine learning approaches.

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

81
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

Table 1: A comparison of existing systems

Authors Dataset and samples used Methodology Performance

Cesare, S et al.,

2014 [1]

mwcollect alliance network with

17,430 real malware from

honeypots.

The feature vectors of string-

based signatures are used to

create a distance measure.

Static analysis

Q-Grams - 0.62

Q-Grams + Optima Distance -

0.43

Galal, H.S., et

al., 2016 [2]
9993 samples from VirusSign

Behaviour based features

model using DT, RF and

SVM

Decision Tree - 97.19%,

Random Forest - 96.84%,

SVM - 93.98%

Burnap, P et al.,

2018 [6]

VirusTotal API. The PE contains

594 harmful files.

A Logistic Regression

model based on an ensemble

classifier.

SVM - 68.08%, MLP -

79.40%, BayesNet - 77.70%,

RF - 86.52%, MOPR -

93.76%

Fan et al., 2018

[7]

Genome Project dataset, Drebin

Dataset, FallDroid - I, FallDroid -

II

FalDroid FalDroid - 94.2%

Lin et al., 2018

[8]
4-gram API fragment sequence

privacy-preserving Naive

Bayes classifier (PP-NBC).
94.93%

Xiao F et al.,

2019 [10]

malware samples from VX

Heaven.

Stacked AutoEncoders and

the Behavior-Based Deep

Learning Framework

(BDLF)

98.60%

Amer E et al.,

2020 [11]

Intelligence and Security

Informatics Data Sets

brazilian-malware- dataset

Using Markov chain

sequences to depict the link

between API functions to

represent malware and

goodware

Prediction - 0.997

FPR of 0.000

FNR of 0.007.

Xie L et al.,

2010 [12]

Data from monitoring of I/O

events examine correlations of

these events.

Behavior based malware

detection system named

pBMDS

Detection rate - 92.1%

False Positive - 6.3%

False Negative - 1.6%

Ravi C et al.,

2012 [13]

 VXHeavens and benign

executable samples collected

from a freshly installed copy of

Windows XP.

 3rd order Markov chain

(4-grams)
99.38%

Ki Y et al., 2015

[14]

Malicia-project and VirusTotal

samples totaling 23,080

Dynamic analysis. DNA

sequence alignment

algorithms

99.80%

Tang M et al.,

2019 [15]

The Virus Share community has 9

virus families, each with 1000

variants.

Visualization and deep

learning techniques are used.

True Positive Ratio, precision,

recall and F1 > 99%,

FPR < 0.1%

Xiaofeng, L et

al., 2019 [16]

Malicious samples from Virus

Share and VirusTotal, as well as

samples from Windows 7 and

Windows XP system exe files

dynamic behavior AUC 99.3%

Wang X et al.,

2016 [17]

 Public API call sequence dataset

(Kim 2016). For coarse grained

evaluation 7430 samples and fine

grained evaluation 4932 samples.

dynamic behavior 99.90%

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

82
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

3.0 PROPOSED MODEL

This section gives the detailed view of proposed solution and the working of the inner components. In figure 1

the techniques involved in each modules of the proposed methodology can be visualized clearly. The modules

present in the proposed solution consists of data collection stage, data preprocessing stage, Dimensionality

reduction stage, classification stage and finally evaluation.

Fig. 1: The Malware Detection System's Proposed Architecture

3.1 Dataset Collection

The dataset used for this work is taken from the project called Ntmaldetect [20]. The dataset comprises of API

system calls which are extracted from the windows-based PE format files. This database includes both normal

and malicious samples placed in separate folders. This dataset has 73 benign files and 152 malware files. All the

system calls were placed in form of text sequence in the .txt file. Figures 2 and 3 are examples of the word cloud

representation for benign file as well as malware file correspondingly. ‘NtQueryVirtualMemory’ is the

maximum occurrence system call in the benign file Whereas ‘NtProtectVirtualMemory’ is the maximum

occurrence system call in the malicious file. In these two-word cloud, the two 100 maximum occurred system

calls has been given. Based on the text size, its frequency can be determined. The larger size of text shows the

high rate of recurrence and its text size decreased gradually based on its frequency.

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

83
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

Fig. 2: Word Cloud for Benign file

Fig. 3: Word Cloud for normal file

3.2 Data preprocessing

The collected data is in the form of text, so here tokenization process has been carried to make the textual data

suitable for deep learning architecture. Tokenization is the process of breaking the entire sentences into

individual words or tokens. The process of breaking can be depending upon the language gets preferred.

Suppose for instance if the system call sequence has 40 system calls means it will be break into 40 tokens

3.3 Dimsenonality Reduction

In this stage, the required quantity of significant features will be extracted from the tokens. For this task to

accomplish, the word embedding technique has been employed using embedding layer given in Keras package

of Python. This technique is used to assign meaningful dense vectors for each tokens or words. It is also can be

defined as the updated model of Bag of words (BAG) model. The dense vectors extracted from the words can

also be used for another work. Finally, the designed embedding layer can be used as the first layer for the deep

learning model or classifier.

3.4 Classification

In this stage, the classification process are carried out using four CNN (Convolutional neural network), RNN

(Recurrent neural network), Long short-term memory (LSTM), and LSTM autoencoder are examples of deep

learning approaches. This classification layer accustomed to distinguish between malicious and lawful API call

sequences. In table 1 the tuned hyperparameters used for the four deep learning technique has been illustrated.

The techniques used for API calls are listed and described below:

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

84
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

3.5 Convolutional Neural Network

It's a form of neural network technology that's been built specifically for image processing. This type of neural

network requires only less pre-processing techniques. This architecture consists of filtering, maxpooling, flatten

and convolution layers. The connectivity of the neurons present in this architecture resembles the working of

human brain. It has recently attracted interest in the field of natural language processing techniques.

3.6 Recurrent Neural Network

It's a type of artificial neural network in which it has internal memory to process the long sequences for

prediction. The neurons of the layers in the architecture of RNN is connected in the form of directed graph along

temporal space. Since the RNN has the ability to remember the information about the previous task, so its

current state of decision is partially depending on past experience. In this way, it is well suited for prediction

like task.

3.7 LSTM

It is just an updated neural network model of RNN with same functionality. The two technical problem exhibits

by the RNN are vanishing gradients and exploding gradients were resolved by the LSTM. The internal structure

of LSTM is built by LSTM layers which composed of multiple recurrent connected blocks in other words it can

say that memory blocks. Each block comprises of multiple memory cells along with three multiplicative units

called input gate, output gate and forget gates. This kind of architecture design provide continuous manipulation

operation of memory cells.

In a typical LSTM unit in figure 4, A cell, an input gate, an output gate, and a forget gate are all present. Three

gates control the flow of data into and out of the cell, allowing it to retain information for an indefinite period of

time. Ideally, it makes LSTM because crucial events can have unpredictable lags, for analysing time series data

and making predictions the vanishing gradient problem might occur when training typical RNNs. LSTMs were

created to solve this problem. This means that when there are time gaps of more than between relevant input

events and target signals, there are 5 to 10 discrete time steps ordinary RNNs cannot learn. The vanishing error

problem calls into question RNNs' practical advantages over time window-based feedforward networks. LSTM,

a more contemporary model, is not affected by this issue. To bridge time gaps greater than 1000 discrete time

steps, LSTM can learn to enforce "constant error carrousels" (CECs) within specific units, known as cells, to

ensure that errors flow in the same direction.

Fig. 4: Architecture of LSTM

3.8 LSTM Autoencoder

LSTM autoencoder is a special variant implementation of LSTM which possess two blocks they are encoder and

decoder.

The encoder part is used to compress the input data sequence and the decoder part is used to recreate the

compressed the sequence data. This architecture has dropout layer, time distributed layer, LSTM layer, repeat

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

85
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

vector layer, and LSTM layer. The intention of dropout layer is to eliminate overfitting problem, the repeat

vector is to repeat the input for ‘n’ number of times. Finally, the time distributed layer is to develop a vector of

output layer size by retrieving the information from the previous layer. The number of neurons employed in the

architecture, as well as the number of layers of LSTM autoencoder for this work has been visualized in the

figure 5&6.

3.9 Evaluation

Finally, the evaluation stage is completed to determine the proposed model's compliance with several quality

measures such as accuracy, precision, recall, and F1-measure, as shown in Table 2. The test dataset is utilized to

conduct various test for evaluation purposes. Using these metrics, a comparison of three more deep learning

algorithms, including CNN, RNN, and LSTM, with the proposed LSTM autoencoder was performed. It is

demonstrated towards the conclusion of the evaluation that the proposed method outperforms the remaining

deep learning strategies.

Fig. 5: LSTM Autoencoder flow diagram

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

86
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

Fig. 6: Architecture of LSTM Autoencoder

4.0 RESULTS AND DISCUSSION

The experimental setup for this proposed malware detection framework has been done using python version 3.7

along with tensorflow as backend process. The model has tested and evaluated in the windows 10 operating

system with 4GB RAM at 1.23Ghz frequency of CPU speed. Accuracy, precision, recall, and F1-measure were

used to evaluate the suggested model's performance. The description of each performance metrics with its

respective equation has been given below.

Table 2: Values for Deep Learning Model Hyperparameters

HyperParameter

s

Values

CNN RNN LSTM LSTM Autoencoder

Epochs 10

Hidden layers 2 1 3

Activation

function

output layer - sigmoid function

Hidden layer - Relu function

output layer - time distributed

function

Hidden layer - Relu function

Neurons

output layer -
01

hidden Layer -

10

output layer - 01

hidden Layer -
04

output layer -
01

hidden Layer -

64

output layer - 01

hidden Layer - 200

Optimizer Adam

Metrics Accuracy, Loss (MSE)

Loss Function Binary cross entropy

4.1 Accuracy

It is determined using equation (1) and is defined as the ratio of the number of successfully predicted sequences

to the total number of samples in a dataset.

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

87
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

 (1)
4.2 Precision

It is described as a classifier's capacity to correctly identify malware samples as attacks. The precision of the

classifier is calculated using Equation (2).

 (2)

Fig. 7: Performance of CNN

Fig. 8: Performance of RNN

Fig. 9: Performance of LSTM

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

88
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

Fig. 10: Performance of LSTM Autoencoder

4.3 Recall or detection rate

It's defined as the number of malicious samples that have been appropriately classified as malware. Equation (3)

is used to calculate the recall of the classifier

 (3)

4.4 F1 Score

The weighted melodic mean of precision and recall value is what it's called. For the classifier equation (4) is

used to estimate the F-measure.

 (4)

Fig. 11: RoC – CNN

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

89
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

Fig. 12: RoC – RNN

Fig. 13: RoC – LSTM

Fig. 14: RoC – LSTM Autoencoder

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

90
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

True positive (TP) are the number correctly labelled malware from malware samples, True Negative (TN) are

the number of correctly labelled normal from the normal samples, False Positive (FP) are the number of

wrongly labelled malware from normal samples and FN (False Negative) are the number wrongly labelled

normal from malware samples. Table 2, the performance metrics for four deep learning techniques has been

demonstrated. By analyzing these values, it gives the detailed insights of each technique. Based on these values,

it can say that the LSTM autoencoder performs better than the remaining three algorithms. To the next level of

LSTM autoencoder, CNN performs better than the LSTM and RNN. Both LSTM and RNN performs in the

same range. RoC (Receiver operating Characteristics curve) is the plot between FPR and TPR rate of the binary

classifier against different threshold. The figure 11,12,13 and 14 shows the RoC curve for CNN, LSTM, RNN

and LSTM autoencoder correspondingly. The RoC curve for LSTM overlaps with the blue dotted line, it shows

the poor performance of it. For CNN and RNN, the gap between those lines are moderate but for LSTM

autoencoder the gap between those lines are high. The figure 7, 8,9 and 10 shows the accuracy and loss plots

between training and testing time for each epochs. Plotted the results of all approaches, including our suggested

way, and compared them to other methods, including the LSTM Autoencoder. The method that has been

proposed outperforms well with the others. The results are shown in Table 3. As per the result and comparsion

of previous methods the Deep Learning model is more systmeatic than the tradional machine learning models.

Table 3: Comparative Analysis of Various Deep Learning Techniques With Proposed Model

Algorithm

Used
Accuracy Precision Recall

F1-

measure

Training

Time

(sec)

Prediction

Time

(sec)

CNN 82.22 0.81 0.967 0.882 9.137 0.213

SVM 84.50 0.74 0.95 0.80 12.15 1.5

LSTM-RNN 68.89 0.688 1 0.815 6.761 0.503

RNN 68.89 0.904 0.612 0.73 3.667 0.291

LSTM

Autoencoder
99.22 0.984 1 0.992 2.921 0.27

Overall, It is observed from the comparative analysis, the LSTM Deep Learning model gives accuracy of

99.22% among the other existing methods. Meanwhile, the variation in accuracy is not significantly different

from the LSTM [22]. LSTM Autoencoder algorithms continue to outperform CNN and SVM methods. In our

proposed smethod we have used the LSTM autoencoder with 200 hidden layers and also the words are

categorised by using the Bag of Word method. During the preprocessing the tockenizing method is used to make

the suitable textual data for deep learning models.

5.0 CONCLUSION

This paper explores about the four deep learning techniques applied for the design of malware detection

framework. This model has been evaluated against very small amount of malware dataset. So, the most well

performed algorithm like LSTM and RNN yield least detection rate when comparing to the remaining deep

learning techniques. In this regard, the unsupervised classifier namely LSTM autoencoder stand in a best

position in terms of detection rate. It can capable of providing better performance even for smaller dataset. Here

most significant input attribute such as API based system calls has been considered for the designing of malware

detection framework. This work can be further improved by incorporating the different set of dynamic based

features extracted from the malware samples. Moreover, this model can also be enhanced by performing

multilabel classification. The investigating of malware family’s classification gives more insights about the new

variants of malwares for further analysis process.

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

91
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

REFERENCES

[1] S. Cesare, Y. Xiang, and W. Zhou, “Control flow-based malware variant detection”, IEEE Transactions

on Dependable and Secure Computing, Vol. 11, No. 4, July – Aug 2014, pp. 307-317, doi:

10.1109/TDSC.2013.40.

[2] H. S., Galal, Y. B. Mahdy, and M. A. Atiea,“Behavior-based features model for malware detection”,

Journal of Computer Virology and Hacking Techniques, Vol. 12, No. 2, June 2015, pp. 59–67, doi:

10.1007/s11416-015-0244-0.

[3] E. Gandotra, D. Bansal and S. Sofat, “Malware Analysis and Classification: A Survey”, Journal of

Information Security, Vol. 5, No.2, April 2014, pp. 56-64, doi: 10.4236/jis.2014.52006.

[4] Y. Qiao, Y. Yang , J. He, C. Tang, and Z. Liu, “CBM: Free, Automatic Malware Analysis Framework

Using API Call Sequences”, In: Sun F., Li T., Li H. (eds) Knowledge Engineering and Management.

Advances in Intelligent Systems and Computing, vol 214. Springer, Berlin, Heidelberg, 2014, doi:

10.1007/978-3-642-37832-4_21.

[5] D. Ucci., L. Aniello, and R. Baldoni, “Survey of machine learning techniques for malware analysis”,

Computers & Security, Vol. 81, March 2019, pp. 123-147, doi: 10.1016/j.cose.2018.11.001.

[6] P. Burnap, R. French, F. Turner, and K. Jones, “Malware classification using self organising feature

maps and machine activity data”, computers & security, Vol. 73, March 2018, pp. 399-410. doi:

10.1016/j.cose.2017.11.016.

[7] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, "Android malware familial classification

and representative sample selection via frequent subgraph analysis" IEEE Transactions on Information

Forensics and Security, Vol. 13, No. 8, August 2018, pp.1890-1905, doi: 10.1109/TIFS.2018.2806891.

[8] Z. Lin, X. Fei, S. Yi, M. Yan, X. Cong-Cong and H. Jun, "A secure encryption-based malware detection

system." KSII Transactions on Internet and Information Systems (TIIS), Vol. 12, No. 4, April 2018,

pp.1799-1818. doi: 10.3837/tiis.2018.04.022.

[9] S. T. Ahmed and S. Sankar, “Investigative protocol design of layer optimized image compression in

telemedicine environment”. Procedia Computer Science, Vol. 167, April 2020, pp. 2617-2622, doi:

10.1016/j.procs.2020.03.323.

[10] F. Xiao, Z. Lin, Y. Sun and Y. Ma, “Malware detection based on deep learning of behavior graphs”,

Mathematical Problems in Engineering, Vol. 2019, February 2019, pp. 1-10, doi:

10.1155/2019/8195395.

[11] E. Amer and I. Zelinka, “A dynamic Windows malware detection and prediction method based on

contextual understanding of API call sequence”, Computers & Security, vol. 92, February 2020, pp. 1-15,

doi: 10.1016/j.cose.2020.101760.

[12] L. Xie and X. Zhang., “pBMDS: a behavior-based malware detection system for cellphone devices” In

Proceedings of the third ACM conference on Wireless network security, Hoboken, New Jersey, ACM,

2010, pp. 37-48.

[13] C. Ravi and R. Manoharan, “Malware detection using windows API sequence and machine learning”,

International Journal of Computer Applications, Vol. 43, No. 17, April 2012, pp. 12-16, doi:

10.5120/6194-8715.

[14] Y. Ki, E. Kim and H. K. Kim, “A novel approach to detect malware based on API call sequence

analysis”, International Journal of Distributed Sensor Networks, Vol. 11, No. 6, June 2015, pp.1-9, doi:

10.1155/2015/659.

[15] S. T. Ahmed and K. K. Patil, "An investigative study on motifs extracted features on real time big-data

signals", in Proceedings of the 2016 International Conference on Emerging Technological Trends

(ICETT), Kollam, India, IEEE, 2016, pp. 1-4. doi: 10.1109/ICETT.2016.7873721.

https://doi.ieeecomputersociety.org/10.1109/TDSC.2013.40
http://dx.doi.org/10.4236/jis.2014.52006
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1016/j.cose.2017.11.016
https://doi.org/10.1016/j.procs.2020.03.323
https://doi.org/10.1155/2019/8195395
https://doi.org/10.1016/j.cose.2020.101760
https://doi.org/10.1155/2015/659101
http://dx.doi.org/10.1109/ICETT.2016.7873721

An Unsupervised Malware Detection System for Windows Based System Call Sequences. pp., 79- 92

92
Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical Systems (2022)

[16] L. Xiaofeng, J. Fangshuo, Z. Xiao, Y. Shengwei, S. Jing and P. Lio “ASSCA: API sequence and

statistics features combined architecture for malware detection”, Computer Networks, Vol. 157, July

2019, pp. 99-111, doi: 10.1016/j.comnet.2019.04.007.

[17] X. Wang and S. M. Yiu, “A multi-task learning model for malware classification with useful file access

pattern from API call sequence”, arXiv preprint arXiv:1610.05945, October 2016, doi:

10.48550/arXiv.1610.05945.

[18] M. A. Jerlin and K. Marimuthu, “A New Malware Detection System Using Machine Learning

Techniques for API Call Sequences”, Journal of Applied Security Research, Vol. 13, No. 1, December

2017, pp. 45-62, doi: 10.1080/19361610.2018.1387734.

[19] A. Majchrzycka and A. Poniszewska-Marańda, “Secure development model for mobile applications”,

Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 64, No. 3, September 2016, pp. 495-

503, doi: 10.1515/bpasts-2016-0055.

[20] C. W. Kim, “Ntmaldetect: A machine learning approach to malware detection using native api system

calls” arXiv preprint arXiv:1802.05412, February 2018, pp. 1-8, doi: 10.48550/arXiv.1802.05412.

[21] M. Mohammadi, M. Sarmad, N. R. Arghami. "An Extension of the Outlier Map for Visualizing the

Classification Results of the Multi-Class Support Vector Machine" Malaysian Journal of Computer

Science, Vol. 34, No. 3, July 2021, pp. 308-323, doi: 10.22452/mjcs.vol34no3.5.

[22] Anshumaanmishra, and V. Pandi, “Classifications of E-MAIL SPAM using Deep Learning

Approaches”, Advances in Parallel Computing Algorithms, Tools and Paradigms, Vol. 41, November

2022, pp. 414-421, doi: 10.3233/APC220058.

[23] M. Islabudeen and M. K. K.Devi, “A Smart Approach for Intrusion Detection and Prevention System in

Mobile Ad Hoc Networks against Security Attacks”, Wireless Personal Communication, Vol. 112, No. 1,

January 2020, pp. 193–224, doi: 10.1007/s11277-019-07022-5.

https://doi.org/10.1016/j.comnet.2019.04.007
http://dx.doi.org/10.1515/bpasts-2016-0055

