
Malaysian Journal of Computer Science, Vol. 11 No. 1, June 1998, pp. 51-57

51

IMPLEMENTATION APPROACH OF A DYNAMIC PROTECTION SCHEME WITH BINARY KEY-PAIR

Md. Rafiqul Islam, Harihodin Selamat and Mohd. Noor Md. Sap
Faculty of Computer Science and Information System

Universiti Teknologi Malaysia
Jalan Semarak

54100 Kuala Lumpur
Malaysia

Tel: 6-03-2904957
Fax: 6-03-2930933

email: mmcc0004@utmkl.utm.my

ABSTRACT

Describes the implementation approach of a dynamic
protection scheme with binary key-pair. The algorithm for
checking validation of access request is designed with
respect to the implementation approach. Discusses the
efficiency of the scheme regarding various searching
problems. Brief reviews of binary key method and the
binary key-pair method are given. Other implementation
methods of access control system that are achieved by
employing an access control matrix, have also been
reviewed.

Keywords: Access right, dynamic access, key-pair

1.0 INTRODUCTION

Protection is an important issue in a computer system that
safeguards the access of multiprogramming environment so
that one can use his files, programs, or processes safely and
freely share resources with others. The purpose of access
control is to limit the operations that a legitimate user of a
computer system can perform. Access control is mainly
used to prevent information from being destroyed, altered,
copied without permission or any other unauthorized usage.
In 1972 Graham and Denning [1] developed the abstract
protection model for computer systems. The model is based
upon protection system defined by a triple (S, O, A), where:
S is a set of subjects (or accessors), the active entities of the
model.
O is a set of objects (or resources), the protected entities of
the models.
A is an access matrix, with rows and columns corresponding
to subjects and objects respectively.

In this paper we describe the implementation approach of a
dynamic protection scheme with binary key-pair [2] which is
proposed by Islam et al. A discussion of various searching
problems is also given. For this purpose in next section we
shall describe access control matrix and its implementations
using various methods. The discussion of access control
matrix and its implementation is given in

Section 2. The binary key method and the binary key-pair
method are reviewed in Section 3 and 4 respectively.
Section 5 is devoted to the description of the desired
implementation approach. A discussion is given in Section
6. Finally, conclusions appear in Section 7.

2.0 ACCESS MATRIX AND ITS IMPLEMENT-ATION

The protection model of computer system can be
represented by an access control matrix [1, 3]. The rows of
the matrix represent subjects (users, processes), and the
columns of the matrix represent objects (file, disks, or
storage segments). Each entry, aij of the access matrix,
represents the access right of the ith subject to the jth
object. Here we assume that all the access rights are
expressed by numerals. Linear hierarchy of access
privileges may be applied here. That means, the right to
read implies the right to execute, the right to write implies
the right to read and execute and so on. In the following
example of Fig. 1, a simple access control matrix is
introduced. Here the user S1 can read object O1 and write in
object O2 and S2 can write in O4.

Objects
Subjects

O1 O2 O3 O4

S1 2 3 5 0
S2 4 0 1 3
S3 2 1 0 0

0- no access, 1- execute, 2- read, 3- write, 4- delete, 5- own

Fig. 1: Access Control Matrix

In multiuser system the access matrix will be enormous in
size, and most of its entries are likely to be empty [3, 9, 10,
12]. Subsequently, any direct implementation of access
matrix is likely to be inefficient. In practice, several methods
are used to implement access matrix such as: access control
list (ACL) method, capability-based method and key-lock
matching method [3, 10, 12-13]. We briefly discuss these
methods.

Islam, Selamat and Md. Sap

52

1) Access control list (ACL) method: This method
corresponds to the column-wise decomposition of the
access matrix. Each list is associated with an ACL of pairs
(subject, access mode) for all subjects that are permitted to
access the object. When a subject requests access to an
object, the system searches the access control list of the
object to find out whether an entry exists for that subject. If
the entry exists, then the system checks whether the
required access is allowed, if so, the request is executed,
otherwise an error message is raised, and the request is
denied. This method is efficient in review of access
(examine the access control list of the object) and it is easy
to revoke access right (remove the corresponding entry of
the subject from the ACL). The inefficiency of this method
is the time consumed in searching for all objects that can be
accessed by a particular subject (requires examination of
each and every ACL list).

2) Capability-based method: This method corresponds to
the row-wise decomposition of the access matrix. Each
subject is associated with a list (called the capability list) of
pairs (object, access mode) for all objects that it is permitted
to access. In this method, it is easy to review all access that
a subject is allowed to perform (by simply examining the
capability list of the subject). However, determination of all
subjects who can access a particular object is difficult
(requires examination of each and every subject’s capability
list). This method is also inefficient in the revocation of
access rights.

3) Key-lock Matching Method: The key-lock matching
method is a compromise between ACL method and
capability-based method. Each list consists of a pair of
objects and keys (O, K). Each object associates with a list
of pairs (L, R), the locks and access rights. While a subject
sends request to access an object with an access mode A,
the access control system searches for the specified
capability list (O, K) and the access-list (L, R) for the object.
The access is allowed if L matches K and A matches R. This
method suffers from the difficulty encountered in searching
both a list of keys and a list of locks.

In 1984 Wu and Hwang [3] proposed an alternative scheme
storing just one key for each subject and one lock for each
file. To figure out access rights aij’s of users to objects, a
function f of key Ki and lock Lj is used. Mathematically,

aij = f (Ki, Lj) (1)

Several relevant methods appeared in the literature after Wu
and Hwang’s work [4-9]. Hwang et al. in 1992 proposed a
protection method using prime factorization [9]. In 1994
Chang et al. [11] introduced a method with binary keys.
Islam et al. [2] proposed a dynamic access control scheme
with binary key-pair. Throughout the paper we shall call
Chang et al.’s method with binary keys as binary key
method and Islam et al.’s dynamic protection scheme with

binary key-pair as binary key-pair method. A description
of the implementation approach of the binary key-pair
method is given. The algorithm for checking validation of
access request is designed with respect to the
implementation approach.

3.0 THE BINARY KEY METHOD

This method is proposed by Chang et al. [11] for the
implementation of access control matrix in distributed
systems. In this scheme, each subject is assigned a binary
key, which is derived from the access rights with respect to
the objects. The binary key is possessed by the subject,
and can be used to derive the access right to the objects.
Here each aij in access control matrix is rewritten in its
binary form bij as (

ij ij ij
cb b b1 2

. . .) where c =  1 + log w 

and w is the maximal value of aij’s. The key vectors for each
subject are defined as follows:

i i i inK b b b1 1

1
2
1 1= (. . .) ,

i i i inK b b b2 1
2

2
2 2= (. . .) ,

 .
 . (2)
 .

ic i
c

i
c

in
cK b b b= (. .)

1 2
.

If
ir
jK is the jth bit in the binary key Kir, then

ij i
j

i
j

ic
ja K K K= (. . .)1 2 (3)

By considering the access control matrix in Fig. 1, a binary
access control matrix can be found as shown in Fig. 2.

Objects
Subjects

O1 O2 O3 O4

 S1 010 011 101 000
 S2 100 000 001 011
 S3 010 001 000 000

Fig. 2: The binary access control matrix for Fig. 1

According to equation (2) and from Fig. 2, the key vectors
for subjects S1, S2 and S3 are assigned as:

Subject S1: K11 = 0010,
K12 = 1100,
K13 = 0110,

Subject S2: K21 = 1000,
K22 = 0001,
K23 = 0011,

Subject S3: K31 = 0000,
K32 = 1000,
K33 = 0100,

Implementation Approach of a Dynamic Protection Scheme with Binary Key-Pair

53

In this method there are c key vectors for each subject. It
has been easily noticed that the scheme needs to
reconstruct the whole system in the case of file deletion and
file insertion. On the other hand since the access control
matrix usually sparse [3, 9, 12], this method has wastage of
storage for zero entries. In order to overcome the above
drawbacks, Islam et al. [2] proposed the binary key-pair
method described below.

4.0 THE BINARY KEY-PAIR METHOD

Here we describe the binary key-pair method with respect to
binary access control matrix as in Fig. 2. In this method
each subject is assigned two keys. The first key is a logical
one and the second key for opening access rights. These
keys are derived from access rights with respect to the
objects. The keys are possessed by the subject and can be
used to derive access right to the objects. From the first key
we can know whether a subject has an access to a specific
object. Using the bits of logical key we can find the access
rights for users to the objects. Each subject Si is assigned
the following two vectors:

iL iL iL iL

sK K K K= 1 2
. . . (4)

 for i = 1, 2, . . . , n and s ≤ n,

where xth bit of KiL, K
x

iL
 = 0 or 1; 0 for zero bit- string and 1

for non-zero bit-string.

If the bit-string of an access right bij contains all zero bits,
then bij is a zero bit-string, otherwise non-zero bit-string.
The key for access right is defined as follows:

iR iR iR iR

c
iR

c c
iR

c

iR
rc c

iR
rc

K K K K K K

K K

= − +

− +

1 2 2 1 2

1

... ...

... ...
(5)

where, r is the number of 1s in logical key vector KiL, and c
is defined as in section 3. That means KiR is built from non-
zero bij’s. For instance, to check any access right aij, i.e., the
access right of user Si to the file Oj at first we examine logical
key vector KiL and find whether the user has access to the
file. If the jth bit of KiL is 1, then there is an access of the
subject Si to Oj, otherwise i.e, if

iL
jK bit is zero then the

subject Si has no access to the object Oj. Let us see how to
initialize key vectors. From binary access control matrix in
Fig. 2, we can define the following key vectors. Since b11 =
010 (non-zero bit-string), 1

1 1LK = and b14 = 000 (zero bit-

string), 1
4 0LK = and so on.

K1L = 1110, K1R = 010011101,
K2L = 1011, K2R = 100001011,
K3L = 1100, K3R = 010001.

5.0 IMPLEMENTATION APPROACH OF THE
BINARY KEY-PAIR METHOD

Suppose subjects are stored in a list and each subject is
associated with a subject number, SN. So, if there are m
subjects, then SN ranges from 1 to m. Similarly objects are
stored in a list and each object is given a object number, ON
that ranges from 1 to n (for n objects). Now, with respect to
these two lists we shall have to create another list that will
hold logical keys and open keys for access rights for all
subjects. The keys are stored in a list using the following
structure:

struct keyvec {
int arraykl[k];
int arraykr[s];
int noofslotinkr;

}Keyvec;

The structure Keyvec has two fields of arrays arraykl and
arraykr. The field noofslotinkr is required for tracing the
number of required slots in the array arraykr. Since the
length of key vectors Kir for all user is not fixed, so we need
to trace the number of slots in the array arraykr. We
discuss this approach considering Borland C++
implementation. The space for the arrays is dynamically
allocated and we write only the used slots of the arrays in
the list of key vectors. For each user there is a particular
key vector that means specific used structure. As the
lengths of key vectors KiL’s are same for all users, so the
number of used slots of arraykl will be same for each of the
users. Hence, the number of required slots of arraykl is
stored using variable noofslotinkl at the beginning of the
list and no need to include it in the structure. Binary digits
are stored in arraykl using binary shift operator and each
slot of the array contains 15 binary digits (without sign bit
of integer data type). It can be easily done depending on
the decision whether a subject has any access to a object or
not. Fifteen binary digits in each slot give us an advantage
to group the bits in three (one octal digit) that may be used
for checking the number stored in the slot.

Now we discuss how access rights are stored in arraykr. If
we see carefully, then it can be found that the key vectors
are built from the series of digits (numbers for access rights)
and these digits may range from 1 to amax, where amax is the
maximum of access rights. If amax is less than or equal to 7,
then we can store the access rights using base 8 integer
(octal number). If it is greater than 7, then hexadecimal
number can be used and the value of amax ranges up to 15.
Suppose amax <= 7 and octal number is used. Thus each
slot of arraykr contains 5 digits (3 bits for each octal digit)
octal number. Octal digits can be stored by shifting 3 bits at
a time. If there are 30 bits (10 octal digits) in KiR, then we
need two slots of arraykr to store the bits. From the above
discussion it can be put down that the number of slots in
arraykl, k = n / 15. But the total number of slots in
arraykr does not depend on n (total number of objects) but

Islam, Selamat and Md. Sap

54

on the number of objects (the number of 1s in KiL) that can
be accessed by a user. Suppose a user has access to p
objects, then s = p / 5.

Here we discuss how we can check an access right of a
subject to an object. A request to access an object is sent
in the form of a triple (S, O, R), where, S- subject, O- object
and R- request (access mode). Here, subject is identified by
a subject identification number, Subid, an object is
identified by object name, Objname and the request, R is
sent in numerical form such as 1, 2, 3 etc. (as defined
above). Thus a triple (Sub10, Obj20, 3) means that subject
Sub10 wants a write access to the object Obj20. To
validate Subid and Objname we have to search the lists of
Subids and Objnames (it has been mentioned at the
beginning of this section that subjects and objects are
stored in lists). If the Subid and Objname are valid, then we
check whether the subject has an access to the object or not
(it can be done by checking bits of the respective slots of
arraykl). We get subject number, SN and object number,
ON from previous searching results and with SN and ON we
can find respective slot of arraykl and arraykr. If the
subject has an access to the object, then we find the access
right from the respective slot of arraykr (key vector) of the
subject. When the requesting access mode is equal to or
less than the access right from arraykr, then the subject is
allowed to access the object, otherwise the access is denied.
With respect to the above discussion the algorithm for
validation of access request is encoded in
access_request_validation algorithm of Appendix.

6.0 DISCUSSIONS

In binary key-pair method to search for all the objects that
can be accessed by a particular subject, we have to count
number of 1s in KiL (arraykl) of the subject and by taking
the position of 1s of KiL,, we can find out the objects from
the object list. That means we can easily find out the
objects that can be accessed by a particular subject.

However, in ACL method this kind of search is difficult,
because it requires checking of each and every ACL. On
the other hand all the subjects who can access particular
object can be determined by finding out the object number j
from object list and by checking jth bit of KiL of the subjects.
It is efficient because searching for a specific bit in KiL is
fast. In capability-based list, searching for all subjects who
can access a particular object is inefficient. Looking for key-
pair is also efficient. We have implemented the algorithm 1
that is used for validation of access request using Borland
C++ programming language with some test data. The
experimental results of checking time of access right for a
subject list with 1000 users (subjects) and a object list with
2000 files (objects) is depicted in Table 1 .

From the table, it is noticed that checking time for a user is
approximately same for all files. However, the searching
time increases with increment of user number. The average
searching time, tack = 0.053 sec for i = 150, tack = 0.203 sec
for i = 550 and tack = 0.35 sec for i = 980. The above
checking times are taken whenever the subject has an
access to the object. The binary key-pair method is very
fast in verifying access right if the subject has no access (0)
to the object. To revoke access right in binary key-pair
method we have to reset respective bit of KiL and update KiR

of the subject using shift operations.

7.0 CONCLUSIONS

We have described here the implementation approach of a
dynamic protection scheme with binary key-pair. We also
discussed various searching problems and compared the
efficiency of the scheme with other implementation
approaches of the access control matrix. The algorithm for
checking validation of access request is designed and some
data (searching time) are taken by implementing the
algorithm using Borland C++ programming language. Short
descriptions of the binary key method and the binary key-
pair method are also given.

Table 1: Table of checking time of access right
(Total number of users, m = 1000 and total number of files, n = 2000)

Subject Number, i Object Number, j Position of j with respect to
object list

Checking time, tck

in second
150 52 beginning 0.05
150 985 middle 0.06
150 1988 end 0.05
505 125 beginning 0.18
550 1025 middle 0.22
550 1898 end 0.21
980 122 beginning 0.33
980 1134 middle 0.38
980 1987 end 0.34

Implementation Approach of a Dynamic Protection Scheme with Binary Key-Pair

55

ACKNOWLEDGEMENTS

The authors wish to thank anonymous reviewers for their
suggestions to improve the presentation of this paper.

REFERENCES

[1] G. S. Graham and P. J. Denning, “Protection- Principle
and Practice”, Proc. Spring Joint Computer Conf.,
Vol. 40, AFIPS Press, Montvale, NJ, 1972, pp. 417-
429.

[2] M. R. Islam, H. Selamat and M. N. M. Sap, “A
dynamic access control with binary key-pair”,
Malaysian Journal of Computer Science, Vol. 10,
June 1997, pp. 36-41.

[3] M. L. Wu and T. Y. Hwang, “Access control with
single-key-lock”, IEEE Transaction on Software
Engg., Vol. SE-10, No. 2, 1984, pp. 185-191.

[4] C. C. Chang, “On the design of a key-lock-pair
mechanism in information protection systems”, BIT,
Vol. 26, 1986, pp. 410-417.

[5] C. C. Chang, “An information protection scheme
based upon number theory”, Computer Journal, Vol.
30, No. 3, 1987, pp. 249-253.

[6] C. K. Chang and T. M. Jiang, “A binary single-key-
lock system for access control”, IEEE Transaction
on Computers, Vol. 38, No. 10, 1989, pp. 1462-1466.

[7] C. S. Laih, L. Harn and J. Y. Lee, “On the design of a
single-key-lock mechanism based on Newton’s
interpolating polynomial”, IEEE Transaction on
Software Engineering, Vol. 15, No. 9, 1989, pp. 1135-
1137.

[8] J. K. Jan, C. C. Chang and S. J. Wang, “A dynamic
key-lock-pair access control scheme”, Computers &
Security, Vol. 10, 1991, pp. 129-139.

[9] J. J. Hwang, B. M. Shao and P.C. Wang, “A new
access control method using prime factorization”,
Computer Journal, Vol. 35, No. 1, 1992, pp. 16-20.

[10] T. Wu, “A refined key-lock access control system”,
Proc. IEEE 1993 national aerospace and
electronics conference, May 1993, pp. 583-587.

[11] C. C. Chang, J. J. Shen and T. C. Wu, “Access
control with binary keys”, Computers & Security,
Vol. 13, 1994, pp. 681-686.

[12] R. S. Sandhu and P. Samarati, “Access control:
principle and practice”, IEEE communications
magazine, Sept. 1994, pp. 40-48.

[13] L. Gong, http://ei.cs.vt.edu/~cs5204/protection.
basic.htm/, 1996.

[14] D. E. R. Denning, Cryptography and data security;
Addison-Wesley, Reading, MA, 1983.

APPENDIX

Access_ request_ validation algorithm.
// Suppose there are m subjects and n objects. Subids are
stored in a list (file) named sublst, Objnames are stored in a
list (file) named objlst and the key vectors are stored in a list
(file) named keylst. To search respective mode through
arraykl and arraykr we use concept of binary search i.e., If
FN (file number) is less than or equal to n /2, then search is
made starting from beginning point of the arraykr,
otherwise from the end of the array. This technique is
efficient, because there are many slots of arraykr for large
n. Suppose, we wish to validate the access to object O and
its number is j in objlst. To find out the respective access
mode from arraykr we have to count number of 1s up to j
bit of arraykl. If j < n / 2, then the number of 1s in arraykl
is counted starting from first slot up to j bit as well as search
is made from the beginning of arraykr. Otherwise, counting
of number of 1s in arraykl and search for access right is
made from the last slot of arraykl and arraykr respectively.
Here % is remainder operator, >> is bit shift operator and :=
is assignment operator.//

1. Input: triple (S, O, R), lists sublst, objlst and keylst.
2. Output : permission or denial of access.

Step 1: Enter the triple (S, O, R);

Step 2: Take S from the triple and f1:= 0;
// This is the step for checking validation of S //
 While f1≠ 1 or not end of file sublst do
 Begin
 Read data from file sublst and take Subid;
 If Subid = S then f1 := 1;
 sno := SN;
 End;
 If f1 = 0 then S is not a valid id and exit;

Step 3: If f1 = 1 then
 // If S is valid then check validation of O //
 Begin
 f2 := 0;
 While f2 ≠ 1 or not end of file objlst do
 Begin
 Read data from file objlst and take Objname;
 If Objname = O then f2 := 1;

Islam, Selamat and Md. Sap

56

 fno := ON;
 End;
 End;
 If f2 = 0 then O is not valid object name and exit;

step 4: If f2 =1 then
 // If S and O are valid then Start finding respect
 Begin
 // access mode that is stored in arraykr //
 i:=0;
 While i < sno do
 Begin
 Read data from file keylst
/ /read respective keyvector of the subject / / ;
 i := i +1;
 End;
 End;
 j := (fno -1)/15;
// Effort to find out respective bit from arraykl. //
 lkey :=Keyvec.arraykl[j] ;
 If n < (j + 1) × 15
 Begin
 ndig :=0;
 If j = 0 then ndig :=n;
 Else ndig := n - j ∗ 15;
 End;
 Else ndig :=15;
 If j =0 then shd :=ndig -fno;
 Else
 Begin
 shd :=sno - 15 ∗ j;
 shd := ndig -shd;
 End;
 lmod :=(lkey>>shd) % 2 ;
If lmod =0 then the subject has no access to the object and
exit;

Step 5: Else
 Begin
 // if lmod =1 //
 mid :=n / 2 ;
 nbit:=0;
 If fno <= mid then
 //Concept of binary search is used. //
 Begin
 for i :=0 to j do
 Begin
 temp := Keyvec.arraykl[i] ;
 While temp ≠ 0 do
 Begin
 lbit := temp % 2 ;
 If lbit = 1 then nbit := nbit + 1 ;
 temp := temp / 2 ;
 End;
 End;
 temp : = lkey >> shd;
 While temp ≠ 0 do

 Begin
 lbit := temp %2;
 If lbit = 1 then nbit := nbit + 1 ;
 temp = temp /2;
 End;
 i := 0;
 i := (nbit -1) / 5 ;
 rkey := Keyvec.arraykr[i];
 temp := rkey;
 ndig := 0 ;
 shd := 0;
 While temp ≠ 0 do
 Begin
 temp := temp / 8 ;
 ndig := ndig + 1 ;
 End;
 shd := (i + 1) ∗ 5 - nbit;
 End
 // end of loop if sno <= mid //
 Else
 // If sno > mid //
 Begin
 i :=0;
 temp := lkey;
 While i <= shd do
 Begin
 lbit := temp % 2 ;
 If lbit = 1 then nbit := nbit + 1 ;
 temp := temp / 2 ;
 End;
 for i := j + 1 to nofslotinkl - 1 do
 Begin
 temp := Keyvec.arraykl[i];
 While temp ≠ 0 do
 Begin
 lbit := tem % 2 ;
 If lbit = 1 then nbit := nbit + 1 ;
 temp := temp / 2 ;
 End;
 End; // end of for loop //
 i := Keyvec.noofslotinkr - 1 ;
 temp := Keyvec.arraykr[i] ;
 ndig :=0;
 While temp ≠ 0 do
 Begin
 temp := temp / 8 ;
 ndig := ndig + 1 ;
 End;
 If nbit <= ndig
 Begin
 shd := nbit - 1 ;
 rkey :=Keyvec.arraykt[i];
 End;
 Else // if nbit > ndig //
 Begin
 i := i - 1;
 nbit := nbit - ndig;

Implementation Approach of a Dynamic Protection Scheme with Binary Key-Pair

57

 ns := 0;
 ns := (nbit -1) / 5 ;
 i := i - ns;
 shd := nbit -ns ∗5;
 shd := shd -1;
 rkey := Keyvec.arraykr [i] ;
 End;
 End;
 // end of loop else i.e., if sno > mid //
 mod := (rkey >> shd ∗ 3) % 8 ;
 End;
 // end of loop else i.e., if lmod = 1 //

Step 6: If R <= mod tehn access to object O is
 allowed;
 Else access is denied;

BIOGRAPHY

Md. Rafiqul Islam obtained his Master of Science in
Engineering (Computers) from Azerbaijan Polytechnic
Institute in 1987. He is an Assistant Professor of Computer
Science and Engineering Discipline of Khulna University,
Bangladesh. Currently, he is on study leave and doing Ph.D
at Faculty of Computer Science and Information Systems, in
Universiti Teknologi Malaysia. His research areas include
design and analysis of algorithms, Database security and
Cryptography. He has published a number of papers related
to these areas. He is an associate member of Bangladesh
Computer Society.

Harihodin Selamat holds an MSc from Cranfield University,
UK and a Ph.D from the University of Bradford, UK both in
computer science. Currently he is an Associate Professor at
the Faculty of Computer Science and Information Systems
in Universiti Teknologi Malaysia. His research areas
include Database security, Database design and Software
engineering.

Mohd Noor Md. Sap is an Associate Professor at the Faculty
of Computer Science and Information Systems in Universiti
Teknologi Malaysia. a B.Sc. (Hons) from the National
University of Malaysia, an MSc from Cranfield University,
UK, and a Ph.D from the University of Strathclyde, UK. He
is currently carrying out research in Database security,
Case-based reasoning and Information retrieval.

