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ABSTRACT 

Metabolic syndrome (MetS), known to substantially lower the quality of life is associated with the increased incidence 

of non-communicable diseases (NCDs) such as type II diabetes mellitus, cardiovascular diseases and cancer. 

Evidence suggests that MetS accounts for the highest global mortality rate. For the early and accurate diagnosis of 

MetS, various statistical and ML techniques have been developed to support its clinical diagnosis. We performed a 

systematic review to investigate the various statistical and machine learning techniques (ML) that have been used to 

support the clinical diagnoses of MetS from the earliest studies to December 2020. Published literature relating to 

statistical and ML techniques for the diagnosis of MetS were identified by searching five major scientific databases: 

PubMed, Science Direct, IEEE Xplore, ACM digital library, and SpringerLink. Fifty-seven primary studies that met 

the inclusion criteria were obtained after screening titles, abstracts and full text. Three main types of techniques were 

identified: statistical (n=10), ML (n=44), and risk quantification (n=3). Standardized Z-score is the only statistical 

technique identified while the ML techniques include principal component analysis, confirmatory factory analysis, 

artificial neural networks, multiple logistics regression, decision trees, support vector machines, random forests, and 

Bayesian networks. The areal similarity degree risk quantification, framingham risk score and simScore were the 

three risk quantification techniques identified. Evidence suggests that evaluated ML techniques, with accuracy 

ranging from 75.5% to 98.9%, can more accurately diagnose MetS than both statistical and risk quantification 

techniques. The standardised Z-score is the most frequent statistical technique identified. However, highlighted proof 

based on performance measures indicate that the decision tree and artificial neural network ML techniques have the 

highest predictive performance for the prediction of MetS. Evidence suggests that more accurate diagnosis of MetS 

is required to evaluate the predictive performance of the statistical and ML techniques.  

Keywords: Metabolic Syndrome, Machine Learning, Risk Quantification, Statistical Techniques  

1.0 INTRODUCTION  

Rapid urbanisation, excess energy intake, increased obesity and prevalent sedentary lifestyle habits are majory 

responsible for the steady increase of metabolic syndrome (MetS) and its associated diseases [1]. MetS is a cluster of 

metabolic abnormalities mainly hyperinsulinemia (insulin resistance), central obesity (raised waist circumference), 

dyslipidemia (increase in triglyceride and decrease in high-density lipoprotein cholesterol), hypertension (increase in 

blood pressure), and  microalbuminuria [2, 3]. The definition of MetS has been iteratively changed and improved by 

numerous health expert groups to cater for various population needs and disease trends globally.  These health expert 

groups include The European Group for the Study of Insulin Resistance (EGIR) [4], the National Cholesterol 

Education Program —Third Adult Treatment Panel (NCEP ATP III) [5], the American Association of Clinical 

Endocrinologists, American Heart Association — National Heart, Lung, and Blood Institute (AHA/NHLBI) [6], the 

International Diabetes Federation (IDF) [3] and the Joint Interim Statement (JIS) [7]. Table 1 presents the commonly 
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accepted and clinically adopted definitions of MetS based on the five (5) MetS risk factors (MetSR-F) common to all 

the clinical definitions: Fasting Plasma Glucose (FPG), Waist Circumference (WC), Triglycerides (TG), High-Density 

Lipoprotein Cholesterol (HDL-C), and Blood Pressure (BP). The most up-to-date version is the dichotomous 

definition in 2009 by the JIS [7] which states existence of  MetS provided that at least three out of the following five 

risk factor abnormalities are present: 

1. Waist circumference (WC) ≥ 102 cm for men and WC ≥ 88 cm for women;  

2. Increased triglycerides (TG) ≥ 150 mg/dl or being under treatment;  

3. Low, high-density lipoprotein cholesterol (HDL-C) < 40 mg/dl for men and HDL-C < 50 mg/dl for women 

or being under treatment;  

4. Elevated blood pressure systolic blood pressure (SBP) ≥ 130 mmHg, or diastolic blood pressure (DBP) ≥ 85 

mmHg or receiving anti-hypertensive medications;  

5. Increased fasting plasma glucose (FPG) ≥ 100 mg/dl or treatment for hyperglycemia.  

Table 1: Clinical diagnosis of metabolic syndrome 

 WHO (1999) EGIR (1999) NCEP ATP III (2001) AHA/NHLBI 

(2003) 
IDF (2006) JIS (2009) 

Diagnostic 

Criteria 

Glucose intolerance, 

IGT or diabetes, 

and/or insulin 

resistance together 

with two or more of 

the following  

Insulin resistance 

together with two of 

the following  

Three or more of the 

following five risk 

factors 

Three or more 

of the 

following risk 

factors  

Central 

Obesity and 

two or more of 

the following 

four risk 

factors  

Three or 

more the 

following 

risk factors  

M
et

a
b

o
li

c 
S

y
n

d
ro

m
e 

R
is

k
 F

a
ct

o
rs

 

FPG  ≥ 110 mg/dl (6.01 

mmol) but non-

diabetic  

≥ 100 mg/dl (5.6 

mmol)  

≥ 100 mg/dl 

(5.6 mmol) or 

treatment  

≥ 100 mg/dl 

(5.6 mmol) or 

treatment 

≥ 100 

mg/dl (5.6 

mmol) or 

treatment 
BP ≥ 140/90 mm Hg  ≥ 140/90 mm Hg or 

treatment  
≥130/≥85mmHg ≥ 150 

mg/dL (1.7  
>130/85 mm 

Hg 
Systolic:≥ 130 

mm Hg or 

Diastolic ≥ 85 

mm Hg  

Systolic:≥ 

130 mm 

Hg and/or 

Diastolic ≥ 

85 mm Hg  
TG Raised plasma 

triglycerides: ≥ 150 

mg/dL (1.7 mmol/L) 

and/or  

≥ 178 mg/dL (2.0 

mmol/L) or 

treatment  

≥ 150 mg/dL (1.7 

mmol/L) 
≥ 150 mg/dL 

(1.7 mmol/L) 

or treatment  

≥ 150 mg/dL 

(1.7 mmol/L) 

or treatment  

≥ 

150mg/dL 

(1.7 

mmol/L)  
HDL-C < 35 mg/dL (0.9 

mmol/L) in males: < 

39 mg/dL (1.0 

mmol/L) in females  

< 39 mg/dL (1.0 

mmol/L) or 

treatment  

< 40 mg/dL (1.03 

mmol/L) in males:  

< 50 mg/dL (1.29 

mmol/L) in females  

< 40 mg/dL 

(1.03mmol/L) 

in males:  

< 50 mg/dL 

(1.29 mmol/L) 

in females or 

treatment  

< 40 mg/dL 

(1.03mmol/L) 

in males:  

< 50 mg/dL 

(1.29 mmol/L) 

in females or 

treatment  

< 40 

mg/dL (1.0 

mmol/L) in 

males: < 50 

mg/dL (1.3 

mmol/L) in 

females  

Obesity WHR > 0.90 in 

Males; WHR > 0.8 

in females and/or 

BMI > 30 kg/m2  

WC > 94 cm in 

Males;WC > 80 cm 

in females
 

WC > 102 cm in 

Males;WC > 88cm in 

females 

WC > 102 cm 

in Males;WC > 

88cm in 

females
 

Population- 

country-

specific 

definitions  

Ethnic- and 

country-

specific 

definitions  

Micro 

Albumin

uria 

Urinary albumin 

excretion rate ≥ 20 

μg/min or 

albumin/creatinine 

ratio ≥ 30 mg/g 

     

IGT: impaired glucose tolerance; FPG: fasting plasma glucose; BP: blood pressure; TG: triglycerides; HDL-C: high density lipoprotein cholesterol; WC: waist circumference; WHR: waist-to-hip 

ratio; BMI: body mass index 

Section 1 gives a background information on MetS. Section 2 discusses the motivation for coducting the SLR. Section 

3 explains the search strategy, study selection, data extraction procedures. Section 4 explains the various clinically 

approved MetSR-F. The types of performance metrics used for evaluated throughout the included studies were 

explained in Section 5. An in-depth analysis of the current state of start for all the non-clinical diagnosis approaches 

applied in the included studies was performed in section 6. A discussion of the results of the SLR was conducted in 

Section 7 while sections 8 and 9 identified the limitations and a conclusive discussion on the findings of the SLR. 
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2.0 CHALLENGES AND MOTIVATION 

MetS is a growing epidemic and a major global socio-economic burden [8]. MetS has been ascertained to be an active 

biomarker  of three major non-communicable diseases (NCDs): cardiovascular diseases (CVDs), type II diabetes 

mellitus (T2DM), and cancer [9],[10],[8]. 

Other diseases known to be associated with MetS include osteoporosis [11], kidney stone [12], upper gastrointestinal 

disease [13], Psoriasis [14], alcohol use disorders [15] and anxiety [16].   

CVDs, T2DM, and cancer are responsible for the motility of 17.7 million, 1.6 million, and 8.8 million people 

respectively yearly.  Thus, constituting major health-care burdens around the world with the highest level of mortality 

rate. Furthermore, the global prevalence of MetS is such that it affects one out of every three persons in the United 

States [17],[18], a quarter of the European population [19] and one-sixth of the Asian population [20]. In a bid to 

further understand current researches relating to MetS, existing literature reviews have been conducted with a focus 

on answering several research questions relating to the characteristics and associated diseases of MetS. 

Timar and et al., [1] and Lopez-Candales [21] presented a summary of MetS by reviewing each MetSR-F, cut-off 

thresholds, and individuals that are most susceptible to the abnormalities. The review by Palomo and et al. [22] showed 

that MetS is characterised by alterations in hemostatis and fibrinolysis which was attributed to the metabolic 

abnormalities. In their survey, Gami and coworkers, [23] found thirty-seven studies that ascertained the association 

between MetS and CVDs. They concluded that individuals who present with the risk of MetS are highly at risk of 

developing CVDs which could increase mortality rate if lifestyle and preventive interventions are not applied. Xue 

and Michels, [9] reviewed available evidence that proved the existence of a clear relation between MetS, T2DM, and 

the onset of breast cancer. 

Recently, Wong and et al., [24] noted a definite association among breast cancer, kidney stone and MetS caused by 

the presence of abnormalities such as obesity, hypertension, hyperinsulinemia and insulin resistance.  Another study 

[25] noticed the increased risk of developing MetS in patients treated with antipsychotic agents due to sedentary 

lifestyle, unhealthy food choices and high rate of smoking. These factors subsequently led to weight gain, and 

increased prevalence of diabetes and CVDs. Motillo et  al. [26] found that MetS is related to a 2-times increase in 

CVD and a 1.5 times increase in overall mortality rate while Kaur et  al. [27] in their extensive review summarised 

existing literature related to the definition of MetS, its epidemiology and intervention approaches. 

In all, these aforementioned studies have only analysed the current state-of-the-art of MetS and some of its associated 

diseases; however, none of them have examined the existing statistical, machine learning and risk quantification 

techniques that support the clinical diagnosis of MetS. We consider that the analyses of research activity in this domain 

is of utmost importance in order to investigate further research possibilities aimed at early diagnosis and prevention 

of MetS. 

The present systematic review is aimed to identify and assess machine learning (ML), statistical and risk quantification 

(RQ) techniques which support the clinical diagnosis of MetS. The justification behind this systematic review is based 

on the requirement of knowledge acquisition that could assist in improving the quality of non-clinical techniques for 

the early diagnosis of MetS and subsequently to promote the management of MetS in clinical practice. In this paper, 

a non-clinical technique is any machine learning (ML), statistical and risk quantification (RQ) technique used to 

diagnose or predict the risk of MetS. 

3.0 REVIEW METHOD 

The systematic review method adopted in this paper follows the procedures given by the PRISMA (Preferred 

Reporting Items of Systematic reviews and Meta-Analyses) guidelines [28]. Therefore, we developed the study 

protocol by designing the search strategy, enumerating inclusion/exclusion criteria, extracting, and synthesising 

extracted data. In the first step, we carried out the search strategy by identifying the search terms and the electronic 

database to carry out our search. Fig. 1 shows the relevant primary studies were selected in the PRISMA flow chart. 
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Fig. 1: PRISMA flow chart for included and excluded studies in the systematic review on  

metabolic syndrome diagnosis methods 

3.1 Search Strategy 

The first search was carried out from the earliest years until December 2020 in the following electronic data sources: 

Association of Computing Machinery (ACM) Digital Library, PubMed, Science Direct (SD), Web of Science (WoS), 

and IEEE Xplore Digital Library. These electronic databases are widely accepted by various research communities 

[29].  

A total of 54 search terms were used to collect the articles in this systematic review. These search terms cut across the 

different types of statistical and machine learning techniques that are most frequently used for classification and 

prediction. The main search term of the systematic  review was “Metabolic Syndrome”. The second search term 

consisted of  relevant machine learning keywords with “Metabolic Syndrome” using the 'AND' and  'OR' boolean 

concatenators as presented in Table 2. 
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Table 2: Search phrases and the number of articles found 

Search 
No. 

Search strings Sources and number of publications obtained 

SD WoS ACM PubMed IEEE Springer 

1.  (“Metabolic Syndrome”) AND (“Naive 
Bayes” OR “Bayesian Network” OR “Decision 
tree” OR “Classification and regression tree” 
OR “Chi-squared Automatic Interaction 
Detection” OR “Linear discriminant 
analysis” OR “K-nearest neighbours 
algorithm”)  

11 57 1 36 6 371 

2.  (“Metabolic Syndrome”) AND (“Learning 
vector quantization” OR “Self-organizing 
map” OR “K-means” OR “Expectation-
maximization” OR “Hierarchical Clustering” 
OR “Fuzzy clustering” OR “Hierarchical 
clustering” OR “Hidden Markov models”)  

11 36 2 26 2 546 

3.  (“Metabolic Syndrome”) AND (“Logistic 
regression” OR “Ordinary least squares 
regression “ OR “Linear regression” OR 
“Stepwise regression” OR “AdaBoost” OR 
“Boosting” OR “Random Forest” OR 
“Gaussian mixture models” OR “k-Means 
clustering”)  

1091 5 1 12 3 1196 

4.  (“Metabolic Syndrome”) AND (“machine 
learning” or “deep learning” OR “data 
mining” OR “predictive models” OR 
“Artificial neural network” OR “Back-
Propagation” OR “Multilayer Perceptron” 
OR “association rule mining”)  

11 14 10 73 9 860 

5.  (“Metabolic Syndrome”) AND 
(“Confirmatory factor analysis” OR “Factor 
analysis” OR “Principal component 
regression” OR “Principal Component 
Analysis”)  

112 71 6 226 2 491 

 Total 1236 183 20 373 22 3464 

 

3.2 Study Selection  

The whole initial search from the electronic databases revealed 6586 studies. These studies were screened based on 

the objective of the review which sought to appraise the empirical quality of the studies as well as evaluate the 

effectiveness of applying non clinical methods to diagnose MetS. After removing duplicates, the first selection step 

included screening the titles, abstracts, and keywords of the studies for eligibility in relation to the following inclusion 

criterion:  

i. The study participants were humans with or without metabolic syndrome and the participant characteristics 

were clearly defined.  
ii. The study objective involved the diagnosis of metabolic syndrome using a non clinical approach in addition 

to or as opposed to the clinical dichotomous definition.  
iii. At least an outcome for the non-clinical diagnosis of metabolic syndrome exists in the study.  

Ninety-three primary studies were left after the first screening. We were able to retrieve the full text of all 96 articles 

by searching online databases. The inclusion/exclusion criteria were independently tested by two experts and a 

conclusion was agreed upon after comprehensive discussions. The entire full text of the 96 primary studies were 

screened by three experts based on the following exclusion criteria:  
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i. Non-peer reviewed studies such as tutorials, reports, conference, and editorial papers.  

ii. Studies with adolescent and children participants.  
iii. Studies based on conceptual frameworks or structures without empirical analysis and results.  

The two researchers compared their results and where discrepancies existed between two results of the same paper, a 

joint assessment was carried out with all the researchers and an agreement was made to either include or exclude the 

study from the systematic review. Finally, 39 studies were excluded and a total of 57 primary studies were identified 

for inclusion into this systematic review.  

3.3 Data Extraction  

An expert reviewer independently extracted data from the primary studies by filling a data extraction form and 
gathering general information from each study such as author name, publication year, title, study of dataset, 
country, study population, study design, MetS diagnosis techniques and evaluation metrics results. All data 
extracted is presented in Table 3. Two expert reviewers verified the soundness of data by making sure that 
information extracted from each study justified the aim of the research.  

3.4 Publication Years  

The search for this review was carried out from the earliest studies to December 2020. This is to identify all 
the non-clinical techniques for the diagnosis of MetS. From the distribution in Figure 2, the number of research 
on non-clinical methods peaked in the year 2014. The research interest trend has decreased from 2016 till date 
by 10%. Two studies were published in 2020, affirming the inclusion of up-to-date relevant studies in this 
systematic review.  

 

Fig. 2: Publication years of primary studies 
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Table 3: Metabolic syndrome risk prediction using ML, statistical and RQ techniques 

 Study Country Study Data Type of 

Data 

Population Age 

(mean ± SD) 

Classificati

on 

Techniques 

MetS Components Performance Metrics 

 Obesity Glucose Lipids  BP Others ACC SEN SPEC Others 

1.  Franks et 

al. [30] 

United 

Kingdom  

Medical 

Research 

Council Ely 

Study (MRC) 

Cohort  

Real 868 adults (378 

M, 490 F) A: 

53.3 ± 10.4 

years    

Z-score  BMI + WHR/2   Insulin, 

2HPG   

HDL-C, TG  SBP 

+DBP/2    

N/A     N/A  N/A  N/A   N/A  

2.  Ekelund 

et al.  [31] 

United 

Kingdom  

The Medical 

Research 

Council 

(MRC) Ely 

Study Cross-

sectional 

Study  

Real 605 (246 M, 

359 F) A:  56 ± 

2.8 years  

Z-score  BMI+WHR/2    2HPG, 

Insulin  

TG, HDL-C   SDP + 

DBP /2  

N/A   N/A  N/A  N/A   N/A  

3.  Ferriera et 

al. [32] 

Northern 

Ireland   

Northern 

Ireland Young 

Hearts (YH) 

Project  

Real 313 (160 M, 

153 F)  

A: 20 - 25 years  

Z-score  WC  FPG  TG, HDL-C  MAP, 

SBP + 

DBP/2   

N/A     N/A  N/A  N/A   N/A  

4.  Johnson 

et al. [33] 

United 

States  

SD  Real 171 (91 M, 80 

F)  

A: 53 ± 7 years   

Z-score  WC  FPG  TG, HDL-C  MAP   N/A     N/A  N/A  N/A   N/A  

5.  Bateman 

et al. [34] 

United 

States  

SD  Real 86 (45 M, 41 F)  

A: 18 - 70 years  

Z-score  WC  FBG  TG,  HDL-C    MAP   N/A   N/A     N/A  N/A   N/A  

6.  Potteiger 

et al. [35] 

United 

States  

SD  Real 21  (21 M, 0 F)  

A 27 - 48 years  

Z-score  WC  FBG  TG,  HDL-C    MAP  N/A   N/A    N/A  N/A   N/A  

7.  Drehmer 

et al. [36] 

Brazil  Brazilian 

Longitudinal 

Study of Adult 

Health (ELSA-

Brasil)  

Real 9,835 (4,445 M, 

5,390 F) A: 

50.7 ± 8.7 years  

Z-score  WC  FBG  TG,  HDL-C    SBP   N/A   N/A    N/A  N/A   N/A  

8.  Janghorba

ni and 

Amini 

[37] 

Iran  Isfahan 

Diabetes 

Prevention 

Study (IDPS)  

Real 1,869 (N/A M, 

N/A F) A: 30 - 

70 years   

Z-score  WC  FPG  TG, HDL-C  MAP   N/A   0.613 

(0.578 - 

0.649)   

74.1  56.4  N/A  

9.  Jiang et 

al. [38] 

China  SD  Real 1,053 (411 M, 

642 F) A:53.72 

± 12.46 years  

Z-score  WC  FBG  TG,  HDL-C    MAP   N/A   N/A    N/A  N/A   N/A  

10.  Gurka et 

al. [39] 

United 

States  

Atherosclerosi

s Risk in 

Communities 

Study (ARIC) 

and Jackson 

Heart Study 

(JHS)  

Real 13,094 (5644 

M, 7450 F) A: 

18 - 94 years  

Z-score  WC  FBG  TG,  HDL-C    DBP, 

SBP   

N/A   N/A    N/A  N/A   N/A  

11.  Hillier et 

al. [10] 

France   Epidemiologic

al Study on the 

Insulin 

Real 5,024 (2,467 M, 

2,557 F) A: 30-

65 years    

PCA  WC, BMI  FPG, 

Insulin  

TG, HDL-C    SBP, 

DBP   

N/A     N/A  N/A  N/A   N/A  
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 Study Country Study Data Type of 

Data 

Population Age 

(mean ± SD) 

Classificati

on 

Techniques 

MetS Components Performance Metrics 

 Obesity Glucose Lipids  BP Others ACC SEN SPEC Others 

Resistance 

Syndrome 

(D.E.S.I.R.)  

12.  Wijndaele 

et al. [40] 

Belgium   SD  Real 1,021 (571 M, 

449 F)  

A: 18-75 years   

PCA  WC  FPG  TG, HDL-C  SBP, DBP   N/A     N/A  N/A  N/A   N/A  

13.  Wijndaele 

et. al. [41] 

Belgium    Flemish Policy 

Research 

Centre Sport, 

Physical 

Activityand 

Health study  

Real 992 (559 M, 

433 F)  

A: 18 - 75 years  

PCA  WC  FPG  TG, HDL-C  SBP, DBP   N/A   N/A  N/A  N/A   N/A  

14.  Chang et 

al. [42] 

Taiwan  SD  Real 8,908 (4,712 M, 

4,196 F) A: 

35.46 ± 7.72 

years  

PCA  WC, WtHR  FBG  TG,  HDL-C    SBP, 

DBP   

N/A   Female: 

0.864 

(0.844, 

0.884)   

Female: 

78.829  

Femal

e: 

80.19   

N/A  

15.  Agarwal 

et al. [43] 

United 

States  

the Multi-

Ethnic Study 

of 

Atherosclerosi

s (MESA)  

Real 6,780 (3,210 M, 

3,567 F) A: 44 - 

84 years  

PCA  WC  FPG  TG, HDL-C  SBP, DBP   N/A   N/A  54  65  cMetS 

cutoff: 

0.475  

16.  Dusseault

-Belanger 

et al. [44] 

Canada  The 

EVIDENT 

study    

Real 7,213 (3,874M, 

3,339F) A: 64 ± 

14.4 years  

PCA    WC , BMI  FPG  TG, HDL-C  MAP   A, 

Smoking, 

PA, AST, 

ALT, 

HMW-A, 

Creatinine, 

Insuline, 

Ad  

N/A  N/A  N/A   PC1: 

33.1, 

PC2: 

20.2  

17.  Mochizuk

i et  al. 

[45] 

Japan  SD  Real 308 (308M, 0F)  

A: 58.6  ± 7.7 

years  

PCA  WC  FPG  TG, HDL-C  SBP, DBP   N/A   N/A  N/A  N/A  PC1: 

36.6, 

PC2: 

21.9  

18.  Carroll et 

al. [46] 

Australia  The Place and 

Metabolic 

Syndrome 

(PAMS) 

Project  

Real 3,993  (1,898 

M, 2,095 F) A: 

50.49 ± 16.39 

years  

PCA    WC    FPG  HDL-C , TG  MAP   N/A     N/A  N/A  N/A   N/A  

19.  Gaio et al. 

[47] 

8 

Europea

n 

countries  

Portuguese 

Component of 

the European 

Health 

Examination 

Survey 

(EHES)  

Real 206  (87 M, 119 

F)  

A 56.43 ±  

16.23 years  

PCA  WC  FBG  TG,  HDL-C    DBP, 

SBP  

N/A   N/A    N/A  N/A   N/A  

20.  Ayubi et 

al. [48] 

Iran  SD  Real 4,567 (1,861 M, 

2,706 F) A: 

PCA  WC  FBG  TG,  HDL-C    DBP, 

SBP   

N/A   N/A    N/A  N/A   N/A  
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 Study Country Study Data Type of 

Data 

Population Age 

(mean ± SD) 

Classificati

on 

Techniques 

MetS Components Performance Metrics 

 Obesity Glucose Lipids  BP Others ACC SEN SPEC Others 

38.2  ± 10.5 

years  

21.  Wiley et 

al. [49] 

Australia  SD  Real 2,125 (907 M, 

1,218 F) A: 18 - 

94 years  

PCA  WC  FBG  TG,  HDL-C    DBP, 

SBP   

N/A   N/A  51  83    Acc: 

69.5  

22.  Gomez-

Marcos 

[50] 

Spain  The 

EVIDENT 

study  

Real 87 (65 M, 22 F)  

A: 56.7 (64.96 - 

45.25) years  

CFA    WC, BMI    FPG, 

Insulin, 

HOMA-

IR  

HDL-C , TG  SBP, 

DBP, 

MAP   

N/A   0.870 

(0.818-

960.922

) for 

men 

and 

0.890 

(0.819-

960.918

) for 

women  

N/A  N/A  N/A  

23.  Huo et al. 

[51] 

China  SD  Real 7,472 (2,666 M, 

4,806 F) A: 

40.8  ± 13.2 

years  

CFA    WC, BMI    FPG,  HDL-C , TG  SBP, 

DBP, 

MAP   

N/A   N/A    N/A  N/A    N/A    

24.  Smits et 

al. [52] 

United 

States  

SD  Real 134 (52 M, 82 

F)  

A: 53.5  ± 10.4 

years  

CFA    WC, BMI    FPG,  HDL-C , TG  SBP, 

DBP, 

MAP   

N/A   N/A    N/A  N/A    N/A  

25.  Gurka et 

al. [53] 

United 

States  

National 

Health and 

Nutrition 

Examination 

Survey 

1999\'962010  

Real 6,870( N/A M,  

N/A F) A: 20 - 

64 years  

CFA    WC    FPG,  HDL-C , TG  SBP    N/A   N/A    N/A  N/A    N/A    

26.  DeBoer et 

al. [54] 

United 

States  

Cincinnati 

Clinic of the 

National Heart 

Lung and 

Blood Institute 

(NHLBI) 

Lipid Research 

Clinic (LRC) 

Prevalence 

Program  

Real 354 (142 M, 

212 F)  

A: 20 - 64 years  

CFA  WC  FBG  TG,  HDL-C    DBP, 

SBP   

N/A   0.89    N/A  N/A   N/A  

27.  Musani et 

al. [55] 

United 

States  

Jackson Heart 

Study (JHS)  

Real 4,107 (1270 M, 

2837 F) A: 

44.76 ± 5.17 

years  

CFA  WC,BMI  FBG  TG,  HDL-

C,CHOL  

  DBP, 

SBP  

N/A   N/A    N/A  N/A   N/A    

28.  Lin et al. 

[56] 

Taiwan  SD  Real 383 (254 M, 

129 F)  

A: 47.5 ± 13.5 

years  

ANN(*), 

MLR   

WC, BM  N/A  N/A  SBP, DBP  SGA 

medication 

use history, 

81.2  85.2  78  PPV: 

71.9 

NPV: 

89.2 
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 Study Country Study Data Type of 

Data 

Population Age 

(mean ± SD) 

Classificati

on 

Techniques 

MetS Components Performance Metrics 

 Obesity Glucose Lipids  BP Others ACC SEN SPEC Others 

Wt, Ht, A, 

G  

AUC: 

90.8±0.

041  

29.  Hirose et 

al. [57] 

Japan  SD  Real 410 (254 M, 0 

F)  

A: 44.2 (30-59) 

years  

ANN(*), 

MLR   

WC, BMI, FFA  FPG, 

Insulin, 

HOMA-

IR   

TG, HDL-C, 

LDL-C, 

CHOL  

SBP, DBP  AST, ALT, 

HMW-A, 

TA, GAI, 

SM   

N/A  93  91  N/A  

30.  Ushida et 

al. [58] 

Japan  SD  Real 229 (229M, 0F)   

A: 31.4 ± 7.5, 

30.6 ± 4.6  

FNN  N/A   N/A   N/A   N/A   SM, 

Hematocrit

, Blood 

urea 

nitrogen, 

RBC, 

Creatinine, 

WBC, Uric 

Acid, 

Urine 

urobilinoge

n,  -GTP, 

Urine 

protein, 

Hemoglobi

n, Urine 

sugar, 

GOT, 

Urinary 

occult 

blood, 

GPT, 

Alcohol 

habit  

77.4  N/A    N/A  N/A  

31.  Chen et 

al. [59] 

China  SD  Real 2,074 (1,495 M, 

579 F ) A: 

46.93 ± 47.06  

ANN (*), 

PCLR  

WC, BMI, WHR  N/A  N/A  SBP, DBP  HC, G, A  N/A  88.43  83.7  PPV: 

56.61 

NPV: 

96.77 

AUC: 

90.43  

32.  Zhao et 

al. [60] 

China  SD  Real 2,081 (908M, 

1173F)  

A: 53.35 ± 

10.62 years  

BPANN (*), 

MLR  

WC, BMI  FPG  HDL-C, TG  SBP, DBP  A, G, Ad, 

T2DM, 

Obesity 

N/A  53.52  N/A  N/A  

33.  Ivanovic 

et al. [61] 

Serbia  SD  Real 2,928 (1434 M, 

1494 F ) A: 

43.4 (18-76 

years)  

ANN-85 

and 96 HN  

BMI, WtHR  N/A  N/A  SBP, DBP   N/A   N/A  N/A  N/A  PPV: 

85.79 

NPV: 

83.19  

34.  Worachar

tcheewan 

et al. [62] 

Thailand  SD  Real 5,638 Males 

(2,661 M, 2,977 

F)  

DT(*), 

ANN(*), 

  BMI  FPG  HDL-C, TG  SBP, DBP  N/A   98.86  99.85  99.86  PPV:99

.87; 

NPV:99
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 Study Country Study Data Type of 

Data 

Population Age 

(mean ± SD) 

Classificati

on 

Techniques 

MetS Components Performance Metrics 

 Obesity Glucose Lipids  BP Others ACC SEN SPEC Others 

A: 20-99 years SVM, PCA, 

AA  

.85; 

MCC:0.

9972  

35.  Kakudi et 

al. [63] 

Malayisa  Clustering of 

Lifestyle risk 

factors and 

Understanding 

its association 

with stress on 

health and 

well-being 

among school 

Teachers in 

Malaysia 

(CLUSTer) 

study  

Real 11,237 

(2,133M, 

9,104F) A: 20 - 

69 years  

FAM, 

BAM, 

GAFAM, 

GOBAM (*)  

WC  FPG  HDL-C, TG  DBP, SBP   Ht, Wt, G, 

PA, SM, 

meals, HH, 

BEV, FH  

90.89  93.7394.6  87.19  PPV:98

.36 

NPV:67

.1 ACC: 

93.79  

36.  Vigna et 

al. [64] 

Italy  SD  Real 210 (68M, 

142MF)   

A: 20-68 years  

AutoCM  WC, BMI  FPG  HDL-C, TG  DBP, SBP   psychopath

ological 

variables, 

depressive 

symptoms, 

work- 

related 

factors  

N/A   N/A  N/A  N/A   

37.  Miller et 

al. [65] 

United 

States  

SD  Real 745 (489 M, 

646 F)   

A: 20-30 years  

CHAID(*),

MLR  

BMI, WC  FPG  HDL-C, TG  S, DBP  A, Wt, Ht, 

E  

92.3  71.8  N/A  PPV: 

69.8  

38.  Romero-

Saldana et 

al. [66] 

Serbia  SD  Real   636 (432 M, 

204 F )  

A: 45.1 ± 8.8 

years 

DT using 

CHAID   

WC, BMI, 

WtHR, BFP, 

WHR  

N/A  N/A   SBP, DBP  
 

94.2  91.6  95.7  PPV: 

79.2 

NPV: 

98.5  

39.  Miyauchi 

and 

Nishimur

a [67] 

Japan  SD  Real 11,947 (7,655 

M, 4,292F) A: 

40 - 74 years  

BN  WC, BMI  FPG  HDL-C, TG  DBP, SBP   N/A   N/A  N/A  N/A   N/A   

40.  Van 

Schepend

om et al. 

[68] 

Belgium  SD  Real 605 (404 M, 

201 F)  

A: 34.7 ± 11.5, 

39.8 ± 11.7  

ANN, 

SVM(*), DT   

WC, BMI, 

WHR, hip  

N/A   N/A  SBP, DBP  Ht, Wt, 

AL, SM, 

HR, GAF  

83.9  78.8  86.8  N/A  

41.  Karimi-

Alvijeh et 

al. [69] 

Iran  SD  Real 2,107(N/A M, 

N/A F)  

A: 48.07 (34.0-

86.0 years)  

DT, SVM 

(*)  

WC, HC, WHR, 

BMI  

FPG, 

2hBG  

HDL-C, 

LDL-C,TG, 

CHOL  

SBP, DBP  A, G, Wt 

HYP, anti-

HYP 

medication, 

MCV, 

MCH 

75.7  77.4  74  N/A  

42.  Szabo de 

Edelenyi 

et al. [70] 

France  SD  Real 1,754   

A: 58.2 ± 0.18 

years  

RF  WC  FPG   TG, HDL-C  SBP, DBP  
 

N/A  71.4  N/A  N/A  
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 Study Country Study Data Type of 

Data 

Population Age 

(mean ± SD) 

Classificati

on 

Techniques 

MetS Components Performance Metrics 

 Obesity Glucose Lipids  BP Others ACC SEN SPEC Others 

43.  Worachar

tcheewan 

et al. [71] 

Thailand  SD  Real 5,646 (2,028 M, 

3,618 F) A:18 - 

78 years  

RF  WC, BMI  FPG  CHOL, TG, 

LDL-C, 

HDL-C   

SBP, DBP  
 

98.12  94.8  99.15  MCC: 

95.0  

44.  Hosseini 

et al. [72] 

Iran  SD  Real 8,313 (4,148 M, 

4,165 F) A: 

38.54 ± 15.86 

years   

MLR  WC, BMI  FPG, 

2hPG  

TG, HDL-C, 

LDL-C, 

CHOL  

  MAP  A, PA, 

CRP, GDI   

95.36(9

4.83-

95.83)   

89  87.93  cMetS 

cutoff:-

1.151  

45.  Tsou et 

al. [73] 

Taiwan  SD  Real 1,181  (433 M, 

748 F)  

A: 74.4  ± 5.5 

years  

MLR    WC, BMI    FPG,  HDL-C , TG  SBP, DBP   N/A  N/A  N/A  N/A  N/A  

46.  Obokata 

et al. [74] 

United 

States  

SD  Real 6,817 (4,212 M, 

2,605 F)  

A:50.8 ± 8.8 

years  

MLR  BMI, WC  FPG  HDL-C, TG  SBP, DBP   A, G  N/A  78  54  N/A  

47.  Tan et al. 

[75] 

Korea  SD  Real 1,054 (N/A M, 

N/A F ) A:36-

86 years  

MLR  WC, BMI  FPG, 

HOMA-

IR  

HDL-C, TG   SBP, DBP 
 

93  90  74  PPV: 

59  

48.  Huang 

[76] 

Taiwan  SD  Real 1,216 (N/A M, 

N/A F)    

A: 40 - 60 years  

AA  WC, BMI  FPG  HDL-C, TG  SBP, DBP A, G  N/A  N/A  N/A   N/A   

49.  Steinberg 

et al. [77] 

United 

States  

SD  Real 36,944 (N/A M, 

N/A F)  A: 18 - 

60 years  

REF  BMI, WC  FPG  HDL-C, TG  SBP, DBP A, G E, 

SM  

N/A  71.8  N/A  AUC:8

8  

50.  Shimoda 

et al. [78] 

Japan  SD  Real 13,996 (10,573 

M, 3,423 F) A: 

47.1 ± 8.2  

GBT(*), RF 

,LR  

WC, BMI  FPG  HDL-C, TG  SBP, DBP sex, A, Wt, 

Ht, AST, 

lifestyle 

habits  

N/A  87.7  78.3  AUC:8

9.3  

51.  Sangjin et 

al. [79] 

South 

Korea  

KNHANES III  Real 5,355(2,276 M, 

3,079 F)  A: 

47.22 ± 14.61, 

23.52 ± 5.62 

years 

ASD  WC,BMI  FPG  HDL-C, TG  SBP, DBP N/A  N/A  N/A  N/A    

52.  Yousefza

deh et al. 

[80] 

Iran  Kerman 

Coronary 

Artery Disease 

Risk study, 

Iran  

Real 4,192 (952 M, 

3,238 F) A: 

44.34 ± 16.32 

years  

FRS  WC  FPG  HDL-C, TG  SBP, DBP N/A  0.80 

(0.75 - 

0.84)   

87.8  58   

53.  Soldatovi

c et al. 

[81] 

Serbia  SD  Real 528 (182 M, 

346 F)  

A: 7 - 77 years  

siMS score  WC  FPG  HDL-C, TG  SBP or 

DBP 

Ht, G  N/A  N/A  N/A   

54.  Choe et 

al. [82] 

Korea Gene-

Environmental 

Inte- raction 

and Phenotype 

(GENIE) 

database  

 

Real 7502 (3754 M, 

3748 F) 

A: 52.1 ± 9.9 

MLP, NB, 

RF, DT, 

SVM(*) 

WC, BMI FBG HDL-C, TG  SBP or 

DBP 

SNPs, SM, 

Alcohol, 

Exercise 

82.2 1 0 AUC: 

69.0 

F1 

score: 0 

BCR:0 
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 Study Country Study Data Type of 

Data 

Population Age 

(mean ± SD) 

Classificati

on 

Techniques 

MetS Components Performance Metrics 

 Obesity Glucose Lipids  BP Others ACC SEN SPEC Others 

55.  Vrbaski et 

al. [83] 

Serbia SD Real 3000 (1500M, 

1500F) 

A: 43.1 ± 11.06 

LR, ANN, 

DT, RF (*) 
WHtR, BMI N/A N/A SBP or 

DBP 

N/A N/A 91.54 94.36 PPV: 

93.79 

NPV: 

91.50 

56.  Yu et al. 

[84] 

Taiwan SD Real  CART, 

CHAID (*), 

CIT, 

GLMT, RF 

WC, BMI FBG HDL-C, TG  SBP or 

DBP 

Laboratory 

Tests 

87.3 N/A N/A F1 

Score: 

93.0; 

AUC: 

86.7 

57.  Eyvazlou 

et al. [85] 

Iran SD Real 468(398M,70F) 

A: 28–65 years  

 

ANN (*), 

LR 

WC, BMI FBG HDL-C, TG  SBP or 

DBP 

G, A, 

exercise 

habit, SM, 

obstructive 

sleep 

apnea, 

work-

related 

stressors,  

 

89 82.5 92.2D  

not available: N/A; hypertension: HYP; fasting plasma glucose:  FPG ; waist circumference: WC; intra-abdominal fat:IAF; subcutaneous fat:SQF; body mass index: BMI; 

waist – height ratio: WHtR; waist – hip ratio: WHR; hip circumference: HC; adiposity index: AI; Intraabdominal fat: IAF; body fat percentage: BFP; high-density lipoprotein: 

HDL-C; low-density lipoprotein: LDL-C; total cholesterol: CHOL ;triglycerides: TG; blood pressure: BP; systolic blood pressure: SBP; diastolic blood pressure: DBP; 

homeostasis model assessment insulin resistance index: HOMA-IR; insulin sensitivity index : SI; 2-hour postload plasma glucose: 2hPG; single nucleotide polymorphisms: 

SNPs; age: A; Wt: weight; Ht: Height; G: gender; S: sex; E: Ethnicity; Ad: adiponectin ;artificial neural network: ANN; multiple logistic regression: MLR; support Vector 

Machine: SVM; K-nearest neighbour: KNN; back propagation: BP; decision tree: DT; chi-squared automatic interaction detection methodology: CHAID; CIT: conditional 

interference tree; ELGOT: evolutionary learning of globally optimal trees; GLMT: Generalized Linear Model Trees; bayesian network: BN; principal component logistic 

regression: PCLR; random forest: RF; principal component analysis: PCA; association analysis: AA; Reverse Engineering and Forward Simulation:  REFS; Gradient boosted 

trees: GBT; Areal Similarity Degree: ASD ; simple Metabolic Syndrome score: siMS score; framingham risk score: FRS;  accuracy: ACC; area under the curve: AUC 

sensitivity: SEN; specificity: SPEC; negative predictive value: NPV; positive predictive value: PPV; Matthews correlation coefficient: MCC; comparative fitness index: 

CFI;, standardised root mean square residual: SRMR; root mean square error of approximation: RMSEA; balanced classification rate: BCR; national cholesterol education 

program adult treatment panel III: NCEP ATP III; european group for the study of insulin resistance: EGIR; international diabetes federation: IDF; japanese diagnostic 

criteria: JDC; joint interim statement: JIS; The Third Korea National Health and Nutrition Examination Survey: KNHANES III; study data: SD;  (*) best amongst multiple 

techniques;
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3.5 Place of Study  

The distribution of studies by the countries where their study data was collected is presented in Figure 3. The 
highest number of studies, 21%, were published from the United States. This was followed by 11% in Iran and 
9% in both Japan and Taiwan.  

 

Fig. 3: Study data countries of primary studies 

4.0 METABOLIC SYNDROME RISK FACTOR DISTRIBUTION 

The MetSR-F identified by the clinical definitions (See Table 1) are generally classed into invasive and non-invasive 

measures [66]. FBG, HDL-C, and TG are considered as invasive variables because they require the drawing of blood 

sample and analysis. The non-invasive risk factors are WC and BP. WC is used to identify central obesity in MetS. 

Other non-invasive measures used to identify central obesity in the primary studies include WtHR, BMI, and WtHtR. 

BP is identified by measuring systolic and diastolic blood pressure readings. In addition to the clinically identified 

MetSR-F, some of the studies included in this systematic review have identified and used other risk factors in the non-

clinical methods such as such as age, sex, smoking habits, literacy rank, physical activity, and alcohol consumption. 

Two studies, Lin et  al. [56] and Choe et al. [82] collected serum samples and extracted single nucleotide 

polymorphisms (SNPs) associated with MetS traits for use as input parameters in their studies.  The remaining 54 

studies used all the five clinically defined MetSR-F in Table 1. 

5.0 PERFORMANCE METRICS USED IN INCLUDED STUDIES 

The most frequently used metrics for comparing and evaluating the predictive performance of the ML techniques  in 

the included studies are accuracy (ACC), specificity (SPEC), sensitivity (SEN), positive predictive value (PPV), area 

under the curve (AUC),  and negative predictive value (NPV). Table 3 presents the definitions of each performance 

metric.   

Table 3: Description of performance metric measures 

 
Performance Metric Description 

ACC The proportion of individuals correctly classified as having or not having the diseases over the total 

number of all the individuals examined. 

SENS The ability to correctly classify individuals with the disease as having the disease. 

SPEC The ability to correctly classify individuals without the disease as not having the disease. 

AUC It is the area under the reciever operating characteristic (ROC) curve. ROC is plotted with sensitivity 

(true positive rate) on the Y-axis and 1-specificity (false positive rate) on the x-axis. 

PPV The probability of individuals predicted as having the disease that actually have the disease. 

NPV The probability of individuals predicted as not having the disease that actually do not have the 

disease. 

CFI An incremental fit indice which analyzes the model fit by examining the variance between the data 

and the hypothesized model. 
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6.0 WHAT IS THE CURRENT STATE OF ART IN NON-CLINICAL METHODS FOR THE 

DIAGNOSIS OF METABOLIC SYNDROME? 

The specification of a comprehensive taxonomy is a valid indication of the detailed assessment and quality of extracted 

data in a systematic literature review [86]. In this study, we discuss the state of art by iteratively examining and 

extracting relevant information from the primary studies.  

 

Although the 53 studies included in this systematic review have developed diagnosis models using various types of 

ML, statistical and RQ techniques for the non-clinical diagnosis of MetS, the reason why these non-clinical methods 

are required to support the existing clinical dichotomous diagnosis approach should be visited. The rationale for 

developing these alternative non-clinical diagnosis methods need to be identified in order to fully understand and 

analyse the state of art in the area of MetS diagnosis. 

 

The clinical definitions of MetS shown in Table 1 are used to diagnose MetS by dichotomising the measurement 

values of the five clinically recognised MetSR-F (FPG, WC, HDL-C, TG, BP-SBP, DBP). MetS is considered present 

when the requisite number of MetSR-F that exceed certain threshold is met [87], [4], [88], [89]. However, the MetSR-

F measurement values in these definitions are more continuous than categorical and this results in loss of information 

on the outcome of the clinical MetS diagnosis [90], [32]. Therefore, the clinical definition reduces statistical power 

[91], [40] and patients that have MetS with only one MetSR-F present, may be excluded. Furthermore, dichotomizing 

the continuous MetSR scores implies that all the MetSR-F contribute equally to the diagnosis [10], however the 

predictive ability of some MetSR-F towards CVD is higher than others [92]. Dichotomising the continuous MetSR-F 

based on ad hoc thresholds could lead to mis-classification of the disorder, thereby reducing both statistical power and 

correlative measurement of the MetSR-F [91], [40]Also, summing up the MetSR-F into a unitary value assumes that 

all the risk factors contribute equally, yet some MetSR-F are known to have more importance than others [92]. 

Research has shown that there is a progressive relation between MetS and CVD which might be unidentified by 

dichotomising the MetSR-F [90], [40]. Furthermore, both CVD and T2DM increase progressively as the number of 

MetSR-F that exceed the threshold increase, thus eliminating to apply the dichotomous definition in the diagnosis of 

MetS [93].  

 

In order to solve these problems related to the dichotomous clinical diagnosis of MetS, a statistical technique called 

the standardised Z-score was applied to develope the continous MetS risk score(cMetSR). The cMetSR score was 

argued to represent and detect overall changes in the MetS dues its sensitivity to small changes in the values of the 

MetSR-F [33]. However the cMetSR score was limited by its over dependence on the population sample from which 

it was built. Subsequently, various ML techniques were then used in the primary studies to develop models for the 

non-clinical diagnosis of MetS as presented in Table 2. Intermittently, mathematical quantification techniques were 

also developed and applied as quick measures of diagnosing MetS. 

 

From this systematic review, we have identified a detailed taxonomy of the ML, statistical and RQ techniques 

developed and applied to support the clinical diagnosis of MetS. This taxonomy and classification is presented in Fig 

4. 

 

Fig. 4: Classification and Taxonomy of non-clinical methods 
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6.1 Statistical Techniques 

In this section, we discuss the state of art of the 10 studies that used the Z-score. 

6.1.1 Z-Score 

The Z-score is a statistical technique identified from the primary studies and was used to compute the cMetSR score. 

This score represents the presence of MetS in a population sample. The cMetSR score is computed by subtracting the 

sample mean from each sample value and dividing by the sample standard deviation. The higher the cMetSR score, 

the less favourable the MetS profile. In some studies, each of the risk factors have been regressed on age, race, and 

gender to account for age, race and gender-related differences in the risk factors [94].  It was widely used to calculate 

a cMetS in alot of studies.  

In Franks et al. [30], Ekelund et al. [31], and Johnson et al. [33] the cMetS was used to identify the association between  

physical activity energy expenditure (PAEE), aerobic fitness, physical activity  and MetS. The cMetS score in [30] 

was highly associated with PAEE where it showed that physical inactivity may be a reason for metabolic morbidity 

in people with low cardiovascular fitness. Therefore, PAEE in unfit people may result in a decrease in MetSR-F such 

as Obesity, SBP, DBP, and increase in HDL. However, in Ekelund et al. [31] these same  MetSR-F do not explain the 

association of MetS and physical activity. In Johnson et al. [33], there was a decrease in the risk of MetS in people 

who performed excersises with high PAEE. Bateman et al. [34] applied the cMetSR to conclude that increased aerobic 

activity  resulted in a decrease in the risk of MetS and its risk factors. The cMetSR  in [32] was significantly associated 

with increased arterial stiffness which results in CVDs. In Potteiger et al., [35] there was a significant decrease of the 

cMetSR score for individuals with increased PA and decreased dietary intake.  

Janghorbani and et al., [37] and Jiang et al. [38] investigated the utility of the cMetSR score computed as the 

standardised residuals of each MetSR-F. The cMetSR score in [37]  ranged from -8.98 to 17.57 with the upper bound 

indicating a higher risk of MetS.  Jiang et al. [38] showed that the cMetSR score was able to identify higher levels of 

MetS in the future based on preserved information from the history of the same participants. Thus, this suggests that 

cMetSR score can be applied for progressive monitoring of MetS over time. In [36] Drehmer and co-workers 

calculated a cMetSR score as the means of Z-scores of the continuous MetSR-F. The cMetSR score was used to 

identify if any association exists betweeen dairy consumption, and fat intake, and MetS. The CMetSR score is efficient 

in finding out relationships between MetSR-F and daily life style indicators. The majority of the studies reviewed in 

this paper showed that an active lifestyle and healthier dietary choices are inversely related with the risk of MetS.   

6.2 Machine Learning Techniques 

Fourty studies used different types of machine learning techniques to diagnose MetS. In this section, the methods 

extracted from the primary studies which include PCA, CFA, DT, DT Chaid, RF, SVM, HMM, MLR, ANN, BN, 

GBT and GOBAM will be described. 

6.2.1 Principal Component Analysis 

Dimension reduction models are approaches for data integration that best explains the structure of datasets, and the 

variance both within and between variables [95]. Existing data is reduced into new variables known as components. 

These components best explain the difference in observations of a dataset. Two dimension reduction models were 

identified from the included studies: PCA and CFA. 

PCA is a multivariate statistical technique that reduces the dimensions of observations in a dataset [96]. PCA is able 

to project the observations into a low-dimensional space  that explains the  variance-covariance  structure of the 

variables in a data. The variance of the data is explained by extracting the most important information (attribute) from 

the observation. PCA is used to predict cumulative risk scores which enable the informative description of disease 

history and the development of appropriate prevention and management strategies [97]. 

In the studies included in this review paper, the PCA is applied to analyse the structure of the MetSR-F and the 

variability of their associations with MetS. Because the first principal component (PC1) of the PCA is the linear sum 

of measures with the maximum possible variance, researchers have used it to identify the cMetSR score [10] in MetS 
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diagnosis. From the primary studies, 11 studies ([10], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49]) used the 

PCA to calculate cMetSR scores.  

Hillier et al. [10] created a nomogram by combining the sum of six standardised MetSR-F values weighted by the 

cMetSR score. The cMetSR score is the PC1 defined  from the PCA which explained 50% of the variance among the 

MetSR-F values. They concluded that their PCA derived cMetSR score was able to predict the incidence of diabetes 

even in people whose FPG values were below the clinical threshold. Wijndaele et. al. in [40] and [41] also concluded 

that their PCA derived cMetSR score is an effective measure of MetS analysis. In [98], a continuous clinical index of 

cardiometabolic risk (cCICR) was constructed by first standardising each MetSR-F using the Z-score to obtain the 

cCICR-Z. Then, they applied PCA with orthogonal rotation on the standardised MetSR-F before finally taking the 

weighted sum of the two PCs (PC1 and PC2) to obtain a cCICR-PCA.  Wijndaele et al. [40] found that MetS in men 

was higher (0 ± 1.42)  than women (0 ± 1.41)  and Carroll et al. [46] identified that the total variances explained by 

their two PCs was higher in men (61.69%) than women (60.14%). They also demonstrated that both their cCICR-Z 

and cCICR-PCA had higher ACC in predicting the risks of CVD, T2DM and MetS more adequately the clinical 

dichotomous method. 

Chang et al. [42] developed an easy-single parameter screening index called the first PC score (FPCS) by reducing 

only obesity (WC and BMI) and age into a single variable using PCA. This index precludes the need for using all the 

five MetSR-F to test for the risk of MetS in the clinical definition. Even though the FPCS was found to yield an AUC 

of 0.864, the computation of this parameter is inefficient for application in clinical settings. Furthermore, Agarwal 

and et al. [43] investigated the use of PCA in deriving a cMetSR score as a summary of the MetSR-F and its relation 

to the incident of T2DM and CVD. The PC1 from their PCA model explained 33% of the total variance of the MetS 

risk scores. They observed that the binary cMetSR score was a better predictor of CVD than the dichotomous 

definition (ATP-NCEP III). The cMetSR score  in [99] was calculate by summing up the scores derived by assigning 

points to each MetSR-F based on the  size of its regression coefficient from a Cox proportional hazards model. This 

cMetSR was found to be useful in the prediction of CVD using MetSR-F. However,the cutoff point used is specific 

to only their study's participants.  

Mochizuki et al. [45] performed PCA on five MetSR-F. Their PC1 and PC2 explained 336.6% and 21.9% of the 

variance in the population, respectively. Even though the PCs show associations of MetS with the clinically recognised 

risk factors, it is still not clear if the PCA is a measure of progression of MetS and its related diseases [45]. The 

cMetSR score computed by Gaio and et al. [47] using PCA was used to identify the genetic factors relevant to the risk 

of MetS. The first two PC scores weighted by their relative contribution in the explained variance was summed up to 

obtain the cMetSR score. The cMetSR score was able to explain the association of over 50% of the genetic phenotype 

with MetS. Wiley and et al., [49] developed a MetS severity score (MetSSS) also using PCA stratified by age, gender, 

medication and work overtime. PCA was applied to MetSR-F values standardised against clinical thresholds. The 

MetSSS was able to differentiate between adult with and without MetS by correctly identifying 82% of adults with 

MetS. However, MetSSS requires further validation in different population groups. The cMetSR was found to be 

useful in the prediction of CVD using MetSR-F. However,the cutoff point used is specific to only their study's 

participants. 

In Ayubi et. al. [48], the PCA on MetS components identified components with Eigenvalues  0.9, with 75% and 75% 

of the variance in males and females, respectively. Dusseault-Belanger et al. [44] examined the correlation structure 

of MetS using PCA and the  PC1 explained 30% of the variance which was used as the cMetSR score. The cMetSR 

score identified MetS with a higher predictive value over the clinical definition. 

6.2.2 Confirmatory Factor Analysis 

Confirmatory factor analysis (CFA) is a statistical technique that enables the possibility of assessing existing 

associations between measured variables by measuring a model's goodness of fit .The CFA constructs a hypothesized 

model by linking various risk factors with hypothesized latent variables [100]. In the included studies, the CFA was 

used to develop single factor models using MetSR-F for the identification and diagnosis of MetS. CFA was used to 

establish the relationships between MetSR-F and MetS in order to ascertain the validity of a composite MetS risk 

score construct. Six studies ([50], [51], [52], [53], [54], [55]) conducted CFA on MetSR-F. 

Gómez-Marcos and co-workers [50] developed four different cardio metabolic risk index models to diagnose MetS 

using CFA. All the four models consisted of TG/HDL-C ratio, HOMA-IR index,  MAP and each with a different 

measure of central obesity - WC, WtHtR, BMI, adiposity index.  The model with WC had the best MetS index with 
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an average value of -0.022  1.29 (-3.36 - 4.57) in men and the model with the BMI showed the best goodness of fit 

with a metabolic index of 0.0001  1.53(-3.17 - 5.55) in women. The risk index was used to find associations between 

the MetS and physical activity (PA).  

In Huo et al. [51], the CFA was used to compare two models of MetS. Both models consisted of WC, TG/HDL-C 

ratio, FPG, but with different measures of BP - mean arterial pressure (MAP) in Model 1 and systolic blood pressure 

in Model 2. WC had the highest loading both models. This reiterates the significance of central obesity in the diagnosis 

of MetS [89]. Model 1 showed the highest good fitness with a comparative fit index of more than 0.96 and a 

standardised root mean square residual of less than 0.8.  

Smits and et al. [52], CFA was applied to link new variables - adipocytokines, CT-measured intra-abdominal fat (IAF), 

and insulin sensitivity (SI) as underlying factors of MetS. The one factor model consisting of 6 MetSR-F - CT-

measured intra-abdominal fat (IAF), insulin sensitivity (SI), SBP, DBP, TG and HDL-C had the best CFI of 0.99. 

However, the use of IAF and SI makes their model difficult and slow to implement in clinical settings due to the high 

costs and increased accessibility time of the these MetSR-F. 

Gurka et al. [53], DeBoer and coworkers [54], Gurka and et al. [39], and Musani et al. [55] all used CFA to calculate 

a MetS severity score (MetSSS). This MetSSS is a continuous risk score developed from a one factor CFA model 

consisting of the factor loadings of  all the five clinically recognised MetSR-F. In Gurka et al. [53], the MetSSS 

revealed multiple variations in how each MetSR-F contributes to the overall MetS score based on racial/ethinic 

grouping. The CFA was performed on Z-score standardised MetSR-F values. With an AUC ranging from 0.77, the 

MetSSS score was able to predict diabetes in [39]. The cMetSR score also showed a high genetic correlation with 

MetS in Musani et al. [55]. However, the diagnosis of MetS using the cMetSR score is heavily dependent on the score 

cut-off to either emphasise SENS or SPEC. Out of the six studies that applied the CFA, three studies ([51], [52], and 

[53]) reported  the root mean square error of approximation (RMSEA), the standardised root mean square residual 

(SRMR), and the comparative fit index (CFI). The CFI , SRMR, and RMSEA reported for the three studies ranged 

from 0.917 to 0.991, 0.134 to 0.0212, 0.125 to 0.045 respectively.CFI, RMSEA and SRMR are indices that evaluate 

the goodness of fit a statistical model. A model is said to have a good fit if the CFI > 0.96, the RMSEA < 0.050 and 

the SRMR < 0.080 [101]. These results show that all the three studies had good model fits. Only Gómez-Marcos et 

al. [50] reported an AUC of 89%. 

6.2.3 Multiple Logistic Regression 

Multiple Logistic regression (MLR) is a ML technique used to build prediction models for predicting values of a 

dependent variable from independent variables of a set of predictor values [102]. It is a linear regression variant often 

applied for prediction problems. The value for prediction is the probability of an event, ranging from 0 to 1. MLR also 

estimates risk prevalence ratios of presence of a disease and differences variable contributions to the prediction model.  

It works as a probabilistic view of classification.  

Four studies ([72], [73], [74], [75]) applied MLR to estimate the risk of MetS. Six other studies ([56], [57], [59], [60], 

[65], [78]) compared the performance of their ML models with LR. In Hosseini et al. [72], binary logistic was used 

to construct and validate a CMetSR score for the diagnosis of MetS in Iranian Adults. In a bottom - up, CMetSR score 

models were built from using two risk factors incrementally until all the five MetSR-F were included in the prediction 

model. The CMetSR score that includes all the 4 MetSR-F including age and gender showed the highest performance 

with an AUC of 95.5%.  

Obokata and et al. [74], used MLR to calculate a composite risk score for MetS prediction using data from Japanese 

employees.  The MetS risk score was used to identify the incidence of MetS in a three year followup of the population 

sample. A univariate LR was carried out to identify variables that would be included in the derivation of the composite 

risk score.   

In Tan et al. 2016 [75], MLR was used to derive a cMetSR score using data collected from questionnaires. The 

resulting cMetSR score was able to predict MetS with an AUC of 94.2%, SEN of 90% and SPEC of 74%. Tsuo et al. 

[73] applied MLR to identify the relationships between the MetSR-F and the risk of having MetS in elderly people. 

The results show a significant positive association between all the MetSR-F and MetS. 
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6.2.4 Artificial Neural Networks 

Artificial Neural Network (ANN) [103] is an abstract computational structure which models nonlinear problems based 

on the human brain. An ANN model consists of nodes called the artificial neuron which are interconnected in a 

network of layers . The neuron is a simple structure capable of receiving multiple input signals via its connections but 

it can only output one signal. The typical ANN network constitutes of an input layer  which receives data, an output 

layer which communicates results and sometimes with several intermediary layers (hidden layers) in-between which 

are used for processing [104]. The neurons between layers are linked by weighted connections which pass signals 

from one neuron to another. 

In the diagnosis of MetS where the patients are described by 6 MetSR-F (FBG, WC, HDL-C, TG, SBP, DBP), and 

the objective is to determine if the patient is at risk of having MetS or not, the MLP will have six inputs in the input 

layer and two outputs in the output layer. It is also required to define the hidden layers configuration (number of 

layers, number of neurons contained in each layer), their activation function and the initial synapses weights.  Training 

entails iterative learning of synapses weights that realise the classification results with the highest ACC. Therefore, 

the MLP can realize best matrix of weights that when multiplied by each of the six MetSR-F will result in the highest 

accurate values of risk of “MetS state” [1/0], where “MetS”= [1,0] and “No-MetS” = [0,1]. However, an ANN 

classifiers does not give a single class as output. For each sample, they will output a “likely answer for each class”, 

for example, patient xi's output is probably [0.87, 0.13]. This means that patient xi has a 90% risk of being diagnosed 

MetS against a 10% risk of not having MetS. 

Eight studies [56], [57], [58], [59], [60], [61], [63], [64] applied ANN in their MetS prediction.  Four studies ([59], 

[60], [57], [61]) developed various ANN network models  trained with the back propagation (BkP) algorithm to predict 

MetS. BkP enables small repetitive consistent adjustments of the weights to reduce overall error in the network. The 

ANN models were trained and evaluated by dividing the dataset into training and testing sets respectively [59]. The 

ANN model developed by Chen and et al. [59],was compared with a PC logistic regression (PCLR)  model and the 

ANN model had a higher AUC value and SEN of 90.43% and 88.49% respectively.  

Hirose et. al. compared their ANN model with a MLR model. The ANN model outperformed the MLR model with a 

SEN of 93% [57]. Overall, we see than the ANN model of Hirose et. al. [57] outperformed that of Chen and et al. [59] 

by 4.51%. This could be attributed to the isolation of three important MetSR-F in Chen and et al. [59] - FPG, HDL-C 

and TG. This information loss will result in a model with low ACC. In Zhao et al. [60], the BkP model was used to 

select single nucleotide polymorphisms (SNPs) that were associated with MetS. This model when compared with 

another model built with MLR model showed a higher significance in the prediction of MetS. However, obtaining 

SNPs may not be cost and time efficient in clinical settings.   

Lin et al. [105] and Ivanovic et al. [61] explored a 3 layer network consisting of 1 to 100 neurons in the middle layer. 

The model with 96 hidden neurons had the highest PPV of 85.79%.  However, comparison with other models was not 

evident in the literature and the model was built with only two MetSR-F - WtHR and BP [61]. Lin et. al. [56] compared 

their ANN model with a MLR model and the ANN model  had a higher AUC and PPV of 93.4% and 67.5% 

respectively. 

In Ushida et al. [58], fuzzy neural network (FNN) was applied to identify the most accurate combination of MetSR-F 

for the diagnosis of MetS. FNN is a hybrid combination of  the fuzzy inference system and ANN [106]. Here, the 

fuzzy rules are extracted from the training data. A typical FNN consists of the input, membership function, rule, and 

output layers. Nodes at Layer 1 recieves input linguistic variables. Layer 2  computes  the membership values, whose 

nodes represent the definition of the respective linguistic variables. Nodes at Layer 3 represent fuzzy rules. 

Preconditions of fuzzy rules are the links before Layer 3, and the link after Layer 3 is the consequences of fuzzy rules. 

Finally, Layer 4 represents the output layer. The result in [58] show that the combination of -GTP level and white 

blood cell count are the most significant risk factors of MetS.  However, the ACC of the FNN model is only 68.5%. 

This is the least ACC for any of the ANN models that were applied in the diagnosis of the risk of MetS.  

Also, a variant of the ANN called the Auto Contractive Map (AutoCM) was used by Vigna et al. [64] to identify the 

complex relationships between MetS and obesity, gender, and other psycho-social risk factors. AutoCM is a technique 

that creates a visualization MetS and its identified risk factors in a semantic connectivity map. The map identifies 

complex similarities, hidden trends and nonlinear associations  among attributes in a dataset. The maps are generated 

using the AutoCM techniques which computes the multi-dimensional association between the characteristics of each 

variable and all the other variables. It  assigns a numerical coefficient (weight) to each link between the variables that 
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denote the strength of their association. The links are represented as matrix connections that preserver nonlinear 

associations between attributes [107]. The results of the study showed that there is a strong positive relationship 

between the diagnosis of MetS, work- related factors and psycho-pathological variables in men and women. 

Kakudi et al. [63] developed a novel ARTMAP algorithm - the Genetically-Optimized Bayesian ARTMAP (GOBAM) 

for the early diagnosis and risk prediction of MetS in patients who present with borderline MetSR-F measuremente. 

ARTMAP is an adaptive artificial system capable of solving the stability-plasticity delima which leads to catastrophic 

forgetting. In [63], the training sequence and parameters of the Bayesian ARTMAP (BAM) are optimised using 

genetic algorithm (GA). The GA is utilised to search for best combination of parameter values and sample sequence 

during training. Kakudi et al. [63] developed an intelligent model using GOBAM to diagnose the risk of MetS for 

enhancing the quality of life of patients.  The predictive performance of GOBAM when compared with three other 

variants of ARTMAP (fuzzy ARTMAP (FAM), GA-FAM and BAM) outperformed all the ARTMAP variants with 

ACC and ACC and  ranging from 85% - 90%, and 91% - 95% respectively. However, the SPEC of the GOBAM 

model was low with a range of 76% - 87%. There a risk quantification value generated by the GOBAM for diagnosing 

the risk of MetS. This value was able to identify patients with borderline measurements of MetS risk scores. 

In 2020, Eyvazlou [85] applied ANN to predict MetSR-F especially in people with obstructive sleep apnea. ANN was 

applied in 16 epoch of learning with 17 input variables using two hidden layers. Compare with MLR, the ANN had a 

higher performance metrics with an ACC, SENS, and SENS of 89%, 82.5%, 92.2% respectively. The results of the 

study indicates that the model can be used to design preventive measures for managing the risks of MetS in the 

workplace.  

6.2.5 Decision Trees 

Three studies ([65], [66], [62]) investigated the use of Decision trees (DT) to diagnose MetS and identify combinations 

of the MetSR-F significantly associated with its prediction. DT are trees that classify data by recursive partitioning 

into hierarchical or sequential structures [108]. DTs reduce the volume of data into an accurate informative summary 

consisting of the most important characteristics of the data. The DT consist of nodes  and each node represents a 

decision rule that may split into two or more partition. These rules are automatically constructed and can be used for 

inferential decision making in clinical diagnosis. 

The DT model for the diagnosis of MetS for a middle-aged male will build a classification tree by identifying which 

of the MetSR factors should be the tree's root node based on some selection criteria. Let's assume the “TG” is chosen 

as that root node, and it has two possible values “ 1.7 mmol/L” and  “ < 1.7 mmol/L”.  The training instances will 

be divided according to the level of “TG” values  and this attribute will no longer be included in the training. So for 

each branch of “TG”, the attribute with the most relevant information must be found using the same logic. For 

example,  for “ 1.7 mmol/L”, the  “HDL-C” with branches “< 1.0 mmol/L” and “> 1.0 mmol/L” could follow. This 

process is repeated until all the samples are classified in the same class  or until all the samples  have been trained. 

Two of the studies ([65] and [66]) proposed the use of decision trees with chi-squared automatic interaction detection 

(CHAID) methodology for the early detection of MetS. The chi-squared automatic interaction detection method is an 

algorithm used for finding patterns in datasets by merging, splitting and finally applying a user-specified stopping 

criteria [109]. 

Romero-Saldana and Miller et al. used only non-invasive MetSR-F - WtHR and BP to develop a DT model. WtHR 

and BP were identified as the MetSR-F with the highest association to the risk of MetS in the DT model. They 

validated the method against the NCEP ATP III MetS definition and reported an ACC, SENS and SPEC of 94.2%, 

91.6% and 95.7% respectively.  However, Miller et al. [65] utilised all the five clinically accepted MetSR-F used to 

define MetS in their DT model. They reported a higher classification ACC of 92.3% than Romero-Saldana and et al.. 

This could be attributed to their inclusion of more MetSR-F which should expectedly  yield a better performance 

decision tree model. However, noise can significantly decrease the ACC of a DT model [110].  

In [62], Worachatcheewan d et al. proposed quantitative population-health relationship (QPHR) for the diagnosis of 

MetS. QPHR was developed using SVM, ANN, DT and PCA. Also [62] applied association analysis (AA) to identify  

the variables that repeatedly cluster together to diagnose MetS. The DT model outperformed both ANN and SVM 

models with an ACC of 99% against 98% and 91% for ANN and SVM models. PCA was able classify samples as 

have MetS or no-MetS. The AA identifies TG+BP, BP+FPG, and TG+FG as the MetSR-F that cluster together 

diagnose the risk of MetS.  
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The gradient boosted tree (GBT) based technique was applied by Shimoda et al. [78] to develop another prediction 

model for the diagnosis of MetS by combining MetSR factors and psycho-social risk factors. The GBT is a variant of 

the gradient boosting machine developed as an ensemble of the classification and regression tree (CART) [111]. The 

GBT works by boosting the predictive capacity of an ensemble of weak classifiers (Trees), thereby increasing its 

ACC. Compared with how RF builds its trees independently, GTB builds its trees by adding one classifier at a time. 

Thus, the newly added classifier is trained to improve the predictive capacity of previously trained ensemble of 

classifiers. For each performance score allocated to a classifier, the sum of the scores of all the classifiers is computed 

to obtain the final predictive score. The predictive performance of the GBT model in [78] was compared with that of 

MLR and RF models generated with the same dataset. The performance evaluation of the models showed that the 

GBT outperformed both MLR and RF models with an AUC, SENS and SPEC of 89.3%, 87.7%, and 78% respectively. 

This  predictive performance could be attributed to GTB's ability to continuously correct the errors of previous trees 

as new trees are built up during training. 

Yu et al. [84] developed and evaluated four variants of DT - CART, CHAID (*), CIT, GLMT, and RF. The MetS 

prediction models were developed with health examination data collected by assessing the hardness of a participant’s 

liver using ultrasound-based elastography The results from the DTs was used to visualize and identify patterns 

between MetS and noninvasive risk factors in Taiwan. The CHAID MetS prediction model outperformed the other 

four models with an ACC, F1 score and AUC or 87.3%, 93% and 86.7% respectively. 

6.2.6 Random Forest 

Three studies ([70], [56], [71]) applied the random forest (RF) tree algorithm to predict the presence of MetS, 

determine its prevalence and find significant risk factors related with the presence of MetS. Random forest is an 

ensemble method which combines several individual decision trees for classification and prediction [112]. RF 

generalises by using the bagging strategy to build each decision tree independently, thereby decreasing variance [113]. 

The ensemble of individual trees makes adjustment for the instability of individual trees thereby increasing the 

robustness of the RF method. RFs uses individual DTs as individual classifiers. However, for each tree node, a certain 

number of features are selected out the total number of input features. and the best split of the features divides the 

node. Finally, the class that is voted the most is chosen out of the trees in the forest either by regression or by 

classification. Nevertheless, model interpretation from the RF trees is more complex than from individual decision 

trees because the influence of the risk factors do not directly correspond to the risk factor's position in the tree. 

Generating a multitude of DTs and then combining their predictions decreases the problem of overfitting which is 

usually associated with classification in DTs [114].   

In the case of  Lin et al. [56], they investigate the metabolic profiling changes using serum samples in MetS. First the 

MetS serum sample was analysed using Gas chromatography–mass spectrometry (GC-MS). Then RF models were 

created using metabolites from the metabolic profiling. Each MetSR-F's level of contribution to the RF model was 

calculated. A proximity matrix which identifies the structure in the data was used to construct multi-dimensional 

scaling (MDS) plots. Similar samples have high proximity. The ACC for the RF model in [56] was 86.5% while the 

SEN and SPEC were 89.86% and 84.04% respectively showing significant discrimination between individuals with 

MetS and healthy controls. 

In Worachartcheewan and et al., [71] data was divided into 2 subsets using PCA. The first subset is an internal dataset 

used for training the RF model by applying the 10-fold cross validation procedure. The second subset is an external 

dataset for evaluation of the RF model and FPG, WC,and BMI were the MetSR-F with the highest association to MetS 

according to the RF model. The importance of each MetSR-F was evaluated using the Gini index. The ACC, SENS 

and SPEC of their RF are 98.02%, 94.81% and 99.07% respectively.   

Szabo et al. [70] built a RF model for predicting MetS using genetic parameters and dietary information. Their model 

had an ACC of 71.7%. The findings confirmed that genetic parameters are significantly associated with risk of MetS. 

In 2019, Vrbaski et al., [83] used a dataset consisting of the clinical MetS risk factors from 3000 volunteers in Serbia 

to develop a MetS prediction model using RF, DT, ANN and DT. A model comparison using Mann-Whitney test 

reveals that the RF model has the highest prediction performance with respect to SENS, SPEC, PPV and NPV of 

91.54%, 94.36%, 93.79%, and 91.50% respectively. The findings indicate that the model can be used for the early 

diagnosis of MetS which will ensure preventive measures such as education on healthy lifestyle adoptions.  
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6.2.7 Support Vector Machines 

Two studies ([68], [69]) applied Support vector machines (SVM) in the diagnosis of the risk of MetS. Karimi-Alavijeh 

et al. [69] explored the use of both SVM and DT to predict the risk of MetS.  SVM is an algorithm that finds the 

optimal decision hyperplane which maximizes the separation line between data points of different classes [115]. 

SVM is a linear classifier that creates an optimal hyperplane which separates samples of two classes using least square 

regression [115], [116]. It can work with mixture of both numerical and categorical data. Even though it is has accurate 

predictability, it is a black box technique that disallows interpretation of the classification model.   

The study of  Karimi and et al. [69] explored the use of both SVM and DT to predict the risk of MetS. The SVM 

model proves to outperform the DT model with ACC, SENS and SPEC of 75.7%, 77.4% and 74.0% respectively. 

Three models for predicting MetS using ANN, MLR and SVM  were developed by Van Schependom et al. [68] in 

psychiatric patients. The three machine learning models had an ACC, SENS, and SPEC of  between 77% - 79%, 62% 

- 92% and 69% - 98% respectively.  They conclude that MetS can be diagnosed using less complicated ML techniques 

with non-invasive risk factors. However, the performance of their model is highly dependent on schizophrenic patients 

with decreased central obesity. 

Another study by Choe et al. [82] also developed two models for the prediction of MetS using MLP, NB, RF, CT and 

SVM. The first model (Model 1) was developed using only clinical parameters. In addition to the clinical parameters, 

10 SNPs were added to develop the second model (Model 2). A performance comparison of both models showed that 

Model 2 performed higher in terms of ACC, SENS, SPEC, F1 and BCR metrics.  Model 2 developed with SVM 

showed the highest ACC of 82.2%.  

6.2.8 Bayesian Network 

Bayesian network (BN) is a probabilistic modelling algorithm based on Bayes' Theorem which defines the probability 

of an event given the occurrence of another related event. It categorizes data by monitoring the probabilities that 

specific features are related to specific classifications. The BN leverages on its ability to analyse results into 

meaningful information given an existing knowledge domain. It has the ability to handle uncertainty in complex 

problems. Only Miyauchi and Nishimura, [67] applied Bayesian Network (BN) modeling to connect information from 

specific  health check-up data from Japan. Information from the BN was used to provide lifestyle advice to patients 

identified as being at risk of MetS. The BN model was confirmed as being a useful support tool in specific checkup 

and guidance system. It empowers individuals to find problems in their lifestyle and appropriate medical and health 

solutions easily. 

6.2.9 Reverse Engineering and Forward Simulation 

A "Big data" analytic platform called the reverse engineering and forward simulation (REFS) was used to develop a 

model for the prediction of MetS using dataset generated from health insurance companies by Steinberg and et al. 

[77]. REFS is big data analytic platform that is used to analyse big data sourced from multitude of sources. It uses 

causal analytic to transparently discover the cause and effect associations in data by simulating non-parametric 

datasets. Learning in REFS takes place by Metropolis Monte Carlo sampling from the posterior of the model-structure 

distribution [117]. The REFS model was able to yield interminable answers in terms of probabilities and make realistic 

predictions of the risk of MetS. WC was identified as the major risk factors directly associated with the risk of MetS. 

A decrease in WC will subsequently reduce the risk of having MetS. 

6.2.10 Association Rules Analysis 

Huang [76] applied an association rules analysis (AA) algorithm called the data cutting and inner product (DCIP) 

method in order to investigate the association between MetSR-F and the risk of MetS in factory workers. DCIP 

partitions, sorts and carries out inner production operations on data in order to speed up the data mining process and 

improve computation efficiency. Fifteen association rules were generated by the AA. Medical doctors were 

interviewed to evaluate the efficiency of the association rules. They agreed that about 80% of the  association rules 

derived are recognized in the medical literature to provide health  guides for the diagnosis and management of MetS 
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6.3 Risk Quantification Models 

The areal similarity degree (ASD) was a mathematical technique proposed by Jeong and co workers, [79] for MetS 

risk quantification. The ASD is a similarity analysis between the MetSR-F thresholds and MetSR-F sample 

measurements in a weighted radar chart. The outcome of the similarity analysis is value which determines the presence 

or absence of MetS based on a defined cut-off value. Although the proposed model was able to diagnose MetS in 

individuals with borderline measurement presentations, it is sensitive to the frequency of the population sample and 

the positioning of the MetSR-F on the weighted radar chart.  

Soldatovic and et al., [81] developed and evaluated the siMS score, continuous MetS score: siMS score = 2 * 

Waist/Height + Gly/5.6 + Tg/1.7 + TAsystolic/130 - HDL/1.02 or 1.28 (for male or female subjects respectively. There 

was a high correlation between the siMS score and the cMetSR scores derive from both Z-score and PCA. The siMS 

also outperformed the cMetSR scores with an AUC of 92.6%.  

Yousefzadeh et al. [80] investigated the use Framingham risk score (FRS) for the prediction of MetS. The FRS is  

clinical tool used to asses the risk level of coronary artery disease and identifying the chance of developing any CVD 

in long-term [118]. There was a significant association between the FRS and the presence of MetS  in predicting the 

risk of CVD in both men and women, 39.5% and 18% respectively. The odd ratio of risk of MetS was 6.7 in the high-

risk FRS group (P < 0.001). 

7.0 DISCUSSION AND FUTURE GUIDELINES 

The cMetSR score, developed using  Z-score, PCA and CFA, is a unitary score that has been determined to have a 

higher MetS risk diagnosis result than the clinical dichotomous definition [119]. A high score indicates a high MetS 

risk while a lower score is an indication of a less alarming risk of MetS. It is also capable of predicting the incidence 

of T2DM [37],[120],[46] and CVD [10] compared with the clinical dichotomous definition. Currently, the cMetSR 

score was frequently used to determine the association between MetS and other emerging risk factors. However, 

despite its ability to maximise statistical power [91] on the cut-off point of the MetSR-F by reducing loss of 

information, the cMetSR score is limited in its diagnostic capacity because all MetSR-F measurements are assumed 

to have an equal contribution into the diagnosis of MetS [121]. Furthermore, the cMetSR score is constrained in its 

application because it is a sample - specific statistical measure. This indicates that the  individual score of a single 

patient cannot be the same in two different studies. There is also no provision to compare mean scores derived from 

two different studies due to differences in demographics distributions, measures of central tendency and variabilities 

related to the sample data. Out of the 10 studies that used statistical techniques, only five studies, ([46], [37], [39],  

[54], and [50]) reported AUC's ranging from 61.3% to 89%. The six studies ( [50], [51], [52], [53], [54], [55]) that 

used the CFA reported the goodness of fit of their models. However, there was no evidence of  performance evaluation 

comparison in all the statistical models in the primary studies. Therefore, the predictive performance  of the cMetSR 

score against other non-clinical methods is required in order to ascertain its efficiency. More research is therefore 

required to evaluate the cMetSR score against other types of MetS indexes.  

The fourty-four studies that used machine learning techniques evaluated their methods using the performance metrics 

defined in Table 4. Thirteen studies ([62], [60], [68], [69], [75], [56], [71], [65], [66], [82], [84], and [85]) reported 

the ACC of their models. The average ACC performance of each technique that was used in the included studies is 

presented in Fig. 5. ACC, SEN and SPEC values were the most frequently reported metrics by these studies. The other 

four studies ([59], [61], [72] and [74]) reported the AUC of their models.  

The graphs shows the average ACC of 11 PCA, 6 CFA, 9 ANN, 5 DT, 1 GOBAM, 6 SVM, 3 RF, AND 6 MLR, 

techniques as reported in the 13 selected studies. The REF technique was separately used by one study each. It is clear 

from the graph that RF and DT were reported as the most frequently accurate techniques and the least accurate is the 

SVM. 
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Fig. 5: Overall average accuracy reported for each ML technique 

Most of the studies that applied statistical techniques used the PCA to develop the cMetSR score. The PCA computes 

cMetSR score using the principal component that explains the largest variance while maintaining the structure of the 

data. However, the Z-score is only a normalization technique and data preservation less evident than in the PCA.  

The most frequently used ML techniques are ANN, BN, and variants of DTs.  The use of ANN could be ascribed to 

its efficiency in solving non-linear complex problems by being able to model any functional relationships and data 

structure.  However, the BkP algorithm which is used to train the neural network, is a gradient descent technique that 

is characterized by getting stuck in local minima and slow convergence, limiting its application to real life domains 

such as the prediction of MetS [122]. Also, the BPNN is depends heavily on its learning parameter settings.  The use 

of BNs for prediction and classification problems have been successfully applied in the medical domain [123]. This 

could be due to its ability to handle uncertainty and integrate previous knowledge to support causal relationships. 

Nevertheless, performing inference creates an expensive computational burden due to the inversion of finite elements. 

Additionally, DTs are favored owing to their ability to generate interpretable results.  

Significant conclusions can therefore be drawn from the performance measures applied to evaluate the prediction 

models. Consequently, the goal of ML models for predicting MetS should be to have a high predictive performance 

and generalization capability that enables the diagnosis of the maximum number of individuals that have or are at risk 

of MetS. Out of the 4 techniques mentioned, ANN, DT, SVM, and MLR, the machine models developed with ANN, 

DT, SVM, can be said to consistently perform better than the MLR. However, a clear winner is difficult to ascertain 

as the techniques show varying performances with regards to their ACC, SENS and SPEC in different studies. This 

variance could be attributed to the difference in size and dimension of the datasets. With regards to the RF, conclusions 

cannot be made until further studies have been conducted which compares it with other relevant ML techniques. 

Accordingly, more number of studies which perform comparative evaluation between various ML techniques are 

required in order to ascertain more generalizable models that can quickly and accurately diagnose MetS.  

Oversampling methods such as SMOTE [124] to balance the training dataset and also to remove noise from the whole 

dataset [125] should be applied in pre-processing stages of MetS diagnosis. In addition, datasets should be cleaned 

using data cleaning methods such as Tomek’s links [126] and Wilson's Edited Nearest Neighbor Rule [127], to remove 

any overlapping that may occur with the application of oversampling methods[125]. Perveen et al. [128] applied 

various sampling techniques to pre-process MetSR-F measurements in imbalance datasets before applying ML 

techniques to predict diabetes. Furthermore, more research using different population samples is required for better 

generalizability of non-clinical methods. 

The techniques applied to develop the ML models in this systematic review assume an outcome of either being at risk 

or not at risk of Metabolic syndrome. This binary prediction only agrees with a correct or incorrect outcome. However, 

for the prediction of the risk of MetS, it is recommended that ML algorithms that also predict the probabilities of the 

binary outcome should be used in determining the impact of the risk of MetS in the diagnosis. This probability will 

aid clinicians and individuals on the best management guidelines to follow for prevention and treatment procedures. 

The GOBAM model has two advantages: the ability to diagnose MetS and predict the risk of MetS in patients who 
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have MetSR -F measurements very close to the clinical threshold. It generates a probabilistic risk quantification index 

for assisting clinicians in the diagnosis of MetS. 

Furthermore, the robustness of a ML model can also be determined based on the number of algorithms used for its 

comparative evaluation. For the studies in this systematic review that have conducted comparative model evaluation, 

it can be argued that the number of ML algorithms used for evaluation are inadequate for determining the robustness 

of the proposed models. From the primary studies in this category, only eight studies ([62], [59], [60], [68], [69], [65], 

[82], [84], and [85]) compared their proposed models with other existing ML techniques. Even in these studies the 

number of comparable models for evaluation is less than sufficient to determine the robustness of a proposed model. 

However, in majority of the studies, appropriate procedures for evaluation, such as splitting the dataset into training, 

testing, and validation sets or the use of cross-validation was applied. Therefore, for proposed ML models which 

predict MetS, a greater number of existing ML models should be used for comparative evaluation for robustness and 

predictive generalization.  

In the case of the risk quantification techniques, no performance metrics were reported in any of the studies. Therefore, 

risk quantification techniques will need to be evaluated on other population samples due to their high dependency on 

the examination results of the population sample. Furthermore, the performance of these methods is required in order 

to ascertain how well they can generalize in quantifying the risk of metabolic syndrome.  

Majority of the primary studies are cross-sectional, making it difficult to identify the impact of the different MetSR-

F on the disease outcome. More longitudinal studies could be carried out to investigate how these factors interact with 

each other [97]. This information may be useful in ascertaining the individual effects of each risk factor in developing 

future algorithms. 

Finally, the growth in the non-clinical approaches is encouraging with studies showing promising results. However, 

there is the need for further studies as follows: 

i. As the cMetSR score was mostly derived for the purpose of finding associations between MetS and its related 

diseases (CVDs and diabetes) and other risk factors, its effectiveness for use as a tool for the diagnosis of 

MetS in clinical setting has not been evaluated. Therefore, more studies are required to evaluate the use of 

cMetSR score for clinical use. 

ii. Research that perform comparative performance evaluation using statistical techniques with various 

population samples should be carried out, so as to obtain generalizable statistical models.  

iii. Due to imbalance in MetS datasets, preprocessing techniques such as SMOTE should be applied before 

deriving prediction models.  

iv. Studies using ML techniques should perform comparative evaluation between new models derived and other 

relevant ML techniques in order to ascertain the robustness of the non-clinical models. 

v. Inference based ML techniques should be applied to derive non-clinical models due to their ability to present 

probabilistic values for MetS prediction. 

vi. Studies that evaluate mathematical quantification techniques using performance metrics should be 

conducted.  

8.0 LIMITATION 

Our analysis was limited to only studies published in the searched databases and written in English language. 

Secondly, due to the diverse algorithmic structures of the identified methods (Fig. 4), a direct comparison between all 

the studies could not be carried out. For example, while ML algorithms have the ability to learn patterns from data, 

mathematical quantification techniques cannot learn. Potentially, systematic reviews are also prone to selection bias. 

However, two experts independently selected the studies thereby minimizing the risk of this bias. Other limitations 

beyond our control such as publication bias could also be present. Often, most studies published in peer reviewed 

journal tend to have positive results. Nonetheless, our search scope, which spans the earliest years until January 2020 

will reduce such effect. 

9.0 CONCLUSION 

Our review shows that that the trend of non-clinical diagnosis of MetS includes three main types of non-clinical 

methods: ML, statistical and RQ techniques. 

The ML techniques used include PCA, CFA, ANN, DC, RF, SVM, MLR, REF, GOBAM and Bayesian networks. 

The ANN was the most frequently used ML technique, nonetheless, highlighted proof based on performance measures 

shows that the RF technique is more applicable in the development of non-clinical methods for the diagnosis of MetS. 

However, the RF model tends to create large trees which makes it inefficient for quick and easy clinical application. 

Therefore, more alternative non-clinical methods using ML techniques should be explored to develop applications 

that are readily and easily available to support the clinical diagnosis of MetS in practical clinical settings.  
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The three RQ techniques, ASD, simScore and FRS are heavily reliant on the examination results of sample 

participants. 

This study has several implications in personalized and public health management. It provides an opportunity for 

researchers and health-care practitioners to gain an insight into the current trends and development of existing ML, 

statistical and risk quantification methods used for the diagnosis of metabolic syndrome. Indexes derived from these 

non-clinical methods could be used as tools which serve as quick and early preventive indicators to guide the treatment 

and monitoring of ongoing management of MetS and its associated diseases such as T2DM and CVD. This study 

sought to equip researchers and clinicians with a comprehensive analysis on the different existing classifications and 

application of efficient algorithms for the early diagnosis, management, and prevention of MetS and its associated 

diseases in health care management systems. The future guidelines of this study will guide researchers in the process 

of developing and advanced. 
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ABBREVIATIONS  

The following abbreviations are used in this manuscript:  

Abbreviation Description 

2hPG 2-Hour Postload Plasma Glucose 

A   Age 

AACE American Association of Clinical Endocrinologists 

ACC accuracy 

AHA/NHLBI American Heart Association ‚Äî National Heart, Lung, and Blood Institute 

AI Artificial Intelligence 

AIn Adiposity Index 

ANN Artificial Neural Network 

ART Adaptive Resonance Theory 

ARTMAP Adaptive Resonance Theory Mapping 

ASD Areal Similarity Degree 

AUC Area Under The ROC Curve 

AutoMap  Auto Contractive Map  

BA Bayesian ART 

BAM Bayesian ARTMAP 

BFP Body Fat Percentage 

BkP Back Propagation Algorithm 

BMI Body Mass Index 

BN Bayesian Network 

BP Blood Pressure 

cCICR continuous clinical index of cardiometabolic  

CFA Confirmatory Factor Analysis 

CFI Comparative Fitness Index 

CHAID Chi-Squared Automatic Interaction Detection 

CHOL Total Cholesterol 

CIT Conditional Interference Tree 

cm Centimeter 

cMetSRS continous MetS risk score 

CVD Cardiovascular Disease 

DBP Diastolic Blood Pressure 

DCIP Data Cutting and Inner Product  

DT Decision Tree 
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Abbreviation Description 

EGIR European Group for the Study of Insulin Resistance 

FA Fuzzy ART 

FAM Fuzzy ARTMAP 

FN False Negative 

FP False Positive 

FPG Fasting Plasma Glucose 

FPR False Positive Rate 

FRS Framingham risk score 

FSCORE FSCORE 

G   Gender 

GA Genetic Algorithm 

GAFAM Genetic Algorithm Fuzzy ARTMAP 

GBT Gradient Boosted Trees 

GLMT Generalized Linear Model Trees 

GOBAM Genetically Optimised Bayesian ARTMAP 

HC Hip Circumference 

HDL-C High-Density Lipoprotein Cholesterol 

HOMA-IR Homeostasis Model Assessment Insulin Resistance Index 

HYP Hypertension 

IAF Intra-Abdominal Fat 

IAS International Atherosclerosis Society 

IASO International Association for the Study of Obesity 

IDF International Diabetes Federation 

IGT Impaired Glucose Tolerance 

IS Insulin Sensitivity 

JDC Japanese Diagnostic Criteria 

JIS Joint Interim Statement 

kg/m2 Kilogram Per Square Meter 

KNN K-Nearest Neighbour 

LDL-C Low-Density Lipoprotein 

MCC Matthews Correlation Coefficient 

MetS Metabolic Syndrome 

MetSR-F Metabolic Syndrome Risk Factor 

MetSSS MetS severity score 

mg/dl Milligram Per Deciliter 

ML Machine Learning 

MLR Multiple Logistic Regression 

mmHg Millimeter Of Mercury 

mmol/L Millimoles Per Liter 

N/A Not Available 

NCD Non-Communicable Disease 

NCEP ATP III National Cholesterol Education Program Adult Treatment Panel III 

NHLBI National Heart, Lung and Blood Institute: the American Heart Association 

NPV Negative Predictive Value 

PA Physical Activity 

PC1 Principal Component 1 

PC2 Principal Component 2 

PCA Principal Component Analysis 

PCLR Principal Component Logistic Regression 

PPV Positive Predictive Value 

REFS Reverse Engineering and Forward Simulation 
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Abbreviation Description 

RF Random Forest 

RMSEA Root Mean Square Error Of Approximation 

ROC Receiver Operating Characteristic 

RQ Risk Quantification 

SBP Systolic Blood Pressure 

SD Science Direct 

SENS Sensitivity 

SM Smoking 

SNPs Single Nucleotide Polymorphisms 

SPEC Specificity 

SQF Subcutaneous Fat 

SRMR Standardised Root Mean Square Residual 

SVM Support Vector Machine 

T2DM Type II Diabetes Mellitus 

TG Triglycerides 

TN True Negative 

TP True Positive 

TPR True Positive Rate 

WC Waist Circumference 

WHO World Health Organisation 

WHR Waist ‚Äì Hip Ratio 

WHtR Waist to Height Ratio 

WoS Web of Science 
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