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 ABSTRACT 

Information retrieval systems are widely used by people from all walks of life to meet diverse user needs. Hence, the 

ability of these retrieval systems to return the relevant information in response to user queries has been a matter of 

concern to the information retrieval research community. To address this concern, evaluations of these retrieval 

systems is extremely critical and the most popular way is the approach that employs test collections. This approach 

has been the popular evaluation approach in information retrieval for several decades. However, one of the 

limitations of this evaluation approach concerns the costly creation of relevance judgments. In recent research, this 

limitation was addressed by predicting performance metrics at the high cut-off depths of documents by using 

performance metrics computed at low cut-off depths. However, the challenge the research community is faced with 

is how to predict the precision and the non-cumulative gain performance metrics at the high cut-off depths of 

documents while using other performance metrics computed at the low cut-off depths of at most 30 documents. This 

study addresses this challenge by investigating the predictability of performance metrics and proposing two 

approaches that predict the precision and the non-cumulative discounted gain performance metrics. This study has 

shown that there exist dataset shifts in the performance metrics computed from different test collections. 

Furthermore, the proposed approaches have demonstrated better results of the ranked correlations of the 

predictions of performance metrics than existing research. 
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1.0  INTRODUCTION 

Information retrieval systems are used by people from all walks of life to meet diverse information needs. Hence, 

the ability of these systems to return the relevant information in response to user queries has for several decades 

been a matter of concern to the information retrieval (IR) research community. To address this concern, evaluations 

of these retrieval systems are critical and the most popular way to evaluate these systems is the test collection based 

approach. This approach has been the popular evaluation approach in information retrieval for several decades. A 

test collection comprises a corpus of documents, topics and relevance judgments [1]. Topics are representations of 

information needs of users, while relevance judgments are found in query relevance files and they show which 

documents from the corpus are either relevant or not relevant to each of the topics.  

Despite many research efforts to improve the test collection based approach, there are still several limitations that 

require to be addressed and one such limitation is the cost to generate the relevance judgments. Therefore, over the 

decades, there have been several proposals from the research community to address this limitation. For instance, 

there have been proposals to perform evaluations of retrieval systems without the use of relevance judgments [2] 

and also generating relevance judgments using machine learning approaches [3]. Of particular interest to our 

research is the recent proposal that addresses the above-highlighted limitation through predicting the performance 

metrics at the high cut-off depths of documents by using other performance metrics that were computed at the low-

cut-off depths [4]. The authors of this proposal referred to the performance metrics that were computed at the cut-

off depths of at least 100 documents as the high-cost performance metrics. In addition, the performance metrics that 

were computed using the cut-off depths of less than 100 documents were referred to as low-cost performance 

metrics and in our study, we adopt this naming. The benefit of using predictions for the high-cost performance 

metrics is that the usage of relevance judgments is minimized and largely restricted to the computation of the low-

cost performance metrics. Therefore, this leads to a reduction in the cost of generating relevance judgments. Also, 

for this proposal, the authors [4] reported that the high-cost rank biased precision (RBP) metrics were accurately 

predicted at the cut-off depths of at most 30 documents for the low-cost performance metrics. However, at the same 

low cut-off depth of 30 documents, they reported inaccurate predictions of performance metrics such as precision 
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and non-cumulative discounted gain (nDCG). 

 The challenge the research community is faced with is how to predict the precision and nDCG performance metrics 

at the high cut-off depths of documents while using other performance metrics that have been computed at the low 

cut-off depths of at most 30 documents (i.e d ≤ 30). Also, a close inspection of this recent proposal [4] reveals that 

the authors used one set of test collections to compute the performance metrics employed for the training of 

regression models for their approach, but used a different set of test collections to compute performance metrics 

employed for testing purposes. The use of different sets of test collections to compute performance metrics for 

training and testing purposes was done without a prior investigation to ascertain whether such use was appropriate 

for this research. Such use of sets of test collections would only be permissible in the case where there is a high 

similarity in performance metrics computed from the sets of test collections. 

To address the above-mentioned challenges, we first conduct a brief survey of related literature. This is followed by 

a discussion of the methodology followed to conduct the two sets of experiments reported in this study. The first 

experiment investigates whether machine learning models trained using performance metrics computed using one 

set of test collections may be used to predict performance metrics computed using a different set of test collections. 

The second experiment implements the proposed approaches for the predictions of the high-cost performance 

metrics. The results and discussion of the experiments are reported and lastly, the conclusion.  

A more recent study [5] presented a preliminary investigation into the usage of transformed sets of topic scores of 

the low-cost performance metrics to predict the high-cost performance metrics. Therefore, our research extends this 

study [5] and provides the following contributions: 

1. To seek to determine the predictability of performance metrics. That is, to determine whether machine 

learning models trained using performance metrics computed using one set of test collections may be used 

to predict high-cost performance metrics computed using a different set of test collections. 

2. To suggest several ways of improving the approaches of predicting the high-cost performance metrics. 

3. To propose two approaches for the prediction of the high-cost precision and nDCG performance metrics 

that employ topic scores and ranked correlation coefficients to select the suitable set of low-cost 

performance metrics for use in the training and prediction processes. To our knowledge, this is the first 

time in information retrieval evaluation that ranked correlation coefficients are employed to select the best 

set of low-cost performance metrics for use in predictive regression models. 

The rest of the paper is structured as follows: related works are reported in section 2, materials and methods are 

presented in section 3, results are presented in section 4, the discussion is presented in section 5 and lastly, the 

conclusion in section 6. 

2.0  RELATED WORK 

 

 This section describes the two main bodies of previous work related to our study and these are the correlations of 

performance metrics and the IR evaluation methods. As regards the correlations of performance metrics, [6] 

investigated several performance metrics including F-measure and the four-fold point coefficient. The author found 

that F-measure and the four-fold point coefficient have similar properties. In another study, [7] investigated the 

correlation of average precision with R-precision. The authors provided a geometric argument that showed that the 

area under the precision-recall curve could be approximated by both the average precision and R-precision. Using 

this approximation, the author explained the correlation between the two metrics. [8] investigated the finding of one 

highly relevant document and the author found that O-measure and normalized weighted reciprocal rank are highly 

correlated. In the same year, [9] explored the correlations between at least 20 performance metrics and the author 

found that Q-measure and average precision are highly correlated. In a separate study, [10] investigated several 

performance metrics and their reflection on user search performance. They found that metrics either focused on high 

precision in an answer list or captured a broad summary and they suggested that the relative performance of 

retrieval systems may depend on the group of measures used in the evaluation. In the following year, [11] explored 

the correlations between precision, recall and fallout. The author showed that for recall, precision evolves by 

following a concave decreasing function. In addition, the author showed that concerning fallout, recall follows a 

concave increasing function. In a later study, [12] investigated correlations between at least 120 metrics. Arising 

from this investigation, the authors grouped the performance metrics into 7 clusters depending on their correlations. 

In another study, [13] explored the disagreement between at least 10 performance metrics and the authors 
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investigated differences that need to be considered when choosing metrics to be used for IR evaluation. More 

recently, [4] investigated the correlations of at least 20 performance metrics and they found a high correlation of R-

Precision with bpref, mean average precision (MAP) and nDCG performance metrics. In addition, the authors 

identified a strong correlation between reciprocal rank (RR) and RBP.  

  

Turning now to the previous research on IR evaluation, there have been several proposed methods to reduce costs 

while performing evaluations. These include methods that concern the selection of subsets of topics for retrieval 

evaluation [14]–[21] and methods for the efficient creation of test collections [22]–[24]. In addition, other proposed 

methods relate to the inference of relevance judgments [25]–[28]. Recent research investigated the use of machine 

learning-based methods to predict high-cost performance metrics and for these methods, the predictors were the 

low-cost performance metrics [4]. Though the authors [4] demonstrated strong ranked correlations of the predictions 

of the RBP performance metrics, they reported the inaccurate predictions of other high-cost performance metrics 

such as the precision and nDCG especially in the case where the low-cost performance metrics were computed at 

the cut-off depths d ≤ 30 of documents [4]. Also, a close inspection of this recent proposal [4] reveals that the 

authors used one set of test collections to compute the performance metrics employed for the training of regression 

models for their approach, but used a different set of test collections to compute performance metrics employed for 

testing purposes. The use of different sets of test collections to compute performance metrics for training and testing 

purposes was done without a prior investigation to ascertain whether such use was appropriate for this research. 

Such use of sets of test collections would only be permissible in the case where there is a high similarity in 

performance metrics computed from the sets of test collections. Our study bridges this gap by seeking to determine 

whether machine learning models trained using performance metrics computed using one set of test collections may 

be used to predict high-cost performance metrics computed using a different set of test collections. In addition, this 

study also provides suggestions to improve existing approaches to predict the high-cost performance metrics. Lastly, 

this study also proposes two approaches that predict the precision and nDCG high-cost performance metrics, 

particularly at the cut-off depths d ≤ 30 documents for the low-cost performance metrics. 

 
3.0  MATERIALS AND METHODS 

 

This section describes the data collection, the performance metrics, the baseline method used for our study as well 

as the metrics used for evaluating our results. In addition, this section describes the experimental methodology used 

to investigate the predictability of performance metrics and the proposed approaches for predicting the precision and 

nDCG high-cost performance metrics while using the low-cost performance metrics computed at the cut-off depths 

d ≤ 30. The experiments presented in this paper employ topic scores of performance metrics. 
 

3.1  Data collection and performance metrics 

 
Similar to recent research [4], this study employed relevance judgments and runs of TREC 2000-2001, 2013-2014 

Web Tracks (WT) [29]–[32] and TREC 2004 Robust Track (RT) [33]. Also, similar to the previous study [4], the 

selected performance metrics were precision [36], nDCG [34], RBP [35], binary preference [38], inferred average 

precision (infAp) [39] and expected reciprocal rank (ERR) [37]. Furthermore, fmeasure and recall [36] were also 

utilized in this study due to their high correlation with both precision and nDCG. Each of the low-cost performance 

metrics were computed at the cut-off depths of between 10 and 30 documents (i.e 10 ≤ d ≤ 30). The precision and 

nDCG high-cost performance metrics were computed at the cut-off depths d = 100 and d = 1000 documents. 

  

3.2  Baseline method 

 
The baseline method for our study is reported in [4]. This method uses linear regression and system scores of the 

low and high-cost performance metrics. The suitable subset of predictors was chosen from the power set of the low-

cost performance metrics by using the least root mean square error metric during the training of the regression 

models at several cut-off depths of documents. 

 

3.3  Performance analysis 

 
In this this study, several metrics have been used to evaluate the results. To start with, since the investigation of the 

predictability of performance metrics concern machine learning classification, recall, precision, accuracy and area 

under the curve (AUC) metrics were employed. The results were evaluated at various cut-off depths d ≤ 30 of low-

cost performance metrics. The recall, precision and accuracy evaluation metrics are represented by equations (1) to 

(3) below. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 

Where TP means correctly classified as belonging to a particular class of performance metrics, TN means correctly 

classified as not belonging to a particular class of performance metrics, FP means wrongly classified as belonging to 

a particular class of performance metrics and FN means wrongly classified as not belonging to a particular class of 

performance metrics. 

 

Lastly, we turn to AUC. This metric is an important measure of performance for classification models. It represents 

the measure of the separability of the classes of the low-cost performance metrics. 

 

Regarding the proposed approaches, like previous research [4], the focus is the ranked correlations of the 

predictions of the high-cost performance metrics. Therefore to evaluate the performance of these approaches, the 

ranked correlation coefficient should be used. Hence, the use of the Kendall’s tau (see expression 4) in this study 

and this correlation coefficient is defined by: 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙′𝑠𝑇𝑎𝑢 =
𝐶 − 𝐷

1
2

𝑛(𝑛 − 1)
 

(4) 

Where C is the number of concordant pairs while D is the number of discordant pairs and n is the total number of 

samples in the dataset. 

 

3.4 Experimental methodology to investigate the predictability of performance metrics 

This section describes the methodology for the experiment that seeks to determine whether machine learning 

models trained using performance metrics computed by employing one set of test collections may be used to predict 

the high-cost performance metrics computed using other sets of test collections. Before describing the details of the 

experimental methodology, let’s first look at this scenario, suppose there are three test collections A, B and C, and 

assume the low and high-cost performance metrics are computed using these test collections. The question is: if  a 

regression model is trained with the performance metrics computed from test collections A and B and later used to 

predict the high-cost performance metrics computed using test collection C, how predictable will these high-cost 

performance metrics be? This scenario depicts the existing research [4] where a regression model was trained using 

performance metrics computed using one set of test collections and predictions were made for the high-cost 

performance metrics computed using other test collections. The predictability of high-cost performance metrics is 

measured by how linearly separable the class of one set of low-cost performance metrics is from another. If the 

linear separability is high, then the predictability of the high-cost performance metrics is low because high linear 

separability signifies low similarity between the performance metrics in the different classes. For a thorough 

discussion on the identification and resolution of dissimilarity of classes of data in machine learning research, refer 

to [40]. 

 In our investigation, there are three classes of the low-cost performance metrics, namely class 1, class 2 and class 3. 

Turning now to the descriptions of these classes, class 1 represents the training set and comprises low-cost 

performance metrics computed using relevance judgments and runs of TREC 2000-2001 WT and TREC 2004 RT. 

Secondly, class 2 represents the first test set and comprises low-cost performance metrics computed using relevance 

judgments and runs from TREC 2012 WT. Lastly, class 3 represents the second test set and comprises low-cost 

performance metrics computed using relevance judgments and runs from TREC 2013 WT. 

The basic idea is to iteratively merge the training set with each test set and train and use a classifier to check for 

linear separability of the two classes. For instance, merge the performance metrics in class 1 with those from class 2, 
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train and use a classifier to check for the linear separability of the low-cost performance metrics of the two classes 

by reporting the results of the classification evaluation metrics. 

 

As regards the experimental methodology, outlined below are the series of steps:   

1. Step 1: Using relevance judgments and runs of test collections, compute low-cost performance metrics at 

the cut-off depths d such that 10 ≤ d ≤ 30 and the high-cost performance metrics at the cut-off depths j such 

that j = 100 and j = 1000 respectively. The expression 5 below shows a set Ds comprised of these computed 

performance metrics. 
𝐷𝑠 = {𝑖𝑛𝑓𝐴𝑝@𝑑, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑑, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑑, 𝐸𝑅𝑅@𝑑, 𝑅𝐵𝑃@𝑑, 𝑛𝐷𝐶𝐺@𝑑, 𝐵𝑝𝑟𝑒𝑓@𝑑,

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒@𝑑, 𝑃@𝑗, 𝑛𝐷𝐶𝐺@𝑗}
 

(5) 

2. Step 2: Create three data sets. The first data set is the training set which comprises performance metrics 

computed using TREC Tracks 2000-2001 WT and TREC 2004 RT. The next two data sets are test sets 

comprising performance metrics computed using TREC 2012-2013 WT respectively. The expression 6 

shows the training set as a subset comprised of low-cost performance metrics computed using TREC 2000-

2001 WT and TREC 2004 RT. Also, two test sets are shown as subsets comprising low-cost performance 

metrics computed using TREC 2012-2013 WT respectively. 

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡 ← 𝜎𝑡𝑟𝑒𝑐∈2000𝑊𝑇,2001𝑊𝑇,2004𝑊𝑇(𝐷𝑠)

𝑡𝑒𝑠𝑡𝑠𝑒𝑡𝑡𝑟𝑒𝑐2012 ← 𝜎𝑡𝑟𝑒𝑐∈2012𝑊𝑇(𝐷𝑠)

𝑡𝑒𝑠𝑡𝑠𝑒𝑡𝑡𝑟𝑒𝑐2013 ← 𝜎𝑡𝑟𝑒𝑐∈2013𝑊𝑇(𝐷𝑠)

 

                                                      (6) 

3. Step 3: Assign the low-cost performance metrics in the three data sets described in the previous step to 3 

distinct classes. The expression 7 shows the assignment of classes to training and test sets. 

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡 ← 𝜎𝑡𝑟𝑒𝑐∈2000𝑊𝑇,2001𝑊𝑇,2004𝑅𝑇(𝐷𝑠)𝑎𝑝𝑝𝑒𝑛𝑑  𝑐𝑙𝑎𝑠𝑠1

𝑡𝑒𝑠𝑡𝑠𝑒𝑡𝑡𝑟𝑒𝑐2012 ← 𝜎𝑡𝑟𝑒𝑐∈2012𝑊𝑇(𝐷𝑠)𝑎𝑝𝑝𝑒𝑛𝑑  𝑐𝑙𝑎𝑠𝑠2

𝑡𝑒𝑠𝑡𝑠𝑒𝑡𝑡𝑟𝑒𝑐2013 ← 𝜎𝑡𝑟𝑒𝑐∈2013𝑊𝑇(𝐷𝑠)𝑎𝑝𝑝𝑒𝑛𝑑  𝑐𝑙𝑎𝑠𝑠3

 

                                       (7) 

 

 

 

4. Step 4: Iteratively, merge the low-cost performance metrics for the training set with those for each test set 

and build a classifier for each represented cut-off depth d such that 10 ≤ d ≤ 30 of the low-cost 

performance metrics. Use the 10-fold cross validation during the build of the classification models and to 

address the problem of class imbalance, employ the under-sampling technique at this step. 

5. Step 5: Using the classifier developed in the previous step, measure how linearly separable the low-cost 

performance metrics for each test set are from those of the training set. Evaluate the performance of the 

classifiers using the metrics for evaluating machine learning classification models described above. 

 

3.5  The proposed approaches to predict the high-cost performance metrics 

 

This section presents the two proposed approaches to predict the high-cost precision and nDCG performance 

metrics. The first approach is also known as proposed-LR employs linear regression at all the cut-off depths of the 

low-cost performance metrics while the second approach also known as the proposed-RF employs the random forest 

models. Both approaches employ performance metrics and the transformed set of performance metrics. However, 

the difference between them lies in the procedures for selecting the most suitable performance metrics to be used in 

the machine learning models. Since both approaches employ the transformed set of performance metrics, the 

method of generating the transformed set of low and high-cost performance metrics is described first. This is 

followed by detailed descriptions of the two proposed approaches. 

 

 

3.5.1 Generation of new sets of performance metrics 

 

A recent study [4] reported that concerning correlations with other performance metrics, precision is least 

correlated. In addition, [4] proposed a method that demonstrated the inaccurate predictions of the high-cost 

performance metrics such as precision and nDCG especially in the case where the low-cost performance metrics 

were computed at the cut-off depths of at most 30 documents. A close look at the performance metrics used in this 

study has revealed that they have skewed distributions and extreme scores. Therefore, in this research, these two 

issues are addressed by generating new sets of topic scores. According to [41], the usage of appropriate 

mathematical functions addresses the skew in predictors of regression models. By addressing the skewed 

distributions and extreme scores for the performance metrics represented in this study, there is an observed increase 

in correlations and the gain in information between high and low-cost performance metrics. To generate the new set 

of topic scores, the mathematical functions used are the yeo-johnson, exponential, cube root and logarithmic 

functions [41]. 
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A demonstration of how the new sets of topic scores of low and high-cost performance metrics are generated is 

provided with the aid of expressions (8) to (11). Regarding expression 9, P_20all represents a vector of topic scores 

of the precision performance metrics computed at the cut-off depth d=20 of documents. Now P_20all is used as 

input into the logarithmic function and the output is a vector P_20all_log containing the transformed set of topic 

scores. Expressions 8 and 10 show the application of the cube root and exponential functions on the nDCG and 

infAP performance metrics respectively. 
 

 ndcg_10𝑎𝑙𝑙 → √ndcg_10all3 → ndcg_10all_cbrt 
(8) 

P_20all → 𝑙𝑜𝑔(P_20all + 1) → P_20all_log (9) 

infap_30all → 𝑒𝑥𝑝 (infap_30all,
1

2
) → infap_30all_exp 

(10) 

rbp_25_all →
𝛬

1 − 𝛬
(rbp_25all) → rbp_25all_yj 

(11) 

 

 

By employing these transformations on the topic scores computed using the function definitions of the 

performance metrics, new sets of topic scores of low-cost performance metrics are generated that are more 

informative and better correlated to the high-cost performance metrics. The expression Λ/(1−Λ) is referred to as 

the yeo-johnson technique [41]. The next section presents a description of the first proposed approach.  
 

3.5.2 The linear regression based proposed approach (proposed LR) 
 

This section presents the linear regression based proposed approach also called proposed LR to predict the high-

cost precision and nDCG performance metrics. The predictors are low-cost performance metrics computed using 

cut-off depths of up to 30 documents. The detailed descriptions of each step for this approach are presented in 

Table 1 below. 
 

 

Table 1: The steps for the linear regression based approach to predict the high-cost performance metrics 
Step # Description 
1 Using relevance judgments and runs of test collections presented in section 3.1, compute low and 

high-cost performance metrics to form a matrix Ms 
2 Create new matrices by applying the procedure presented in section 3.5.1 to matrix Ms 
3 Create a new matrix M_low_cost by combining the low-cost performance metrics in the matrices 

from step1 and step 2. 
4 Create a new matrix M_high_cost by combining the high-cost performance metrics in the matrices 

from step1 and step 2. 
5 Generate pairs of the matrix M_low_cost with every vector in the matrix M_high_cost 

e.g  < P_100all, M_low_cost > 
6 Using pearson correlation, information gain, linear regression model training, prediction on 

validation, tau correlation computation and comparison, identify the most suitable pair from similar 

pairs from step 5 at every cut-off depth of low-cost performance metrics. The vectors of high-cost 

performance metrics form similar pairs if they are generated from the same vector of high-cost 

performance metric from matrix Ms computed in step 1. 
7 At each cut-off depth d of the low-cost performance metrics, train regression models using the 

chosen suitable pairs from the previous step to produce approximation regression functions. One 

example of the regression approximation function is Equation (12) below: 

𝑃@1000 = 0.131 ∗ P_10all − 0.264 ∗ fmeasure_10all_log                           (12) 

8 Using approximation functions, make predictions of the high-cost performance metrics and ranked 

correlations are computed. Lastly, the results of the ranked correlations for the proposed approaches 

are compared with the baseline 
 

3.5.3 The tree regression based proposed approach (proposed RF) 
 

This section presents the tree regression based proposed approach also called proposed RF to predict the high-cost 

precision and nDCG performance metrics. Also, the predictors are low-cost performance metrics computed using 
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cut-off depths of up to 30 documents. The detailed descriptions of each step for this approach are presented in 

Table 2 below. 
 

Table 2: The steps for the tree regression based approach to predict the high-cost performance metrics 
Step # Description 
1 Using relevance judgments and runs of test collections presented in section 3.1, compute low and 

high cost performance metrics to form a matrix Ms 
2 Create new matrices by applying the procedure presented in section 3.5.1 to matrix Ms 
3 Create a new matrix M_low_cost by combining the low-cost performance metrics in the matrices 

from step1 and step 2. 
4 Create a new matrix M_high_cost by combining the high-cost performance metrics in the matrices 

from step1 and step 2. 
5 Generate pairs of the matrix M_low_cost  with every vector in the matrix M_high_cost 

e.g  < P_100all, M_low_cost > 
6 Using each pair from previous step, train the classification and regression tree models, perform 

predictions on the validation set and compute and compare tau correlations.  Select the suitable pair 

from similar pairs from step 5 at every cut-off depth of low-cost performance metrics. 
7 At each cut-off depth k of the low-cost performance metrics, train the random forest regression tree 

models using the chosen pairs from the previous step. 
8 Using the random forest regression tree models, make predictions of the high-cost performance 

metrics and compute ranked correlations. Lastly, the results of the ranked correlations for the 

proposed approaches are compared with the baseline. 
 

These proposed approaches were implemented in python 3.7 and the anaconda environment 4.10.3 and their results 

for the ranked correlations of predictions of the high-cost performance metrics are presented in the following 

section. 

4.0 RESULTS 

This section presents two sets of results. The first set concerns the experiment that sought to determine whether 

machine learning models trained using performance metrics computed using one set of test collections may be used 

to predict high-cost performance metrics computed by employing a different set of test collections. The second set 

of results relates to the performance of the proposed approaches and how they compare with the baseline method.  

4.1 Results for the investigation of the predictability of performance metrics 

This section presents the results for the experiment that sought to determine whether machine learning models 

trained using performance metrics computed using one set of test collections may be used to predict high-cost 

performance metrics computed by employing a different set of test collections. Recall that the low-cost performance 

metrics were computed at the cut-off depths of between 10 and 30 documents while the high-cost performance 

metrics at the cut-off depths of 100 and 1000 documents. As earlier mentioned, the training set comprised 

performance metrics computed using the relevance judgments and runs from test collections TREC 2000-2001 WT 

and TREC 2004 RT. The test sets constituted performance metrics computed using the relevance judgments and 

runs of the test collections TREC 2012 and 2013 WT. This investigation aimed to find the similarity between the 

performance metrics of the training and each of the test sets. The high values of the classification evaluation metrics 

meant low similarity. 
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Fig. 1:  The Accuracy results for the classification between sets of  low-cost performance metrics representing 

training and test sets. The training set comprises of the low-cost performance metrics computed using test 

collections TREC 2000-2001 WT and TREC 2004 RT. 

Fig.1 presents the results of the accuracy for the classification of the sets of the low-cost performance metrics 

representing training and test sets using several classifiers. Fig.1(A) shows the accuracy of the different classifiers 

when the test set constituted performance metrics computed using the relevance judgments and runs from TREC 

2012 WT while Fig.1(B) highlights the accuracy of the different classifiers when the test set comprised performance 

metrics computed using the relevance judgments and runs from TREC 2013 WT. A close inspection of Fig.1(A) 

shows that at the cut-off depth d = 10, the accuracy of the predictions of the classifiers was in the range from 84 to 

92 percent. The predictions of the random forest (0.9152), decision tree (0.8873), gradient boosting (0.8705) and 

knearest neighbor (0.8487) classifiers were at least 84 percent. As regards Fig.1(B), the results show that at the cut-

off depth d = 10, the accuracy of the predictions of the classifiers was in the range from 76 to 86 percent. The 

predictions of the random forest (0.8537),decision tree(0.8130),gradient boosting(0.7775) and knearest 

neighbor(0.7617) classifiers were at least 76 percent. Concerning the cut-off depth d = 20, the accuracy of the 

predictions of the classifiers was in the range of 75 to 86 percent. The predictions of the random 

forest(0.8580),decision tree(0.8155),gradient boosting(0.7713) and knearest neighbor(0.7560) classifiers were at 

least 75 percent. The next result  concerns the precision evaluation metric. 
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Fig. 2:  The precision results for classification between sets of low-cost performance metrics representing training 

and test sets. The training set comprises of low-cost performance metrics computed using test collections TREC 

2000-2001 WT and TREC 2004 RT. 

Fig.2 presents the results of the precision for the classification of the sets of low-cost performance metrics 

representing training and test sets using several classifiers. Fig.2(A) shows the precision of the different classifiers 

when the test set constituted performance metrics that were computed using the relevance judgments and runs of 

TREC 2012 WT while Fig.2(B) shows the precision of the different classifiers when the test set comprised 

performance metrics that were computed using the relevance judgments and runs of TREC 2013 WT. As regards 

Fig.2(A), at the cut-off depth d = 20, the precision of the predictions of the classifiers was in the range of 81 to 89 

percent. The predictions of the random forest (0.8887), decision tree(0.8599),gradient boosting(0.8347) and knearest 

neighbor(0.8151) classifiers were at least 81 percent. Looking at Fig.2(B), it is apparent that at the cut-off depth d = 

10, the precision of the predictions of the classifiers was in the range of 73 to 84 percent. The predictions of the 

random forest(0.8307),decision tree(0.8084),gradient boosting(0.7547) and knearest neighbor(0.7303) classifiers 

were at least 73 percent. 
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Fig. 3:  The recall results for the classification of the sets of low-cost performance metrics representing the training 

and test sets. The training set comprises of low-cost performance metrics computed using test collections TREC 

2000-2001 WT and TREC 2004 RT. 

Fig.3 presents the results of the recall for the classification of the sets of low-cost performance metrics representing 

training and test sets using several classifiers. Fig.3(A) shows the recall of the different classifiers when the test set 

constituted performance metrics computed using the relevance judgments and runs from TREC 2012 WT while 

Fig.3(B) displays the recall of the different classifiers when the test set comprised performance metrics computed 

using the relevance judgments and runs from TREC 2013 WT. It is clear from Fig.3(A) that at the cut-off depth d = 

10, the recall of the predictions of the classifiers was in the range of 93 to 98 percent. The predictions of the random 

forest (0.9753), decision tree (0.9391), gradient boosting (0.9673) and knearest neighbor(0.9585) classifiers were at 

least 93 percent. Regarding Fig.3(B), it is apparent that at the cut-off depth d = 15, the recall of the predictions of 

the classifiers was in the range from 85 to 92 percent. The predictions of the random forest (0.9159), decision tree 

(0.8693), gradient boosting (0.9047) and knearest neighbor (0.8581) classifiers were at least 85 percent.  
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Fig. 4:  The area under the curve (AUC) results for classification between sets of the low-cost performance metrics 

representing training and test sets. The training set comprises of low-cost performance metrics computed using test 

collections TREC 2000-2001 WT and TREC 2004 RT. 

Fig.4 highlights the results of the AUC for the classification of the sets of low-cost performance metrics 

representing training and test sets using several classifiers. Fig.4(A) displays the AUC of the different classifiers 

when the test set constituted performance metrics computed using the relevance judgments and runs from TREC 

2012 WT while Fig.4(B) shows the AUC of the different classifiers when the test set comprised performance 

metrics computed using the relevance judgments and runs from TREC 2013 WT. As regards Fig.4(A), the result 

shows that at the cut-off depth d = 10, the AUC of the predictions of the classifiers was in the range of 90 to 97 

percent. The predictions of the random forest (0.9649), decision tree (0.9065), gradient boosting (0.9204) and 

knearest neighbor (0.9086) classifiers were at least 90 percent. Turning now to Fig.4 (B), the result shows that at the 

cut-off depth d = 10, the AUC of the predictions of the classifiers was in the range of 81 to 93 percent. The 

predictions of the random forest (0.9251), decision tree (0.8311), gradient boosting (0.8342) and knearest neighbor 

(0.8164) classifiers were at least 81 percent.  

4.2 The results of the proposed and baseline approaches 

This section presents the results of the ranked correlations of the predictions of the high-cost performance metrics of 

the proposed approaches. The results also include comparisons of the ranked correlations for the proposed 

approaches with the baseline. The presentation of results begins with the ranked correlations for the predictions of 

the nDCG high-cost performance metrics at cut-off depths d=100 (i.e nDCG@100) and d=1000 (nDCG@1000).  

What follows are the results of the ranked correlations for the predictions of the precision high-cost performance 

metrics at cut-off depths d=100 (i.e P@100) and d=1000 (i.e P@1000). For all the presented results, the training set 

comprises performance metrics computed using test collections TREC 2000-2001 WT and TREC 2004 RT and the 

predictors are low-cost performance metrics computed at cut-off depths d ≤ 30 documents.  
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Fig.5:  The Kendall’s tau correlation for the prediction of nDCG@100 high-cost performance metrics while using 

low-cost performance metrics computed at cut-off depths 10 ≤ d ≤ 30 documents. 

Fig.5 shows Kendall’s tau correlations for the prediction of nDCG@100 using low-cost performance metrics (i.e 

predictors) computed at cut-off depths d ≤ 30 documents.Fig.5(A) presents Kendall’s tau correlations for the 

predictions of nDCG@100 using the test set comprised performance metrics that were computed using relevance 

judgments and runs from TREC 2013 WT while Fig.5(B) shows Kendall’s tau correlations for the predictions of 

nDCG@100 using the test set constituted of performance metrics that were computed by utilizing relevance 

judgments and runs from TREC 2014 WT. It is clear from Fig.5(A), that the proposed approaches had better 

Kendall’s tau correlations than the baseline for the predictions of nDCG@100 at various cut-off depths of the 

predictors. For example, at the cut-off depth d = 15, Kendall’s tau correlation for the predictions of proposed-

LR(0.7217) and proposed-RF(0.7231) were higher than the baseline(0.6367) by at least 13.35 percent. Looking at 

Fig. 5B, the proposed approaches had better Kendall’s tau correlations than the baseline for predictions of 

nDCG@100 at all the cut-off depths of the predictors. For example, at the cut-off depth d = 10, Kendall’s tau 

correlation for the predictions of proposed-LR(0.6378) and proposed-RF(0.6465) exceeded the baseline(0.5843) by 

at least 9.16 percent. 
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Fig. 6:  The Kendall’s tau correlation for the prediction of nDCG@1000 high-cost performance metrics while using 

low-cost performance metrics computed at cut-off depths 10 ≤ d ≤ 30 documents. 

Fig.6 shows Kendall’s tau correlations for the prediction of nDCG@1000 using predictors computed at cut-off 

depths d ≤ 30 documents. Fig.6(A) presents Kendall’s tau correlations for the predictions of nDCG@1000 using the 

test set comprised of performance metrics that were computed using relevance judgments and runs of TREC 2013 

WT while Fig.6(B) shows Kendall’s tau correlations for the predictions of nDCG@1000 using the test set 

constituted of performance metrics that were computed using relevance judgments and runs of TREC 2014 WT. 

Regarding Fig.6(A), the proposed approaches had better Kendall’s tau correlations than the baseline for predictions 

of nDCG@1000 at all the cut-off depths of the predictors. For example, at the cut-off depth d = 15, Kendall’s tau 

correlation for the predictions of proposed-LR(0.5663) and proposed-RF(0.5655) were more than the 

baseline(0.4526) by at least 24.94 percent. Turning now to Fig.6(B), the result shows that the proposed approaches 

had better Kendall’s tau correlations than the baseline for predictions of nDCG@1000 at all the cut-off depths of 

predictors. For example, at the cut-off depth d = 10, Kendall’s tau correlation for the predictions of proposed-

LR(0.5097) and proposed-RF(0.5453) exceeded the baseline(0.4550) by at least 12.02 percent.  

Fig.7 shows Kendall’s tau correlations for the prediction of P@100 using predictors computed at cut-off depths d ≤ 

30 documents. Fig.7(A) presents Kendall’s tau correlations for the predictions of P@100 using the test set 

comprised of performance metrics that were computed by employing relevance judgments and runs of TREC 2013 

WT while Fig.7(B) shows Kendall’s tau correlations for the predictions of P@100 using the test set constituted of 

performance metrics that were computed using relevance judgments and runs of TREC 2014 WT. As regards 

Fig.7(A), the proposed approaches had better Kendall’s tau correlations than the baseline for predictions of 

precision@100 at all the cut-off depths of the predictors. For example, at the cut-off depth d = 10, Kendall’s tau 

correlation for the predictions of proposed-LR(0.6591) and proposed-RF(0.6599) exceeded the baseline(0.4520) by 

at least 45.82 percent. Turning now to Fig. 7(B), the result shows that the proposed approaches had better Kendall’s 

tau correlations than the baseline for predictions of precision@100 at all the cut-off depths of the predictors. For 

example, at the cut-off depth d = 20, the Kendall’s tau correlation for the predictions of proposed-LR(0.7102) and 

proposed-RF(0.7343) were higher than the baseline(0.5372) by at least 32.20 percent.  
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Fig. 7:  The Kendall’s tau correlation for the prediction of P@100 high-cost performance while using low-cost 

performance metrics  computed at cut-off depths 10 ≤ d ≤ 30 documents. 

Fig.8 shows Kendall’s tau correlations for the prediction of P@1000 using predictors computed at cut-off depths d ≤ 

30 documents. Fig.8(A) presents Kendall’s tau correlations for the predictions of  P@1000 using the test set 

comprised of performance metrics that were computed by utilizing relevance judgments and runs of TREC 2013 

WT while Fig.8(B) shows Kendall’s tau correlations for the predictions of P@1000 using the test set constituted of 

performance metrics that were computed by utilizing relevance judgments and runs of TREC 2014 WT. Regarding 

Fig.8(A) below, the results show that the proposed approaches had better Kendall’s tau correlations than the 

baseline for predictions of precision@1000 at all the cut-off depths of the predictors. For example, at the cut-off 

depth d = 25, Kendall’s tau correlation for the predictions of proposed-LR(0.6352) and proposed-RF(0.6173) 

exceeded the baseline(0.3730) by at least 65.5 percent. Also, a close inspection of Fig. 8(B) shows that the proposed 

approaches had better Kendall’s tau correlations than the baseline for predictions of precision@1000 at all the cut-

off depths of the predictors. For example, at the cut-off depth d = 15, Kendall’s tau correlation for the predictions of 

proposed-LR(0.6245) and proposed-RF(0.5921) were higher than the baseline(0.5334) by at least 10.61 percent. 
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Fig. 8:  The Kendall’s tau correlation for the prediction of P@1000 high-cost performance metrics  while using low-

cost performance metrics  computed at cut-off depths 10 ≤ d ≤ 30 documents. 

5.0 DISCUSSION 

In this section, the discussion is presented for the results reported in the previous section. Section 5.1 presents the 

discussion for the results reported in section 4.1 and then follows section 5.2 that presents the discussion for the 

results reported in section 4.2. 

5.1 The discussion for the investigation of the predictability of performance metrics 

Recall that the investigation on the predictability of performance metrics used classifiers of several machine 

learning models whose results were presented using the accuracy, precision, recall, and the area under the curve 

(AUC) classification metrics. Regarding the accuracy evaluation metric, all the classifiers distinguished the 

performance metrics of training sets from test sets with accuracies ranging between 75.19 and 91.90 percent at the 

various cut-off depths of documents.  Also, concerning the precision evaluation metric, all the classifiers 

distinguished the performance metrics of training sets from those of test sets with precision between 73.03 and 

88.96 percent at the various cut-off depths of documents. Furthermore, as regards the recall evaluation metric, all 

the classifiers distinguished the performance metrics of training sets from test sets with recall between 81.47 and 

97.53 percent at the various cut-off depths of documents. Lastly, concerning the AUC evaluation metric, all the 

classifiers distinguished the performance metrics of training sets from those in test sets with the AUC ranging 

between 77.67 and 96.67 percent at the various cut-off depths of documents. It is clear from these results that the 

linear separability between the low-cost performance metrics of training and test sets is very high. This means that 

the distributions of the performance metrics computed using one set of test collections differs from the distributions 

of performance metrics computed using other sets of test collections. The implication of this is that if machine 

learning predictive models are trained using performance metrics computed using relevance judgments and runs 

from one set of test collections and later used to predict performance metrics relating to other test collections, the 

predictability of these performance metrics are likely to be low. This may partly explain why the results in existing 

research [4] are inaccurate. Therefore, to ensure improved results of the predictions of the high-cost performance 
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metrics, the following suggestions are provided: 

1. Use the solutions from machine learning research to address the difference in distributions that exist in 

performance metrics computed using the relevance judgments and runs from different test collections. 

Machine learning research has proposed several solutions to address this issue [40]. First, they propose to 

employ the KL-divergence technique to make adjustments to the values of the performance metrics in the 

training and test sets to ensure high similarity. Also, machine learning research proposed the use of logistic 

regression to adjust the parameters of the regression models. 

2. A test collection could be nominated as the one about which the distributions of performance metrics 

computed using other test collections would be adjusted with respect to the data set shift before model 

training and prediction of the high-cost performance metrics.  

3. Generate new sets of topic scores of performance metrics to be used in predictive models. These new sets 

of topic scores could be generated via the appropriate mathematical transformations that address extreme 

scores and skew of the existing topic scores computed from the functions representing the performance 

metrics. These new set of topic scores should be more informative and have higher correlations with 

respect to the high-cost performance metrics and this should in turn improve the predictions of the high-

cost performance metrics. It is this suggestion that we employed in the proposed approaches presented in 

this paper.  

5.2 The discussion for the results obtained by proposed approaches and compared to baseline 

This section discusses the results of the ranked correlations of the predictions of the precision and nDCG 

performance metrics for the proposed approaches. The discussion also includes a comparison of the predictions of 

proposed approaches with the baseline [4].  

The presented results in section 4.2 have shown that the proposed approaches produced better results than the 

baseline. These improved results of the proposed approaches are not surprising and are attributed to some 

differences between the proposed and baseline approaches. To begin with, the proposed approaches employ the 

topic scores of the low-cost performance metrics as opposed to the system scores used by the baseline method. 

System scores are computed by averaging the topic scores of performance metrics and the averaging operation leads 

to some error in the computed values. In addition, since the high-cost performance metrics are predicted, naturally, 

there is also some error during the process of prediction. Hence, when the proposed approaches are compared to the 

baseline, more error is incurred for the latter. Also, the methods used to select predictors of the low-cost 

performance metrics are worth some detailed discussion. The proposed approaches each employ their methods of 

selecting predictors and it is clear that the proposed predictor selection methods are better. Since the focus of this 

study is the predictions of the ranked correlations of performance metrics, the predictor selection methods for the 

proposed approaches also employ ranked correlations in the selection process of predictors of the low-cost 

performance metrics. Therefore, this leads to the selection of better predictors of the low-cost performance metrics. 

In contrast, the baseline method only employs the power set coupled with the root mean square to select the better 

predictors of the performance metrics. 

 Lastly, the proposed approaches use two sets of topic scores of the low-cost performance metrics. The first set 

comprises topic scores computed using equation definitions of the performance metrics. The second set constitutes 

topic scores generated by applying the cube root, yeo-Johnson, exponential and logarithmic functions to the first set 

of topic scores.  Generating topic scores in this way addresses the extreme values and skew in distributions of topic 

scores. Also, the generated set of topic scores of low-cost performance metrics may correlate better with the target 

high-cost performance metrics and may be more informative of the target high-cost performance metrics. 

5.3 Threat to validity 

Validity concerns the scientific and conceptual soundness of a research study and its purpose is to produce valid 

conclusions [42]. In this study, the internal, external and construct validity threats have been addressed. Internal 

validity refers to the ability of the research design to rule out alternative explanations of the obtained results for the 

experiments. To avoid threats to internal validity, our experiments follow well-explained procedures. External 

validity refers to the generalizability of the results. To ensure the generalizability results, both experiments used 

several test sets with performance metrics computed using different test collections. In addition, the experiment on 

the predictability of performance metrics employed several machine learning models. Construct validity refers to 

the congruency between the results of the study and the theoretical underpinning’s. For this study, the term high-



The Predictions of Performance Metrics in Information Retrieval: An Experimental Study, pp., 35-54 

 

51 

Malaysian Journal of Computer Science. Information Retrieval and Knowledge Management Special Issue 2/2021 

cost performance metric was clearly defined at the inception of the study and to ensure sufficiency of data, several 

test collections have been used to compute the high and low-cost performance metrics.  

 

6.0 CONCLUSION 

 

In this study, the predictability of performance metrics computed using several test collections has been investigated 

and two approaches that predict the high-cost precision and nDCG performance metrics have also been proposed. 

This study has shown that the similarity is low between low-cost performance metrics computed using relevance 

judgments and runs of different test collections. Also, this study has shown that the proposed approaches performed 

better than the baseline on most of the cut-off depths of documents of the low-cost performance metrics. Despite 

these achievements, there is still room for future work. To start with, a question to pose for future investigations is: 

to what extent are the individual low-cost performance metrics affected by the low similarity of performance 

metrics computed using different test collections? The answer to this question will help identify the best corrective 

strategy to employ to address the data set shift for each performance metric for better predictive results. In this 

study, an attempt has been made to ensure the generalizability of results by using several test collections produced 

over several years. However, only TREC test collections have been used in the experiments. Hence, in future, 

similar studies could be replicated using other test collections from initiatives such as the cross-language evaluation 

forum (CLEF) and the national institute of informatics test collection for information resources (NCTIR). In as far 

as the predictive approaches are concerned, there is a need to explore approaches that incorporate more complex 

models such as deep learning models. 
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