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ABSTRACT 
 

With the rapid increase in IoT devices and advanced machine learning and deep learning techniques, there has 

been a growing concern about computational cost and data privacy issues since the data coming from IoT 

devices is non-independent identically distributed (non-IID). However, the implementation of the federated 

learning algorithm has proven to be a booster in the performance and a solution to the existing data privacy 

concerns. This paper gives insight into topics such as Blockchain, Unmanned Aerial Vehicles (UAV), Wireless 

communication, Vehicular Internet of Things, Healthcare, and Cloud Computing and how they have been 

implemented and co-related to federated Learning and the application and the emerging use cases in the field of 

federated learning (FL) with respect to the above-mentioned topics have also been discussed. This paper 
uniquely shows how federated learning has an edge over the traditional machine learning and deep learning 

techniques in IoT infrastructure since computing nodes are trained using local models on the devices and then 

these local models are uploaded to the central global server instead of data directly into a global model on a 

central server ensuring data privacy. 

 

Keywords: Federated Learning; Blockchain; Vehicular IoT; Unmanned Aerial Vehicles; Cloud Computing; 

Healthcare; Wireless Communication networks 
 

 

1.0 INTRODUCTION 
 

In recent years, the rise and increase in the number of IoT edge devices, mobile technologies, and applications 
of machine learning have increased by a significant factor and have resulted in a huge amount of data traffic, 

which prompts the prosperity of complex machine learning and deep learning technologies analysis [1]. There 

have been constant efforts made to upgrade the existing technologies and simultaneously build more and more 

efficient devices, but all these upgrades and modifications have led to complex algorithms that require devices 

with essentially more computation power, thereby increasing the cost of the device. Machine learning 

algorithms generally work efficiently on good hardware specifications to obtain the results [2] and cannot be 

executed on edge devices since their computation power is limited. So these devices often make use of the cloud 

services available out there like Amazon Web Services, Google Cloud Platform, or Digital Ocean to get the 
desired data from the IoT device and send those data to the cloud where the processing is done and finally, 

instructions are sent back to the device where a specific task is executed, however, this has led to a major 

concern of data privacy, data stealth, data tampering and misuse of information by the hackers as the 

information is sent directly on a central platform for processing, which can disrupt the working of the device 

significantly [3]. So one needs to do a proper analysis of threats, vulnerabilities, and risks before performing any 

internet-related task. 

  



  

Figure 1: Applications of Federated Learning 

 

Federated Learning applications have spread over a large area as shown in Fig. 1, covering very important 

fields like Blockchain, Unmanned Aerial Vehicles, Wireless communications, Vehicular Internet of Things, 

Healthcare, and Cloud Computing and neither of the above-mentioned industries can share private 

information of their users with anyone. Since these fields are major data handling industries, they become 

even more susceptible to various attacks like protocol attacks, eavesdropping attacks, cryptographic 

algorithm, and key management attacks, spoofing and masquerading (authentication attacks), operating 

system and application integrity attacks, denial of service and jamming, physical security attacks (for 
example, tampering, interface exposures) and access control attacks (privilege escalation). 

 

So in order to overcome these attacks and risks, federated learning was first introduced by Google with an 

aim of ensuring data security and efficient management of data. It is an advanced concept of machine learning 

whose main focus is to train the machine learning models on the local device itself based on local information 

and send only the locally trained parameters of the model to a central server which collects similar 

information from the other devices as well. Now when the model parameters are collected from the other 

devices, a global model is trained based on the parameter values received and now this trained model is sent 

to the local devices for further training [4]. This step is executed iteratively until an efficient model is 

obtained which provides good accuracy. This decentralized method does not involve any transfer of raw 

sensor data collected by the local device and only the model parameters are transferred which has no meaning 
without the availability of the model architecture thus ensuring data secrecy and non-exposure of information 

directly. Table 1 lists the far contrast between centralized and decentralized machine learning techniques. One 

of the first implementations of this method was on one of Google’s own services, the Google Keyboard, or 

the GBoard [5]. 

 

Moreover, to mitigate privacy leakage concerns, optimization of FL should include differential privacy (DP) 

scheme, the addition of noises in DP schemes, effective and lightweight authentication schemes, and various 

encryption standards. While optimizing one must make a trade-off between performance, communication 

overhead, complexity, convergence time, accuracy, etc. Byzantine-Fault Tolerant (BFT) decentralized FL, 

Truth Discovery based FL, Federated Opportunistic Block Dropout approach, Social-aware Clustered FL 

technique, and privacy-preserving momentum FL are some of the techniques advocated in recent literature for 
ensuring trustworthiness in FL. By using the secure procedures incorporating the secure schemes and 

calculating the performance index one can easily make the users periodically participate in FL. 

 

In this paper, the use cases and applications of federated learning and their implementation in IoT 

infrastructure have been discussed. Like when it comes to wireless communication, one of the major 

challenges is the distribution and scalability of data, as there are billions of devices, generating data at any 

moment, be it through the inbuilt software, or the hardware sensors. Federated Learning with its ability to 

handle data in the most secure manner through the updated fedAvg mechanism [6], which uses deep neural 

networks on client’s distributed data to provide and communicate efficient network. Vehicular IoT is also an 

emerging use case of federated learning, as it collects data from all its sensors such as Global Positioning 

System (GPS), camera, radar, accelerometer, etc., and based on the values from these sensors, the data is 

processed rapidly for making decisions. 

 



Table 1: Centralized vs. Decentralized Machine Learning 

Centralized Machine Learning Decentralized Machine Learning 

Data from each of the connected devices is transferred to 
a central server where a global ML model is trained. 

The ML model runs and processes data on-site, 
onboard each connected device. 

Irrespective of confidentiality, all data must be 
transferred to the central server to be trained. 

There is no need to move. 

Powerful computers are required to process the vast 
amount of data received. 

The idle processing power of connected devices is 
taken into use. 

Devices must be connected to the internet to transfer the 
data to the central server. 

Since the processing is being done on board, an 
internet connection is required only to receive 
commands and transfer trained models. 

Data processing and model training are limited only by a 
single central computer. 

Data processing and model training could be limited 
by the multiple connected devices, since all may not 
have the same processing power. 

It becomes difficult for the model to explain all 
variations in the data by the devices and the environment 
they are in. 

Access to individual devices facilitates more accurate 
and adaptive models. 

 

However, the users are slightly hesitant to send their information into a global network directly [3]. There are 

a few considerations regarding the collection and transfer of data, as the data has to be sent to the global cloud 

server and then the data is processed and the information is sent back to the device, which requires a high 

bandwidth eventually resulting in a delay. To the aforementioned issues, Federated learning stands as a 

reliable solution that proposes a collaborative model-based approach, where the data is jointly trained using 

local data sets and further these models contribute it to a central server using stochastic gradient descent, and 

hence a global model is formed using the local updates and data privacy is retained [7]. 

 

In today’s world, the data is being generated in large amounts, which can be fed to machine learning models 

and neural networks to obtain valuable insights into the data. The only issue is that the data is distributed, in 
other words, the data have settled in clusters. As discussed earlier, the collection of this data in a centralized 

platform upon which the complex machine learning and neural network models can be trained does pose a 

security and privacy threat to the data itself, and at every step, there is a risk of malicious attacks. The concept 

of federated learning provides a great advantage on edge devices. These devices have low power 

consumption, interconnected bodies, and sufficient processing power to train on local data. In fact, edge 

computation [8] in a well-interconnected distributed manner not only ensures the privacy of data but also 

provides low latency and highly efficient use of network bandwidth. Several such protocols have been 

implemented on the scale, such as PySyft, LEAF, FATE, etc. Also in order to address the security issues 

blockchain can be efficiently used to take care of all the threats using the concept of differential learning and 

smart contract technologies [9], blockchain-based federated learning which includes committee consensus 

[10], and also the use of the differential private multiparty data model method as proposed in [11]. 
 

Being one of the greatest technological innovations, the Internet of Things has today been implemented in 

nearly every other field. This coupled with the rapidly developing healthcare monitoring devices, procedures, 

etc, have resulted in large amounts of data being produced. As discussed, naturally the choice of approach 

now would be complex machine learning and deep neural network, models. However, the transfer of this data 

to a centralized platform for training could suffer security breaches, how secure the platform is. Medical 

information [12] is highly private to the patients and people would naturally avoid their health information 

being shared. As a solution to major problems discussed previously in this paper, the federated learning-based 

approach finds a viable solution here as well. 

 

‘Jupiter’, an advanced federated learning-based infrastructure with API support along with augmentations, 

filters, and sessions has been discussed in [13]. The platform is one of many implementations that result in 
well well-trained final model without any compromise in privacy. Unmanned Aerial Vehicles or UAVs are 

also one such field in which the technologies and advancements are rapidly growing and the data collected by 

these drones is very important as it provides aerial data that is not easily available. There are Drones as a 

Service providers which are major sources of these kinds of data but in order to perform complex machine 

learning algorithms, the raw data is sent to the cloud servers for processing which again poses a threat of data 



stealth, tampering, and alteration, but with the use of federated learning this problem can be overcome by 

sending the model parameters instead of the raw sensor data for training and the getting the final global model 

from the central server [14]. Multi-UAV networks can also be used for accomplishing high-level tasks using 

ground fusion centers, forming the basis of communication as discussed in [15]. The major contributions and 

the research work related to the applications of federated learning are shown in Table 2. 

 

Federated Learning Algorithms operate through a series of well-defined steps, transforming collaborative 

model training while prioritizing data privacy. The process commences with the central server initializing a 

global model, which is then disseminated to participating devices. Local training unfolds autonomously on 
each device, refining the model exclusively concerning its local dataset, thus upholding data privacy. 

Following local training, the updated models from all devices are aggregated on the central server. This 

aggregation involves combining the knowledge gleaned from disparate local models to construct an improved 

global model. The refined global model is then communicated back to all participating devices, constituting a 

cycle of iterative updates. This iterative process repeats for a predetermined number of epochs, progressively 

enhancing the global model’s performance. Optionally, the final global model can undergo evaluation on a 

validation set before deployment. This meticulous sequence of steps characterizes Federated Learning 

Algorithms, offering a groundbreaking approach to collaborative machine learning while addressing concerns 

associated with centralized data management. 

 
Table 2: Major Contributions in Federated Learning 

Reference UAV Blockchain Healthcare Edge 

Computing 

Vehicular 

IoT 

Wireless 

Communi-

cations 

[9]  ✓     

[11]  ✓     

[18]    ✓  ✓ 
[35]    ✓  ✓ 
[36]  ✓   ✓  

[42]   ✓   ✓ 
[43]   ✓    

[45]    ✓  ✓ 
[58] ✓   ✓  ✓ 
[60] ✓      

 

Federated learning employs various hardware sensors and boards for model training across diverse devices while 

prioritizing data privacy. Examples encompass smartphone brands like the iPhone and Samsung, IoT devices 

such as Raspberry Pi(4 Model B, 3B+) and Arduino Nano 33 BLE Sense and Rock64, wearables like Fitbit and 

Apple Watch, edge computing platforms including NVIDIA Jetson Nano and Intel NUC, embedded systems 

such as BeagleBone Black and Arduino, specialized-sensor-equipped medical devices, and autonomous vehicles 

with LiDAR and Radar. The compatibility of hardware is contingent on specific use case requirements,  allowing 

flexibility to adapt to diverse environments while maintaining data confidentiality in federated learning 
implementations. Some low power consumption components like GPS sensor RS232, accelerometer, and 

gyroscope module GY291 ADXL345, and RPLIDAR AIM8 360 LIDAR version can be used in federated 

learning applications. This hardware diversity highlights the adaptability of federated learning across various 

domains, enabling collaborative model training without compromising sensitive data. 

Throughout this paper, federated learning and its applications and use cases in the fields of Wireless 

Communication, Vehicular IoT, Healthcare, Edge Computing, Blockchain, and Unmanned Aerial Vehicles have 

been defined in Section II. An attempt to support the various use cases has also been made with a detailed 

description and table consisting of previously done research work in their respective fields along with a visual 

illustration. In section III, the open issues and the future research directions for the above-listed use cases and 

applications in federated learning have been listed. Finally, the paper concludes in Section IV with an extensive 

discussion of the various use cases. 

 



 

2.0 RELATED WORK 
 

2.1 Federated Learning for Wireless Communication 

 

With the advancement in computing and research on data handling tools, the use of machine and deep 

learning has emerged as a very powerful tool for system design and analysis for wireless communication, 

because the pre-existing model-driven approaches had never shown enough capabilities to capture the 

complexity and variations in the modern wireless networks [16]. In wireless networks, the data is generated 

and distributed over a large number of devices (roughly in billions) and hence the implementation of these 

Machine Learning algorithms on large-scale data to maintain efficiency and scalability is a great challenge 

[17]. Therefore, the necessity to work on decentralized learning triggers the idea of a Federated Learning 

Framework, where the model is trained in a decentralized manner and data is kept and trained wherever it is 

generated over the traditional centralized model approaches. 

 

The objective of the federated learning framework is basically to keep the training data set wherever it is 

generated and perform model training in the local devices at their own level. After this local model training, 

the local model parameters are used to develop a global model which is eventually made in feedback with the 

local models to improve the model performance without compromising on data privacy [18]. However, this 

model can be further improved by using a more advanced federated learning framework, Federated Averaging 

Learning Algorithm (FedAvg) which is a booster in the performance and a solution to the existing data 

privacy concerns. In this algorithm, Deep Neural Networks (DNNs) are trained on the client’s distributed data 

from the local devices and are periodically averaged and sent to the central edge server each round. These 

DNNs use mini-batch Stochastic Gradient descent(mb-SGD) and hence the weights are updated and 

multiplied with a constant learning rate throughout. 

 

But when it comes to the implementation, the FedAvg algorithm has a few problems attached to it which are, 

the weights in this algorithm are very large in number and hence it makes the model very huge, which 

eventually increases the communication (between the client device and edge sever) cost per round. Hence a 

Robust and Communication Efficient FedAvg Algorithm is used, which reduces the number of rounds per 

convergence, and the total data uploaded per round over FedAvg and uses the sparse compression ternary 

compression technique without any compromise in the data privacy [19], [20]. This Algorithm has been very 

efficient and has been used in 5G core networks [18]. The data distribution algorithm is provided in the 

federated learning environment to increase the learning performance for balancing the data distribution on 

different participants in the proposed 6G mobile connections [22]. FedAvg mainly contributes to reducing the 

communication cost. It established the model averaging, accuracy, and data compression and takes much 

more time to converge. To overcome the convergence issue one can parallelize the FedAvg which has been 

attempted by one of the recent research. This allows continuous local model training without any blocking 

caused by frequent communication.  Table 3 below shows the contributions and the limitations of various 

other papers that have played a significant role in federated learning in wireless communications. Methods 

like deep deterministic policy gradient, reinforced learning, Q-learning, and federated reinforced learning can 

be used for optimizing performance like load balancing, and latency in 6G networks. Moreover, the principal 

merit of FL is that it has the inherent ability to provide multilateral demands of 6G. 

 

The incorporation of the Analytical Model of Federated Learning represents a pivotal advancement in the 

enhancement of wireless networks, effectively addressing the intricacies associated with decentralized 

machine learning. This model offers a tailored solution for resource-constrained wireless environments, 

allowing devices to collaboratively train a global model without the need to disclose sensitive raw data. The 

analytical framework inherent in Federated Learning plays a crucial role in optimizing communication 

efficiency, a critical consideration given the inherent limitations of bandwidth in wireless networks. 

Techniques such as model compression are instrumental in minimizing communication overhead and 

facilitating collaborative learning without imposing undue strain on the network infrastructure. Importantly, 

the analytical approach is designed to accommodate the diverse landscape of devices within wireless 

networks, adapting flexibly to variations in computational capabilities and energy resources. The integration 

of privacy-preserving strategies further enhances the security paradigm, fostering trust among users and 

device owners. The inclusion of the Analytical Model of Federated Learning in this research framework 

enriches the overall methodology,  providing a robust solution that harnesses the potential of machine 

learning while seamlessly aligning with the constraints and privacy considerations inherent in wireless 

network environments. 



 

2.2 Federated Learning for Vehicular Internet of Things 

 

Vehicular IoT deals with a lot of sensors that provide GPS (Global Positioning System) coordinates, Camera 

output, Gyroscope, Radar, LIDAR, and so on, they provide data which is further used by the system to make 

decisions timely. Machine learning and deep learning have already been consistently adopted in vehicular 

networks for object detection, autonomous driving, safety prediction, etc. [34]. In the machine learning-driven 

vehicular network, the whole dataset consisting of the various sensor values is sent to the cloud for Model 

training, through a supervised learning scheme. Once training is done, the parameters are sent to the devices 

for prediction. This approach faces a lot of challenges as the size of data generated by the vehicular devices is 

massive (approximately in GB per second) and hence the model has to be very complex (with deeper neural 

nets) for successful training, with that training a model from the device to cloud center in a reliable manner 

would be very expensive. 

 

The current vehicular systems only depend on the collection of vehicle data and pushing it to the cloud 

whereas the emerging vehicular IoT system involves a larger amount of sensor data values and application in 

complex environments that use minimal computing and storage resources to provide a better Quality of 

Service (QoS). Hence, a system that is capable of computing decentralized data with collaboration among 

different vehicles is needed. These requirements can be efficiently fulfilled by federated learning, as shown in 

Fig. 2, where multiple devices collaborate to form and train a deep neural network on a global server. The 

global server first distributes an initial model for training using this neural network and then each device 

calculates its local updates using stochastic gradient descent, which is trained locally. Further, the FedAvg 

algorithm is used for collecting the local models generated by different devices [35]. Table 4 highlights the 

various contributions that have been made so far in the field of vehicular Internet of Things and federated 

learning together. Considering the limited computation resources and complex design of vehicular networks 

Mobile Edge Computing (MEC) is being used for end-users by performing edge data caching and 

computation for edge devices [36]. 

 

In the realm of applying Federated Learning (FL) to Vehicular Networks, the meticulous selection of relevant 

parameters is imperative to ensure the accuracy of predictive models. The dataset chosen to drive FL 

algorithms must encompass pivotal characteristics intrinsic to vehicular environments. Fundamental spatial 

parameters, such as latitude, longitude, and altitude, provide a comprehensive geographical understanding, 

while temporal features, including timestamps, enable the model to discern time-dependent variations in 

traffic conditions. Variables such as vehicle speed, acceleration/deceleration, and type contribute to a nuanced 

depiction of traffic dynamics, while metrics related to communication strength and connectivity status are 

essential for reliable data exchange in Vehicular Ad Hoc Networks (VANETs). Moreover, considerations for 

environmental variables, such as weather conditions and visibility, alongside traffic density and flow metrics, 

offer a holistic view of the vehicular landscape. Event and incident data, encompassing accident reports and 

roadwork information, further refine the predictive capabilities of the model. Integrating these parameters into 

the FL dataset establishes a robust foundation for accurate predictions, allowing the model to discern patterns 

and optimize decision-making in Vehicular Networks. As reported recently by some works, FL protocols 

should be configured and developed to support efficient deployment in vehicular networks. 

 

 

2.3 Federated Learning in Healthcare 

 

“Health is wealth” is one of the oldest sayings of our society and has always been proven to be true. In 

simpler terms, Healthcare is the maintenance or improvement of health through treatment, diagnosis, cure, 

recovery, and most importantly, prevention from diseases from injuries, etc. With the significant development 

in microcontrollers and small-scale electronics, wearable technologies have become better, efficient more 

accessible. One specific application of wearable technologies discussed in [40] was health monitoring. 

Certain daily activities give an early indication of a few diseases in a person’s lifestyle. Wearable healthcare 

has a critical potential to provide early indications of diseases such as Parkinson’s disease, small vessels, or 

fits. Moreover, they are capable of mental health assessment, sports monitoring, and fall detection. Healthcare 

application is also one of those industries that produce heavy amounts of data, and hence Machine Learning 

and Deep Learning models can be easily implemented. However, there are two specific challenges to this: 

a) Even if there is plenty of data, it is not possible to share the data due to privacy and security concerns. 

b) Even if plenty of user data is acquired and the machine learning model is trained, the touch of 

personalization would be lost. Since not all humans are created equal, a general model to define their 

health is not sufficient. Hence a federated learning model is proposed. 



Table 3: Federated Learning in Wireless Communications 

 

Focus/ Scheme Ref. 

no Contribution / Methodology Limitations / Gaps 

 

 

 

 

 

 

 
Performance 
Optimization 

 

[22] 

The joint learning, wire- less resource allocation and user 

selection problem is formulated. 

The optimization of loss function with FL 

approach is minimal even with   including 

the wireless factors joint optimization is 

proposed by considering limited users. 

 

[23] 

Under long term energy constraint, bandwidth allocation 

and client selection are proposed. 

Non uniform resource allocation for different 

priority clients. 

 

[24] 

Channel prediction and scheduling policies are incorporated 

in both perfect and imperfect channel state regime. 

It is reported that without data size  

distribution and channel  state information, 

high training accuracy or fairness cannot  be 

obtained under communication constraints. 

 

 

 

Quality 
of Service 
(QoS) 

 

[25] 

Proposed federated learning- based cooperation and 

augmentation for power allocation. 

Fixed decision trajectory length is used to 

mitigate the difficulty of convergence of 

algorithm. 

 

[26] 

Performance of FL in wireless networks for scheduling and 

interference  management. 

Trade-off between the number of scheduled 

UEs and the subchannel bandwidth in 

optimizing the FL convergence rate is to 

exploit. 

 

 

 

 

Noise 

 

[27] 

Robust design using federated learning to reduce the noise 

effects is pro- posed. 

Missing of optimal point in training process 

due to random division of data samples among 

the nodes. 

 

[28] 

Broadband analog aggregation technique is proposed for 

quantifying learning performance in network planning and 

optimization. 

SNR – truncation trade- off and reliability – 

quantity trade off re- quired for aggregation 

and scheduling of cell 

interior devices. 

 

 

 

 

MIMO 

 

[29] 

Federated learning framework    for    cell free    massive     

MIMO is proposed for optimization of network resources. 

The data rate is significantly low for larger 

number of user equip ment, and also training 

update transmission   time requires long time. 

 

[30] 

Using inherent  superposition of  radio frequency signals, 

communication efficiency is optimized. 

More slots are used to update the data 

simultaneously from client sides. 

 

[31] 

FL is demonstrated to have more tolerant to the 

imperfections and corruptions in the channel data. 

Showed performance loss compared to 

existing methods. 

 

 

 

NOMA 

 

[32] 

The authors investigated the efficient performance of FL 

update by exploiting non orthogonal multiple access 

(NOMA) and adaptive gradient quantification the at mobile 

edge devices. 

Aggressive Compression strategy is 

required when users participate in model 

updates simultaneously with NOMA. 

 

[33] 

Authors demonstrated method   to    minimize the learning 

optimality gap for adaptive power allocation in wireless 

transmission. 

Fixing scaling and clip ping thresholds 

controlling the performance. 

Figure 2: Federated Learning in Vehicular IoT 



A healthcare process based on this mechanism has the ability to achieve accurate personal health without a 

slight compromise on data privacy [40]. A typical implementation would follow steps where a server-based 

cloud model is initially trained based on public datasets then the cloud model is distributed to all users. Here 

each of them can train their own model based on their personal data. The user-based models are then 

uploaded to the cloud to help train a new model by model aggregation. Each individual can now train 

personalized models by utilizing the cloud model and their personalized local data. It is expected to have a 

large divergence between server data and user data, hence, differences in their model as well. Transfer 

learning is performed to make the model more efficient for the user. Here the Federated Learning-based IoT 

model is the main infrastructure behind this implementation. It opens new doors of research in this domain of 

healthcare. 

 

In order for this implementation to take place, Electronic Health Records, or EHRs play a vital role [41]. 

EHRs are generated in the healthcare industry and contain extensive information about the patient, such as 

diagnosis, complications, diseases, medications, etc. The best part of these EHRs is that they are stored and 

maintained in a digital format. In order to achieve complete inference and advantage of this information, this 

data can be pre-processed and fed into Machine Learning and deep neural network models [40]. These models 

can significantly improve the efficiency of healthcare diagnosis and early signs recognition. As discussed 

earlier, health data is sensitive data and a patient would prefer not to share his/her information. In order to 

tackle this issue, federated learning was proposed, which would significantly achieve the goals of a common 

machine learning/ deep learning model while ensuring the privacy of patient EHR data. SVM, single-layer 

perceptron, and logistic regression are usually used to compute global models by taking into account of 

sensitive data of EHR.  One such proposal of Federated Learning is the Privacy-Aware Resource Saving 

Collaborative Learning protocol. A typical PRCL model would consist of parts as shown in Fig. 3 

 
 

Table 4: Federated Learning in Vehicular IoT 

Focus of Re- search Ref. no Major Contribution Approach/ Major 
Highlight 

Selective Model 
Aggregation Approach 

 
[37] 

Deep Neural Network are deployed for model 
training and then based evaluation on Image 
quality and computation capability of vehicular 
clients, further data is sent to the global cloud. 

Two Dimension contact 
Theory 

Feasibility of FL in 
Vehicular IoT 

 

[34] 

Analysis of challenges with respect to Learning -
Data Training and Model Training, and  
Communication data rate, reliability, transmission 
delay and resource management 

Efficient Reinforcement 
Learning 

FedAvg  

[19] 

Low Communication Overhead, Better Suitability 
of non IID data, Larger Dataset for Training 
purposes 

Stochastic gradient descent 
(SGD) 

Convolutional Neural 
Networks for  Autonomous 

Driving 

 

[38] 

The Author has described image recognition based 
on deep learning techniques   and    their brief 
implementation in autonomous driving where the 
core component is generally divided into three 
major categories, namely perception, planning, 
and control. 

Image Feature Extraction 
and Classification 
using Deep Learning. 

 
[39] 

The Author proposed a method to improve the 
accuracy of the autonomous driving by using 
CNNs along with the traditional computer vision 
techniques to provide a safe autonomous drive. It 
uses CNN for steering the car using images from a 
front center camera video. 

Deep learning 
Techniques along with 
Traditional Computer 
Vision Techniques. 

FL for Dis- tributed Train 
ing In Vehicular Networks 

 

[34] 

The Federated Learning Techniques along with 
Dis- tributed Training Methods makes the 
distribution of data more feasible and mini-batch 
learning technique, where dataset is di- vides into 
smaller parts for parameter updates instead of the 
whole data set. 

Mini Batch- Learning 

Recent Advances and 
Open Issues 

 

[35] 

This Paper discusses about the existing studies in 
FL and their implementation in Wireless IoT 
along with advantages and disadvantages of it in 
Vehicular IoT based on privacy sensitive data and 
ease of autonomous driving and intelligent 
Transport Systems. 

FedAvg Technique in 
Wireless IoT and 
Vehicular Networks 



Here, the TA is a fully trustable entity since it has the very authority to manage all private/public keys to the 

model. After the training, the prediction phase occurs, where every individual has the authority to choose the 

method of prediction. If the device has sufficient performance abilities, the user can perform the prediction task 

on the device as well. In case the device is not sufficient to perform the prediction task, it can be performed on 

the server and the results can be shared with the user in an encrypted format and decrypted for the user in the 

service. This ensures privacy is strictly maintained throughout the user experience.  

There is no mention of encryption bit type, however, Bluetooth, 5G, and Xigbee have been used in several 

works. The same mechanisms have been used in these works to deliver the parameters of the PRCL model. The 

above process can be explained schematically in Figure 4. 

 
Figure 3: Parts of a PRCL Model 

 

It can be concluded from here that PRCL is one of the best examples of implementing a federated learning-

based IoT infrastructure in the field of medical healthcare. Jupiter Another such implementation of a federated 

learning-based IoT infrastructure in the field of medical healthcare on a regional level [42] is: 

1) Jupiter: Federated Learning has been continuously proving itself as an efficient mechanism in many fields. 

Jupiter [13], has the capability to support data tuning, along with providing a Federated Learning facility. 

Besides, the infrastructure also exposes rich APIs for operations like augmentations, eliminations, and filters, 

etc. Hence, developers can efficiently make changes without having to restart the entire design procedure. The 

model, which is in a continuous development phase is managed as sessions, which are identified by a token. For 

the purpose of secure aggregation, the model is based on Intel SGX [13]. Intel SGX is a set of instructions that 

increases the security of application code and data, giving them more protection from disclosure or 

modification. Developers can partition sensitive information into enclaves, which are areas of execution in 

memory with more security protection. Unlike traditional federated learning infrastructure that serves mobile 

applications, Jupiter takes a model on top of dedicated communication links between users and hospitals. As a 

result, the model parameters are aggregated in a streaming style, and all the related information is tracked and 

preserved inside the encrypted memory (EPC). Jupiter works on three specific steps as represented in Fig. 5. 

Table 5 shows the focus of research in healthcare, their contributions, and key terms along with Federated 

Learning. 

 

 

 
Figure 4: Federated Learning in Healthcare 



 

 
Figure 5: Jupiter Working 

 
Table 5: Federated Learning in Healthcare 

Ref. no Focus of  Research Contributions Key Terms 

 

[13] 

Federated Learning 
Platform for  
Regional Medical 
Care 

Provides a Federated Learning platform 
called Jupiter, which can be implemented 
for regional medical.   It    involves use   of   
optimizations and leverages SDN, DPDK 
and Intel SGX 

TEE technology, Intel SGX, 
Meta Data 

 

[40] 

Privacy- aware and 
Resource- saving 
Federated Learning 
for healthcare 

Provides a reinforcement learning based 
approach, called PRCL, a secure and 
efficient approach to medical learning. The 
overall model is split into 3 parts with each 
having a specific purpose 

CIFAR-10, Backpropagation,  
Paillier cryptosystem, 
Cryptographic Primitives, VGG- 
16 

 

[41] 

Wireless Body Area 
Network for IoT 
Connected 
Healthcare 
Applications 

Provides an in-depth in- sight on Wireless 
Body Area Networks (WBAN) can be 
deployed for continuous monitoring of 
body parameters. The paper also provides an 
implementation of this in the form of a  
Bluetooth connected solar powered device 

Bluetooth, 
Photoplethysmography, 
Magnetic resonance imaging, 
MPPT, TEG, Photovoltaic 

 

[42] 

Healthcare 
Information 
Exchange in 
Regional eHealth 
Networks 

Provides a survey and methodology of 
healthcare information sharing 

Regional eHealth networks 
(RHIN), ICT 

 

[43] 

Federated Learning 
Framework for 
Wearable Healthcare 

Provides an implementation of FedHealth. 
It is a FL based framework designed for 
wearable technologies. The framework 
gives the ability to integrate multiple forms 
of wearable technology 

Deep transfer  learning, 
convolutional neural network, 
KNN, SVM, Random forest 
(RF), Maximum Mean 
Discrepancy 

 

[44] 

Overview of 
Distributed Federated 
Learning: Healthcare 
Applications 

Provides an in-depth analysis on how FL is 
being actively studied today, its foundations 
and implementations. It also discusses two 
major models in the domain of FL 

Over fitting, Split Learning 

 

2.4 Federated Learning for Edge Computing 

 

As technology grew, the concept of the Internet of Things along with its implementation proved to be a major 

adoption into human lives. IoT soon turned into a very essential element where all products were connected to 

one another [45]. Until a few years now, the single paradigm of IoT infrastructure was that all connected 

devices would have to transfer data to one connected central body, the cloud server, that would process the 

data into useful information. With the advent of cheaper electronics and sufficient processing power on a 

small scale, the definition of IoT has been slowly coming to a change. 



 

The consequence of this heavy workload on cloud server processing is Edge Computing or Fog Computing 

[46]. Here, the data is processed in situ or, the data is processed in the device and valuable information is sent 

over to the cloud. As discussed earlier, federated learning, as a concept, has the heavy potential to change the 

definition of IoT in a new way. Edge or Fog Computing is how this change would occur. Edge computing 

would enable the training of various distributed datasets without the actual movement of the data to a central 

body, hence providing a level of privacy and a lighter workload [47]. Machine learning and deep neural 

networks are computationally expensive tasks and hence are not easy to implement on smaller less powerful 

hardware. The above mechanism is well supported through Fig. 7. In order to tackle this issue, active learning 

is proposed. Active learning is an efficient framework where selective data samples are chosen that may 

contain critical input to the model. It is an appropriate choice when [48] labeling data is expensive and data 

collection is limited, as supported in Fig. 6. 

It is an efficient solution to federated learning in an edge computing situation, where user privacy, data size, 

training cost, and uploading are the main issues to address [49]. All these should be taken into consideration 
while creating a scalable, reliable, secure, and distributed edge computing system [50]. This model has a 

significant capability to reduce the training cost by applying active learning while preserving user privacy [51] 

and reducing communication by use of federated learning. The various contributions and the focus of the 

research in edge computing together with federated learning are highlighted clearly in Table 6 which gives an 

insight into the topic briefly. 

 

 
Figure 6: Active Learning Framework 

 

1) Reinforcement Learning: Another development of edge computing on a federated learning IoT 

infrastructure is the implementation of reinforcement learning. Reinforcement learning is one of the most 

recently studied domains of machine learning. Here, agents are made to learn optimal control policy by repeated 

trial and error. Once optimized, they are mostly used to control real devices, such as the robotic arm. One of the 

first actual showcases of reinforcement learning and its abilities was Google DeepMind’s Deep Q Network, 

which was applied to Atari Games in 2015. Since then, reinforcement learning has been applied to most games 

and software environments, until a few years back when it was implemented into real-world control systems, 

such as inverted pendulums, robot arms, quadcopters, continuum manipulators, etc. 
 

 

Figure 7: Federated Learning in Edge Computing 

 



Table 6: Federated Learning in Edge Computing 

Ref. no Focus of  Research Contributions Key Terms 

 

[8] 

Federated 
reinforcement 
learning for 

controlling multiple 
rotary inverted 

pendulums 

Provides a reinforcement learning based 
approach for a federated model on edge 
platform. The paper aims to develop a model 
to control multiple rotary inverted pendulums 

Actor-Critic, Stochastic Gradient 
Descent, Quanser QUBE, GAE 
parameter 

 

[45] 

Survey of Federated 
Learning in Mobile 

Edge Networks 

Provides an in-depth insight on how federated 
learning can be implemented on mobile 
devices, which also act as edge de- vices 

FedAvg, resource allocation, 
Support Vector Machines, 
Stochastic Gradient Descent 

 

[46] 

Distributed Active 
Learning Strategies 

Provides several strategies of active learning 
model implementations on Fog Computing 
platforms. Moreover, the paper provides 
evidence of its capabilities with reduced 
communication overhead, latency, and several 
other benefits 

CNN, Acquisition Number, 
Acquisition Function, BALD, 
Entropy 

 

[50] 

Secure Edge 
Computing 

Provides a review of the concepts, features, 
security, and applications of edge computing. 
Case studies are also provided in this review 

Two-Factor Authentication, 
Artificial intelligence, Point of 
Presence (POPs) 

 

[52] 

Deep Reinforcement 
Learning for IoT 
Network on Edge 

Computing platforms 

Provides an implementation of a Deep Q-
learning Network (DQN) model on edge 
platform. The experimental results that the 
implemented model can achieve higher scores 
when compared to traditional methodology 

Deep Q-Learning Network, Q-
Value, Edge Servers, Load- 
Balancing 

 

As discussed earlier, machine learning and its forms are computationally expensive, and hence federated 

learning could be a new approach to leaving with such problems. As discussed earlier, the federated learning 

mechanism would enable efficient training of distributed data present on multiple interconnected devices. The 

combination of federated and reinforcement Learning is an approach, capable of making proper use of the joint 

observations from an environment. It has been observed to outperform Google’s Deep Q Network under the 

same environment and conditions. 

Federated reinforcement learning has also been applied to autonomous self-driving cars [8], [52] where the 
participating agents make the steering control using the knowledge of other agents. Moreover, FRL has made 

multiple robot models to transfer and combine knowledge to form a final robot that is capable of adapting to 

unknown environments quickly. The experiment was performed on a Rotary Inverted Pendulum, where the main 

state contains the following information pendulum angle, pendulum angular velocity, motor angle, and motor 

angular velocity. After every step, this information is provided to the model along with the corresponding 

reward, which learns them and acts accordingly. The reward is a critical component of each worker’s 

reinforcement learning task. The federated reinforcement learning infrastructure can effectively facilitate the 

learning process for multiple devices [54]. Moreover, it can enhance learning speed if more agents are involved. 

 

2.5 Federated Learning for Blockchain 

 

IoT-based smart home devices, discussed in [9], and Industrial IoT (IIoT), discussed in [11] have gained a lot of 

popularity in recent years with the upcoming of the IoT-enabled smart devices and applications like 

communications and edge computing, artificial intelligence and big data. The generation of a large amount of 

data through these devices can help in providing quality service. However, since most of the computation like 

machine learning is not feasible to be done on the devices themselves, access to cloud services is required which 

involves wireless sharing of data, but data leakage, security, and privacy are serious threats and concerns when 

dealing with these technologies. In order to overcome this privacy preserved blockchain-based technique is used 

which ensure data privacy and these blockchain-based networks can also be used to store the federated learning 

parameters as discussed in [10]. 

[9] proposes a blockchain-based federated learning-based IoT smart home system that ensures the privacy and 

security of the data using Differential Privacy in which the machine learning models can be trained on local IoT 



devices using FL and then the blockchain smart contract is leveraged to generate a global model by aggregating 

all the local models submitted by the local users, in this way the data security and privacy are maintained These 

models will be encrypted and using the mechanism of the signing of the model and having the private and public 

keys, verification by the miners for each model update moreover incentive-based approach for the miners to 

actively participate in the verification process, the security and privacy of the complete data are maintained 

without any fear of the breach of data. 

 

 
Figure 8: Data Sharing employing Permissioned Blockchain 

 

The manufacturers first raise a request for crowd-sourcing a federated learning task and deploy a basic pre-

initialized model that is available on the blockchain which can be downloaded and trained locally. The 

customers extract their data’s features in mobile and add noise as a privacy guarantee to modify the extracted 

features. Next, the customers train the layers of the model with the modified features in the Mobile Edge 

Computing (MEC) server, and above all the traditional batch normalization has been improved by removing 

constraints of mean value and variance. After the training is completed the customer’s signature on hashes of 

the encrypted models along with the private keys and deploys the trained model on the blockchain. Few 

miners verify senders and find the global models by aggregation and one miner encrypts the model and 

deploys it to the blockchain. This is an incentive-based task that motivates people to join the process. Now 

from the customer’s side, each customer can take part in the training process using the data gathered from 

several IoT edge devices primarily from mobile phones, and send the updates to the network which can be 

then aggregated to form a new global network. The differential privacy technique, encryption, and the signing 

of the model by the sender prevent the attackers to steal the model or derive the original contents through 

reverse engineering. The crowd-sourcing methods often cause a delay in the training and process involved in 

the deployment and aggregation of the global model. 

 

Ref.[11] discusses the method of data sharing where they propose a differentially private multiparty data model 

method of sharing based on permission blockchain. The raw data is mapped into corresponding data models by 

incorporating federated learning algorithms using machine learning and a new collaborative architecture is 

introduced for sharing data over distributed multiple parties and integrating differential privacy for further data 

privacy. There are three threats to the approach, first is the quality of the data provided may be good and the 

dishonest providers may provide inaccurate results. The second is data privacy where dishonest providers may 

infer the data which may lead to data leakage and the third is data authority management where the owner of the 

data might lose control and the data might be shared with unauthorized people or entities. The proposed method 

has two modules, the permission blockchain, and the federated learning module. The former establishes secured 

connections between the end IoT devices using its encrypted records. Retrieval and data-sharing transactions are 

two types of transactions in permissioned blockchain. 

 

 

 

 

 

 

 

 



Table 7: Federated Learning in Blockchain 

Focus / Scheme Ref. no Contribution / Methodology Limitations / Gaps 

 
 
 
 
 

   Differential Privacy 

[9] Blockchain based FL IoT smart home 
system which uses differential privacy where 
models    trained on local devices can be 
aggregated by leveraging blockchain smart 
contract system. 

Since this is a blockchain based 
system, a dishonest mining network 
can lead to disruption in the entire 
network. The crowd sourcing scheme    
may    lead to   lag and delay in the 
training and deploying and model 
aggregation process. 

[11] Differentially private  multiparty data model  
method of   sharing  on the basis of 
permissioned blockchain where the 
blockchain is used  only for data retrieval. 
Proof of training Quality (PoQ) protocol has 
been introduced for a new provider whose 
identity is stored by means of merkle tree. 

As this is a data dependent process, 
data tampering by the dishonest 
miners is possible or the data owner 
might accidentally share the data to 
unauthorized parties which might be 
misused and lastly a dishonest mining 
network   may    lead to downfall of 
the blockchain network. 

 
 
 

FLChain. 

[54] FL Chain is proposed to build a public  
auditable, decentralized  ecosystem replacing 
the traditional federated learning parameters 
in a decentralized manner ensuring trust and 
providing incentive. 

FL Chain requires cooperation and 
transparency between all the 
participants in the model. However, 
there may arise chances of 
misbehavior, where a miscreant may 
upload incorrect masked gradient 
which would result in an unwanted 
final model. 

 
 
 

Defense 

[55] A distributed defense framework is proposed 
using blockchain technology and federated 
learning which also addresses the scarcity of 
training data available at local devices. 

Difference in experimental and real 
time deployment of the model, where 
there is a high chance of non- 
participation of the participants in the 
during training phase iterations 
leading to development of a separate 
model whose accuracy was different 
from ideal experimental model. 

 

As the data is sensitive and quite large it might be a heavy task to upload the data on the blockchain network and 

there are privacy issues. Due to these concerns, permissioned blockchain is used only for the retrieval of data. 

The real data is stored by the users locally. Upon the inclusion of a new data provider in the system, its Unique 

Identity (ID) is logged as a transaction on the blockchain. This transaction encompasses the profiles of the data 

it contributes, detailing information such as data categories, types, and sizes. The blockchain records these data 

profiles as transactions, collectively capturing insights from various participants. To ensure data integrity and 

validation, the blockchain nodes employ a Merkle tree framework for verification. This process establishes a 

secure and transparent record of participant identities and their corresponding data attributes within the 

blockchain system. 

 

In this method, federated learning empowered consensus method Proof of training Quality or PoQ protocol is 

introduced instead of using the existing method of Proof of Work which requires high computation and 

communication resources. Fig. 8 explains the above mechanism briefly. Table 7 shows the integration of 

Federated Learning and Blockchain based on the previous publications highlighting the area of focus, 

methodologies, and limitations in a crisp manner. The differentially private federated learning mechanism, 

where the data as per the user’s request is transferred to normalized graph vectors and the model is trained 

locally and since this model will be shared among other people, to protect privacy, the model is trained with 

noised data and once the model is received a new model will be trained based on the local data and this is 

done iteratively and finally a global model is generated. In [10] a blockchain-based federated learning 

framework is introduced which discusses the model storage patterns scalability of the network and training 

process of the machine learning models. In [55], FLchain has been introduced which can replace the existing 

federated learning parameters whose computed results might already be present in the network and it also 

provides a healthy environment for training models collaboratively. Blockchain combined with federated 

learning can also be used to establish a sustainable society by building a distributed computing defense 

framework by leveraging blockchain technology [56]. [57] Proposed a privacy-preserving FL platform 

focused on the blockchain, which secured the model update using the immutability and decentralized 

properties of the blockchain. 

 



 

2.6 Federated Learning for Unmanned Aerial Vehicles 

 

There has been a lot of UAV-based research in recent years with the advancement in technologies and are 

gaining popularity because of their widespread applications in almost all fields like surveillance and 

monitoring, delivery of medical supplies, military, etc. because of the flexibility and adaptability to specific 

applications [58]. The wireless communications associated with it can pose a huge privacy and security threat 

if the information about the UAV or the information it is carrying is leaked and also causes network 

congestion as a large amount of data will be transferred wirelessly causing lag and bandwidth issues. The data 

captured by the UAV can be used for various deep learning applications and hence the privacy of the 

information cannot be compromised. Federated deep learning is one such approach that is proposed in [59] 

which has three steps namely training initialization, UAV’s model’s training, and the global model 

aggregation. The basic working principle is demonstrated in Fig. 9. One of the major problems in UAVs is the 

communication between the device and the ground. This communication is affected by path loss and delay 

fading and spread. UAV trajectory planning is also important which gives the data about its energy 

consumption metrics hence for this FDL can be used along with Long Short-Term Memory (LSTM) for the 

recurrent neural network which helps in remembering the past [60]. 

 

The LSTMs make use of three gates that control the flow of information which makes them effective for 

sequential data. First is the input gate which determines which information should be stored from the current 
input in LSTM memory. Second is the forget gate which decides what information from the cell state should be 

discarded from the current time step and the third one is the output gate which determines what information from 

the cell state should be passed as output. Another problem is the data routing between the UAV and the ground 

station which involves transferring packets containing information like spend, location, and trajectory of the 

UAV which again involves security issues and can be solved using FDL incorporating LSTM for remembering 

history and Convolution Neural Networks. 

 

 
Table 8: Federated Learning in UAVs 

Focus / 
Scheme 

Ref. no Contribution / Methodology Limitations / Gaps 

 
 
 

Energy 

 
[64] 

UAV scheduling and charging are proposed 
for maximizing the coverage and energy 
efficiency. 

Dynamic and adaptive control of 
overlapping to be incorporated. 

 
[65] 

Maximization of deployment profitability of 
UAV through optimal trajectory is discussed. 
Jointly considered the number of users served 
by UAV, maintenance cost, and energy 
harvesting for 
trajectory planning. 

Operation time of the foraging 
algorithm given depends on the group of 
users of UAV. 

 

[66] 

Cognitive radio-based UAV to utilize the 
radio spectrum for energy maximization 

Meager throughput improvement was 
achieved with respect to un-optimized 
algorithm. 

 
 
 

 
Remote 
Sensing 

 

[67] 

Proposed airborne hyper spectral imagery of 
Arctic Sea ice with UAV and evaluate two 
atmospheric correction approaches 

Use of federated learning with specific 
models to be explored. 

 

[68] 

Proposed computer vision system for terrain 
classification using RGB camera with gimbal 
for stabilization. 

To improvise the robustness the system 
studied, height of UAV and cameras 
considered to be kept large. 

 

There are many Drones as Service (DaaS) providers and it would be a major advancement if the data collected 

by all the providers could benefit each other, preserving privacy in terms of machine learning and data among 

the independent DaaS providers for the development of an intelligent transport system and internet of vehicles 
which is discussed in [14] and leveraging on self-revealing properties of multidimensional contract for correct 

reporting of UAV types. The model owner assigns a federated learning task such as collecting the information of 

a particular area. That area is then subdivided into sub-regions and the DaaS providers assign the drones in those 

sub-regions and collect the data. The training occurs in the particular drone itself and then, all the updated 

models from the respective drones are combined to form the global model. This method ensures data privacy as 



only the trained models are sent and not the actual data. But it may happen that the model may be trained on 

false data by the DaaS providers or the model owners choose only the optimal UAVs which can perform the task 

at the lowest cost. 

 

 
Figure 9: Federated Learning in UAVs 

 

To avoid this multidimensional, a contract-matching incentive mechanism is designed so that the best UAV can 

be associated with a sub-region. The contracts can be decentralized so that traditional FL single point of failure 

can be avoided. Contracts operated on the basis of blockchains will be in a decentralized manner and traditional 

encryption algorithms can provide data security along with this. In traditional UAV swarm robotics, as 

discussed in [61], it becomes a difficult task in path planning and decision making by the UAVs, hence in that 

scenario; the centralized controlling mechanism would not be of much use. Therefore, federated Learning can be 

used with one leading UAV and the others as the following UAVs. A local FL model is trained by the individual 

UAVs which is then sent to the lead UAV who then combines all models into a global model and distributes it 

among all the UAVs. [61] also discusses the impacts of wireless factors such as antenna angle deviations and 

transmission delay affecting the convergence of federated learning. The convergence is optimized by jointly 

scheduling the UAV network and designing power allocation. An asynchronous federated learning (AFL) 

framework for multi-UAV-enabled networks can be incorporated to address the unique challenges and 

requirements of Unmanned Aerial Vehicles (UAV) data processing and analytics thereby ensuring security and 

efficient model training. 

 

Since drones work on wireless networks, there is a high possibility of attacks like jamming which disrupt 

communication [62]. In order to avoid this, [63] proposes jamming attack detection security architecture based 

on federated learning. Flying Ad-hoc Network (FANET) along with federated learning has been used for the on-

device attack detection. The UAV clients communicate and collect the global model weights from the 

centralized controller and update the weights into the local model which helps in local training. Since only the 

weight updates are sent to the global model, the privacy of the data collected by the sensors is maintained. Next, 

a Dempster-Shafer theory-based client group prioritization method is proposed by which the global model has 

the ability to select the UAV clients for global model weight updating from a group of clients that are exposed to 

different environments and also based on the regular contributions of the respective client. [64] also discusses 

Flying Ad-hoc Networks (FANET), where a number of UAVs can interact in an ad hoc way with each other. 

Table 8 deals with the various approaches, limitations, and schemes showcased in the respective publications in 

the field of Unmanned Aerial Vehicles along with federated learning. 

 

 

3.0 FUTURE RESEARCH DIRECTIONS AND OPEN ISSUES 
 

In this section, an extensive discussion on the use cases has been provided and their coalesce with federated 

learning and highlight the open issues and existing challenges that call for the need for further future research in 

this field. 

  

•  Wireless Communication: In wireless communication, physical layer quantization, and client selection for 

optimizing the resource allocation can be explored using federated learning. Data aggregation, information 

fusion, and scheduling in industrial wireless communication may pose a significant challenge and can be a 

new research direction in federated learning. The effect of Intercell interference, and cochannel interference 

while updating the local gradients is also a significant research problem in federated learning applications. 

 

•  Vehicular Internet of Things: In the federated Learning- based Vehicular IoT systems, the data collected 

from different edge devices is usually very different, for example, the images taken in autonomous driving by 

different vehicles are different, and hence it tends to have a huge variation in the data and models collected from 



different edge devices which are training the local models. This causes a greater variance and deviation in the 

distributed data and essentially the convergence rate of the global models is decreased by a great margin. 

Another issue that calls for future research opportunities is to ameliorate the vehicular IoT environment as there 

are a lot of sensors that are involved in architecture which are an essential part of training and with varying 

weather and conditions between all the edge devices there are major drop-outs and garbage values which affect 

the precision and accuracy of the decision. When it comes to the federated learning-based Vehicular IoT 

architecture there are several devices such as central servers, edge servers, automation-related sensors, cameras, 

etc. Hence an effective combination is another futuristic research topic of interest that could handle the client’s 

data in all possible conditions and can handle all the potential privacy risks and server crashes. 

 

•  Healthcare: Quality health service is a necessity and is as important as any other form of service. By the 

deployment of simple, yet significant technologies into healthcare, there can be much better healthcare services 

benefiting many people. With the development of technologies such as Jupiter or FedHealth etc, significant 

changes have been brought to how healthcare service is provided to people. The computer’s greatest application 

was in the medical field where it revolutionized the way healthcare service was provided. Now, with the advent 

of machine learning models and federated learning infrastructures, healthcare would surely be moved to a much 

higher level of quality, without risking the security of personal medical information. 

 

•  Edge Computing: With electronics getting cheaper, the Internet of Things has flourished. Smart devices are 

becoming accessible to nearly everyone, leading to a great amount of data being gathered. In a future trend, it is 

not affordable to construct large computers to process such data. With edge devices, computers are getting 

smaller and more powerful. Computing such a vast amount of data is only possible with a lot of such edge 

devices. With computational power getting cheaper in a way, models can be trained to learn by practice. Each 

failure or success would teach a model to perform in a justifiable manner. This may eventually lead to a future 

with self-taught neural network models being deployed in various cases. 

 

•  Blockchain: In spite of the number of available techniques to integrate blockchain with federated learning, 

complete privacy assurance of data is an open issue that can be overcome by security threat analysis. Limited 

device resources also pose challenges to the utility and efficiency of data. These problems can be overcome by 

integrating modern cutting-edge machine learning and cryptography technologies with federated learning along 

with blockchain to prevent a breach of data and improve data sharing and transfer [70]. Since blockchain 

involves the so-called miners upon which the whole network depends, it becomes very important to maintain 

those miners, and to do so, a more practically feasible and efficient reliability method, planning, and structuring 

of incentive strategy mechanisms. 

•  Unmanned Aerial Vehicles: To improve the performance of federated learning in UAV, a mechanism for 

hostile UAV identification and segregation techniques is to be devised. Trajectory optimization, inter-UAV 

communication optimization, and client group prioritization are the need of the hour to further reduce 

communication costs. this will in turn reduce the jamming attack problems and may find a way for easy gradient 

update in training the federated models. Moreover, in UAV-based image classification and segmentation 

algorithms, the time-varying nature of the wireless channel will be one of the interesting open research problems. 

Joint updates of learning models with respect to channel information, fading, transmission delay, and antenna 

positions in UAV-based wireless networks will pose a significant challenge and result in new research 

directions. To better optimize the UAV performance balance needs to be arrived between computation, 

communication latencies, and the model learning accuracy. Also, the interrelationship between channel fading, 

local training, and the client's energy consumption plays a pivotal role in the frequency of model updates, 

convergence, and aggregation rate. 

 

4.0 CONCLUSION 

 

In this paper, federated learning is discussed as how its decentralized approach wherein the models are 

initially trained locally on the user’s edge devices. Then, the parameters of the local models are uploaded to a 

global central cloud server for further training, and the final averaged model is sent back to the user’s device, 

without compromising the user’s data privacy. The various aspects of federated learning, its applications, and 

its implementations in IoT industries comprising technologies such as Blockchain, Unmanned Aerial 

Vehicles, Vehicular IoT, Wireless Communication, Edge computing, and IoT Healthcare have gained 

immense popularity and major technical advancements.   In   these use cases, Federated Learning has been 

proven to be a performance booster and has bridged the gap between high-performance computation and data 

security issues. Hence, overcoming the issues faced by traditional machine learning complex algorithms. 



Federated Learning, particularly through the Federated Average algorithm, represents a promising approach 

for machine learning in scenarios where data privacy and decentralization are paramount.  

The methodology’s ability to train models collaboratively across distributed devices without exchanging raw 

data addresses privacy concerns effectively. However, the performance of Federated Learning varies based on 

factors such as communication efficiency, model architecture, data heterogeneity, the number of participants, 

and the robustness of security measures. While it offers clear advantages in preserving privacy and 

accommodating decentralized data sources, challenges such as communication overhead and security 

considerations must be carefully managed. A nuanced evaluation of its performance against traditional 

machine learning models is essential, taking into account specific use cases, data characteristics, and 

performance metrics. The potential benefits of Federated Learning underscore its relevance in contemporary 

machine learning landscapes, where the balance between data utility and privacy is of paramount importance. 
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