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ABSTRACT

This paper presents a modified RBF network with
additional linear input connections together with a hybrid
training algorithm. The training algorithm is based on k-
means clustering with square root updating method and
Givens least squares algorithm with additional linear input
connections features. Two real data sets have been used
to demonstrate the capability of the proposed RBF network
architecture and the new hybrid algorithm. The results
indicated that the network models adequately represented
the systems dynamic.
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1.0 INTRODUCTION

Neural networks have theoretically been proved to be
capable of representing complex non-linear mappings [1],
[2]. Multilayered feed forward neural networks offer an
aternative to conventional modelling methods, and
networks with various training laws have successfully been
used to model non-linear systems [3], [4], [5], [6], [7], [8]-
In general, neural network models are highly non-linear in
the unknown-parameters. A drawback of this property is
that the training algorithm must be based on a non-linear
optimisation technique which is associated with the
problems of dlow parameter convergence, intensive
computation and poor local minima.

Radial Basis Function (RBF) networks that overcome some
of these problems have been introduced by several authors
[8], [9]. This network offers a faster and efficiently-
trained-network while partially avoiding the problem of
local minima. Training agorithms for RBF networks
normally comprise of a procedure to position the RBF
centres and a linear least squares technique to estimate the
weights. Various training algorithms have been proposed
to train RBF networks [4], [5], [6], [7], [8].
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In the present study, the convergence properties of the
hybrid agorithms are further improved by proposing a
RBF network with additional linear input connections. As
an alternative to the hybrid algorithm [6], a new hybrid
algorithm based on k-means clustering using square root
updating method and Givens least squares algorithm (with
additional linear input connections features) is proposed to
train RBF networks. Givens least squares algorithm has
been selected due to its superior numerical stability and
accuracy.

20 LINEAR-INPUT-CONNECTION-RBF

WORK

NET-

A RBF network with m outputs and n;, hidden nodes can
be expressed as:

yi(t) =wiq + g w; f ("v(t) - cj(t)"); i=1..,m (1)
j=1

where wj; ,
bias connection weights and RBF centres respectively, v(t)

is the input vector to the RBF network composed of lagged
input, lagged output and lagged prediction error and f (-)

is a non-linear basis function. |-| denotes a distance
measure that is normally taken to be the Euclidean norm.

Wi, and c;(t) are the connection weights,

The function f(-) can be selected from a set of basis

functions such as linear, cubic, thin-plate-spline, multi-
quadratic, inverse multi-quadratic and Gaussian functions.
In the present study, the thin-plate-spline function has been
selected as the non-linear function because this function
has a good modelling capability [9]. Thin-plate-spline is
given by:

f(a) =a”log(a) )
Since neural networks are highly non-linear, even a linear
system has to be approximated using the non-linear neural
network model. However, modelling a linear system using
a non-linear model can never be better than using a linear
model. Considering this argument, in the present study a
RBF network with linear input connections is proposed.
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The proposed network allows the network inputs to be
connected directly to the output node via weighted
connections to form a linear model in paralel with the
non-linear original RBF model as shown in Fig. 1.

The new RBF network with m outputs, n inputs, n, hidden
nodes and n; linear input connections can be expressed as:

yi(t) =wio + él LvI(t) + éh wy f ("V(t) - Ci(t)”) (8)
j=1 =

wherei =1, 2, ..., m, and the | ‘s and vI's are the weights
and the input vector for the linear connections respectively.
The input vector for the linear connections may consist of
past inputs, outputs and noise lags. Since | 's appear to be
linear within the network, the | 's can be estimated using
the same algorithm as for the w's. As the additional linear
connections only introduce a linear model, no significant
computational load is added to the standard RBF network
training. Furthermore, the number of required linear

connections are normally much smaller than the number of
hidden nodes in the RBF network.

Normal RBF
Network

Vi

Fig. 1: The RBF network with linear input connections

3.0 MODELLING NON-LINEAR SYSTEMS

There are a number of studies that have been accomplished
on modelling non-linear systems using radial basis
function networks [4], [5], [6], [7], [8], [9], [10].
Modelling using RBF networks can be considered as fitting
a surface in a multi-dimensional space to represent the
training data set and using the surface to predict over the
testing data set. Therefore, RBF networks require all the
future data of the system to lie within the domain of the
fitted surface to ensure a correct mapping so that good
predictions can be achieved. This is normal for the non-
linear modelling where the model is only valid over a
certain amplitude range.

A wide class of non-linear systems can be represented by
the non-linear auto-regressive moving average with
exogenous input (NARMAX) model [11]. The NARMAX
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model can be expressed in terms of a non-linear function
expansion of lagged input, output and noise terms as
follows:

y(t) = £ (y(t- Dyt ny)u(t- 1) u(t- n,),

@
e(t- 1,--e(t- n,)) +e(t)
where
eyt eu(th ée,(t)u
y)=§ i pult)=g i gande(t)=§ i
&.ta &) QT

are the system output, input and noise vector respectively;
ny, n, andn, are the maximum lags in the output, input

and noise vector respectively; and m and r are the number
of output and input respectively.

The non-linear function, fy(-) is normaly very

complicated and rarely known a priori for practica
systems. In the present study, f,(-) will be modelled

using RBF network expressed by equation (3) where f (-)

is chosen to be the thin-plate-spline function. The network
input vector, v(t) isformed using lagged input, output and

noise that are denoted as u (t- 1) u(t- ny,),

y(t- 1)--- y(t - ny) and e(t- 1)---e(t- n,) respectively
in equation (4). Another method to include a noise model
in a RBF network isto use only linear noise connections as
in Fig. 1. This approach can reduce the complexity of the
RBF network and hence accelerate the training process.
However, this approach only allows linear noise model and
may not be sufficient if the datais highly corrupted by non-
linear noise.

Training algorithms for RBF networks normally comprise
of a procedure to position the RBF centres and a linear
least squares technique to estimate the weights. In the
present study, a new hybrid algorithm based on k-means
clustering using square root updating method and Givens
least squares agorithm with additional linear input
connections features is proposed to train RBF networks.
Givens least squares has been selected because of the
superior numerical stability and accuracy of this method
[12].

4.0 PROPOSED HYBRID ALGORITHM

Given a set of input-output data, u(t) and y(t) where
t=12--- N, the connection weights, centres and widths

may be obtained by minimising the following cost
function:

J= ©)
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where N and y(t) are the number of data used for training

and the predicted output generated by using the RBF
network in equation (3) respectively. Equation (5) can be
solved using a non-linear optimisation or gradient descent
technique. However, estimating the weights using such
algorithm will destroy the advantage of linearity in the
weights. Thus, the training algorithm is normally split
into two parts:

(i) alocation of the RBF centres, ¢;(t) and

(i) estimation of the weights, w;; .

This approach allows an independent algorithm to be
employed for each task. The centres are normally located
using an unsupervised algorithm such as k-means
clustering, fuzzy clustering and Gaussian classifier
whereas the weights are normally estimated using a class
of linear least squares algorithm. Moody and Darken [8]
used the k-means clustering method to position the RBF
centres and a least means sguares algorithm to estimate the
weights, Chen et a. [6] used a k-means clustering to
positioned the centres and a Givens least squares algorithm
to estimate the weights. In the present study, the k-means
clustering using square root updating method is used to
position the RBF centres and a Givens least sguares
algorithm with additional linear input connections features
will be used to estimate the weights. A detailed description
of the k-means clustering using sguare root updating
method can be found in Darken and Moody [13].

After the RBF centres and the non-linear functions have
been selected, the weights of the RBF network can be
estimated using a least squares type algorithm. In the
present study, exponential weighted least sguares were
employed based on the Givens transformation. The
estimation problem using weighted least squares can be
described as follows:

Define a vector z(t) at timet as:
2(t)=[z(1),-- 7, (D] (6)
where z(t) and n, are the output of the hidden nodes

vector and the number of hidden nodes of the RBF network
respectively. If linear input connections are used, equation
(6) should be modified to include linear terms as follows:

20) =[22(0) -~ 2, (1) (1) - 2y ()] )
where zI's are the output of the linear input connection
nodes. Any vector or matrix of size n, should be
incressed to n,, + n, in order to accommodate the new

structure of the network. A bias term can also be included
in the RBF network in the same way as the linear input
connections.

Define amatrix Z(t) at timet as:
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ey
&Y
Z(t) = g (: )H 8
&2
and an output vector, y(t) given by:
y(® =[y@,...y®O1" 9)
then the normal equation can be written as:
y(t) = Z(H)Q(t) (10)
where Q(t) isa coefficient vector given by:
Q) = [W®),., Wy ()] (11)

The weighted least squares algorithm estimates Q(t) by
minimising the sum of weighted squared errors, defined as:

t
e(t)s = & blt- Iy()- Z(i- DV
i=1
whereb, 0 <b <1, isan exponential forgetting factor. The
solution for the equation (10) is given by
QW =[Z'HQMZM] 'Z" (MY (13)
where Q(t) is N, ’ N, diagonal matrix defined recursively
by
Q(t) =[b(1)Q(t- 1 11, QD=1 (14)
and b(t) and N, are the forgetting factor and the number of
training data at time t respectively.

(12)

Many solutions have been suggested to solve the weighted
least squares problem in equation (13) such as recursive
modified Gram Schmidt, fast recursive least squares, fast
Kaman algorithm and Givens least squares. In the present
study, Givens least squares without square roots was used.
The application of the Givens least squares algorithm to
adaptive filtering and estimation have stimulated much
interest due to superior numerical stability and accuracy
[12].

Givens least sguares without square roots is summarised
below. Introducea n, * n, diagonal matrix D(t) as:

D(t) = diag[dl(t) o dgy oy ® S2O); ne =ny 0y +1

(15)

where n,, d's and s(t) are the number of the estimated

RBF weights, the least squares estimation errors and the
standard deviation at time t respectively. Definea n, ~ n,

dimensional upper triangular matrix R(t) as:

e 1w O . 6,0 ©

g 0 1 o) 0 4

¢ . . > . A
RY)=¢ . : U
e - 0

g : R h-m(t)ﬁ

& 0 0 0 1 g

... (16)
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where the r's are the least squares estimated coefficients
after estimating x{"(t) from x{"(t).

The Givens Least Squares algorithm solves for Q(t) in
equation (13) by performing a Givens transformation:

©'%t-)  [RE-D] U Y% [Ry)U
SN2 OW.x20 & 0 [0.08 )
where

0 R - w9 a9

and d©O is caled a maximum likelihood factor [12],
initialised to 1/b(t), where b(t) is updated using equation
(24).

After i-th steps, Givens transformation transfers

® -0 A9 dt-Dhat-D - '3 Dr, ¢ DU
D 0 @ @ PO - @0
.. (19)

into
€ 0 d’?(t) d2()() /2 (t)r, (t) U
9 0 0 (@) (A2 1)
... (20)

The explicit computation of Givens transformation can be
expressed as follows:

d; (t) = di(t- D+ D (x{D(r))*u

((t
) Y 21
b= i) "D (t) Y @
d; (t) I
d® = cgti-D Ib
and
M 1y = Dy D ve 42 1)
e (1) = X7 (0 X (i_(;)f.k(t l)y K=i+l.n, (22
i (t) = cr(t- D+bx 7 (t) b
The algorithm is initialised by setting
s.(0)=0
R(0) =1 (23)
D(0) =+

where s (0) and r are the initial standard deviation of the
estimated parameters and a large positive scalar
respectively; and | is an n, " n, identity matrix. The
forgetting factor b(t) isnormally computed according to:

b(t) = bgb(t- 1) +1- b, (24)
where b, and b(0) are typically chosen to be less but close
to oneand b, isnormally larger than b(0) .
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After Givens transformation is completed, the estimated
parameter vector, Q(t) can be caculated by back

substitution.
Wi, -1)(8) = o, -2y, (V) (25)
and
(”181) )
WO =5, O AOWO;: i=0-2.0O- 3.1 (26)
j=i+l

The RBF network using the hybrid algorithm based on k-
means clustering using square root updating method and
Givens Least Squares with additional linear input
connections feature can be used to model non-linear
systems. Initially, the RBF centres are positioned using the
k-means clustering using sguare root updating method and
then the Givens least squares algorithm is used to estimate
the weights of the RBF network, w's.

50 MODEL VALIDATION

There are several ways of testing a model such as one step
ahead predictions (OSA), model predicted output (MPO),
mean squared error (MSE), correlation tests, and chi-
square tests. In the present study, the first four tests were
used to justify the performance of the fitted models. OSA
is a common measure of predictive accuracy of a model
that has been considered by many researchers. OSA can be

expressed as:
0 = f,(ut- 2, - ut-n) oit- 3, - oft-ny)
) R . . (27
d-3 4o
and the residual or prediction error is defined as
gt.a)=y(0)- (1 (28)

where f,(-) isanon-linear function, in this case the RBF
network.

Another test that often gives a better measurement of the
fitted model predictive capability is the model predicted
output. Generally model predicted output can be expressed
as.

9a(t) = £, (u(t - 1), u(t- ny ), 9a(t- 1)""!9d(t' ny)

0, - o)
and the deterministic error or deterministic residual is
éd(t) = Y(t) - 9d(t)

'(29)

(30)

MSE is an iterative method of model validation where the
model is tested by calculating the mean squared errors after
each training step. MSE test will indicate how fast a
prediction error or residual converges with the number of
training data. The MSE at the t-th training step, is given
by
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L& o

Ewmse (th(t)) = n_a (Y(') - Y(va(t)))z (31)
d i=1

where Eyge (t,Q(t)) and §(i,Q(t)) are the MSE and OSA

for a given set of estimated parameters Q(t) efter t

training steps respectively, and ng is the number of data
that were used to calculate the M SE.

An dternative method of model validation is to use
correlation tests to determine if there is any predictive
information in the residual after model fitting [11]. The
residual will be unpredictable from all linear and non-
linear combinations of past inputs and outputs if the
following hold [11]:

Felt) =E[e(t-t)e(t)] =d(t) foralt U
Foe(t) =Hu(t-t)e(t)] =0 forallt |
F o (1) = Het)(gt-t)u(t- 1- t))] =0 fort? of
Fot)= E{(UZ(t-t)- Uz(t))e(t)] =0 foralt]
LE E{(UZ(t-t)- aZ(t))eZ(t)] =0 forallt |

where T*(t) and E[-] are the mean value of u®(t) and
the expectation respectively. In practice, if the correlation
tests lie within the 95% confidence limits, +196/+/N ,

then the model is regarded as adequate, where N is the
number of data used to train the network.

(32)

6.0 APPLICATION EXAMPLES

The proposed RBF network trained using the hybrid
algorithm was used to model two systems. In all the
examples, the centres were initialised to the first few
samples of the input-output data. During the calculation of
the MSE, the noise model was excluded from the model
since the noise model will normally cause the MSE to
become unstable in the early stage of training. In all
examples, all the 1000 data were used to calculate the MSE
and the designing parameters were taken as
r =1000.0, b, = 0.99, and b(0) = 0.95 .

Example 1

The first data set, S1 was taken from a heat exchanger
system and consists of 1000 samples. A detailed
description of the process can be found in Billings and
Fadhil [14]. The first 500 data were used to identify the
system and the remaining 500 data were used to test the
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fitted RBF network model. The network has been trained
using the following specifications:

VO=[t-9 ut-2 i1 yt- 4] win abis i
MO ut-3 -2 -9 yt-4 dt-9 -4 o5 =D

Notice that vI(t) denotes the linear input connections vector
and the e’s represent the linear noise terms. OSA and
MPO generated by the network model over both the
training and testing data sets are shown in Fig. 2 and 3
respectively. The plots show that the model predicts very
well over both the training and testing data sets.
Correlation tests shown in Fig. 4 are quite reasonable
where F , ,(t) and F , (t) plotsare marginaly outside

the 95% confidence limits. The evolution of MSE obtained
from the network mode! is shown in Fig. 5. As the model
predicts very well and has reasonable correlation tests, the
model was considered to be sufficient to represent the
identified system.

Actual Output
1.12E+1 F Predicted Cutput

T
]
(=]

4.Z1E+0
o}

Number of data 1000

Z.0BE+0

Residual

-1.35E+0
0}

Number of data 1000

Fig. 2: OSA superimposed on actual output for example 1

Actual Cutput
1.13E+1 v T Predicted Cutput

MPD

4.Z1E+0
o}

Number of data 1000

1.87E+0

Residual

-1.44E+0
0}

Number of data 1000

Fig. 3: MPO superimposed on actual output for example 1
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Lag 20

Fig. 4: Correlation tests for example 1

1.96E+1
=
g
-1.46E+1
o Number of data 500
Fig. 5: MSE for example 1
Example 2

S2 isatension leg platform, the first 600 data were used to
train the network and the rest were used to test the fitted

network model.
following structure

v(t) =[u(t- 1) u(t

The network was trained using the

- 3) u(t- 4) u(t- 6) u(t-7)

u(t- 8) u(t- 11) y(t- 1) y(t- 3) y(t- 4)]
vi(t) = [y(t— 1) y(t- 2) e(t- 1) et- 2) e(t- 3) et- 5)]

with bias input; n, =40
Actgal Output
169414 Predicted Cutput
.~
&3
=
-1.07E+1
o} Number of data 1000
2.62E+D
=
=
=
]
1]
=
-3.03E+0
o Number of data 1000

Fig. 6: OSA superimposed on actual output for example 2
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OSA and MPO generated by the fitted model are shown in
Fig. 6 and 7 respectively. The plots show that the model
predicts very well over both the training and testing data
sets.  All the correlation tests, shown in Fig. 8, are well
inside the 95% confidence limits except for F ., (t)

which is marginally outside the confidence limits at lag 7.

The evolution of the MSE plot is shown in Fig. 9

. Since

the model predicts very well and has good correlation tests,
the model can be considered as an adequate representation

of theidentified system.

1.64E+1
=
=
b=

-1.07E+1

&ctual Output
Predicted

utput

Number of data

1000

5.56E+0

Residual

-5.03E+0
o} Number of data

1000

Fig. 7: MPO superimposed on actual output for example 2

Fig. 8: Correlation tests for example 2

1.81E+1

MSE (dB)

-3.14E+0 T T ?
1] Number of data

600

Fig. 9: MSE for example 2
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7.0 CONCLUSIONS

A RBF network with additional linear input connections
and a hybrid training algorithm based on square roots k-
means clustering and Givens least squares (with additional
linear input connections feature) has been introduced.
Two practical data sets were used to test the efficiency of
the modified RBF networks and the hybrid training
algorithm. The examples showed that the fitted RBF
network models yield good predictions and correlation
tests. Hence, the proposed modified RBF networks
together with the hybrid training algorithm is considered
as an adequate representation of the identified system.
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